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Abstract. Hand Gesture Recognition (HGR) has been significantly
advanced through multimodal approaches utilizing RGB and Optical
Flow (OF). Yet, two main challenges often remain (i) The computational
burden triggered by advanced techniques which rely on intricate multi-
level fusion blocks distributed across the architecture, and (ii) the limited
exploration into the impact of OF estimators on multimodal fusion. To
address these, this paper introduces an efficient RGB+OF fusion relying
on just a few 3DConv layers applied early in the architecture. Concur-
rently, we explore the impact of five state-of-the-art OF methods on this
fusion. Advancing beyond traditional HGR, we prioritize recognizing and
precisely localizing the hand gesture, which is critical for a wide range
of computer vision applications. Thus transitioning the focus to Hand
Gesture Recognition and Localization (HGRL). Accordingly, we employ
a YOLO-based architecture renowned for its real-time efficacy and pre-
cision in object localization, aligning with the demands of dynamic ges-
tures often seen in HGRL. We evaluate our approach with the IPN-Hand
dataset, augmenting its scope for HGRL evaluation by manually anno-
tating 82,769 frames. Our experiments show significant results of 10%
enhancement in mAP against the RGB-only method and a 7% gain over
2DConv-based fusion.

Keywords: Hand Gesture Recognition and Localization ·
RGB+Optical Flow Fusion · YOLO-based Architecture

1 Introduction

Automatic Hand Gesture Recognition (HGR) is critical in developing intuitive
human-computer interfaces since it focuses on interpreting user hand movements
as instructions or commands [1,6]. However, when the crucial aspect of spatial
localization is included in the process, we transition to the more comprehensive
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Fig. 1. Illustration of the limitations of relying only on the current frame (t) for classi-
fying dynamic gestures. Temporal information from previous frames must be considered
to discern if the fingers are opening (right) or closing (left). Dense Optical Flow (OF)
can effectively capture and depict the crucial temporal features for HGRL.

challenge of Hand Gesture Recognition and Localization (HGRL). In HGRL, the
gesture and precise hand location play an essential role in a wide range of appli-
cations in the automotive sector, virtual reality, industrial electronics, and oth-
ers [6,23,25]. For instance, touchless screen manipulation is a technology that has
become increasingly relevant in a world focused on hygiene and reduced physical
contact [1,16]. For such interfaces, while simple commands might be captured
through static hand gestures relying solely on spatial cues, interpreting more
complex, dynamic gestures need motion interpretation. As depicted in Fig. 1,
dynamic gestures are ambiguous when viewed as a single frame, underscoring
the importance of temporal cues for HGRL.

Dense Optical Flow (OF) has traditionally been a standard method to extract
temporal features for HGR. Several deep learning approaches in the literature
have fused the complementary nature of RGB and OF data to create robust mul-
timodal features [7,12,13,17,20]. However, two critical challenges often remain
under-addressed in most RGB+OF approaches. Firstly, the computational cost
of multimodal architectures frequently goes overlooked. So, the necessity to com-
pute dense OF as a preprocessing step significantly limits their application. Sec-
ondly, the accuracy and inference speed performance of OF estimators become
crucial to the success of the entire system. Therefore, these challenges must
be carefully addressed to design efficient and reliable multimodal HGRL fusion
approaches.

The fusion of RGB and OF data is commonly achieved through different
techniques, with middle multi-level fusion standing out as it effectively captures
low-level and high-level correlations between modalities through the whole Con-
volutional Neural Network (CNN) [7,12,19]. However, traditional fusion methods
rely on fusion blocks to merge modal-specific features, often increasing compu-
tational costs. In contrast, in this paper, we introduce an efficient RGB+OF
fusion purely based on a couple of 3DConv layers from the early stages of the
architecture. This allows the network to holistically learn the complementary
multimodal characteristics in an integrated manner rather than generating iso-
lated features that need subsequent fusion. To further optimize our approach, we
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adopt a YOLO-based single-stage architecture chosen for its real-time processing
and exceptional accuracy in spatially localizing objects, aligning perfectly with
the demands of dynamic HGRL tasks. This configuration ensures end-to-end
learning while maintaining a mix of initial 3D and subsequent 2D convolutions
for computational efficiency. On the other hand, the contribution of different
OF methods for multimodal HGR has been barely investigated. Therefore, we
explore the impact of five state-of-the-art (SOTA) OF methods, specifically in
early RGB+OF fusion.

We evaluate our proposed approach using 11 distinct gesture classes of the
IPN-Hand dataset [2], known for its challenging dynamic gestures tailored for
interactions with touchless devices. While this dataset offers temporal annotation
of the gestures, hand location is not provided. Therefore, we manually annotate
82,769 frames, adding another dimension to the dataset, enabling it to evaluate
HGRL approaches. Through comprehensive experiments and an in-depth abla-
tion study, we validate the effectiveness of our proposed RGB+OF approach.
The results show a notable 10% boost in mAP compared to the RGB-only strat-
egy and a significant 7% increase over a 2Dconv-based fusion. Note that this
performance is achieved with a marginal increase in the computational cost of
about 1 GFLOP to the baseline architecture. Testing code, pre-trained models,
and extended annotations of the IPN-Hand dataset will be publicly available at
https://github.com/GibranBenitez/IPN-hand/.

In resume, the main contributions of this paper include:

– Introduction of an efficient 3Dconv fusion of RGB+OF data employing a
YOLO-based single-stage architecture for dynamic hand gesture recognition
and localization (HGRL).

– Comprehensive analysis and evaluation of five SOTA OF methods:
RAFT [22], GMA [10], KPA [15], SKF [21], and FlowFormer [9] for HGRL
based on RGB+OF.

– Extension of the IPN-Hand dataset annotations of about 82K frames resulting
in 83,613 annotated hands.

2 Related Work

The explosion of deep learning in the last decade urged several solutions for HGR,
capitalizing on the advancements of CNNs [1,13,26] and their 3D counterparts,
3D-CNNs [7,12,17]. Preliminary techniques for RGB+OF HGR predominantly
adopted the two-stream-based framework [20]. In this architecture, a spatial
stream processes individual RGB frames via a CNN, while a temporal stream
captures motion information by stacking and processing optical flow images with
another CNN. Finally, the classification scores of each stream are combined
by a late fusion block. Contemporary methods, such as those proposed by the
works of Molchanov et al. [17] and Kopuklu et al. [13], have adeptly integrated
both RGB and OF data, resulting in significant improvements in recognition
accuracy and a richer representation of hand gestures. However, despite the HGR
advancements, a notable gap in the existing literature is the limited attention

https://github.com/GibranBenitez/IPN-hand/
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to spatial localization of hands, which is crucial when distinguishing multiple
hands in a scene or determining the precise location of a gesture.

An important issue for the RGB+OF fusion is determining the optimal
level within CNN models for information integration. Numerous efforts have
fused multimodal information at different levels, namely early, late, and mid-
dle fusion [1,7,19]. Early fusion combines features at the data level or the early
stages of the HGR architecture, while late fusion merges predictions from indi-
vidual models as the last step of the architecture. Moreover, some methods have
shown that mid-fusion is more effective because it captures intricate correlations
between modalities throughout the entire network [7,12,19]. The middle multi-
level fusion strategy has notable contributions, such as those by Joze et al. [12]
and recently Hampiholi et al. [7], emphasizing the potential of middle fusion
when integrating RGB and OF data. However, many existing approaches often
neglect challenges like architectural complexity, inefficiencies from traditional
fusion blocks, and the computational costs introduced by OF estimators. This
highlights the urgency for methodologies that seamlessly balance performance
and computational efficiency, the core objective of this work.

3 Proposed Method

In this section, we detail our YOLO-based single-stage architecture that lever-
ages the benefits of both RGB and OF data to achieve robust and efficient
Dynamic Hand Gesture Recognition and Localization (HGRL). Figure 2 presents
a block diagram detailing the entire architecture, capturing the flow from the
multimodal RGB+OF input to the precise HGRL output. The diagram offers
a holistic perspective of our architecture. However, for a more detailed under-
standing, we’ll dissect it into its core segments: the Backbone, the RGB+OF
fusion, the Neck, and the Head. These elements are crucial, each contributing
uniquely to the balance between speed and accuracy in our method.

Backbone. The backbone serves as the foundational structure of the archi-
tecture, responsible for initial feature extraction. Our design adopts the CSP-
Darknet53 structure, a modification of the renowned Darknet architecture [18]
based on the CSP (Cross Stage Partial) principle [24]. This structure efficiently
enhances learning by decomposing the feature map from the previous stage into
two parts and then merging them with a convolution layer after a series of bot-
tlenecks, as illustrated in the CSPN -2D diagram of Fig. 2. Note that the output
size of feature maps is specified in each block of the diagram. The core of the
backbone is constructed by stacking multiple 2DConv-CSP modules, with each
2DConv layer comprising a 3×3 Convolution, followed by Batch Normalization,
and then activated by the SiLU (Sigmoid Linear Unit) function [4]. In summary,
the backbone effectively captures both low-level and high-level features, setting
a robust foundation for the subsequent processing stages.
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Fig. 2. Block diagram of our YOLO-based architecture with efficient 3Dconv fusion of
RGB and OF for HGRL.

RGB+OF Fusion. Crucial to our architecture is the fusion of RGB and OF
data. These modalities, when combined, offer a comprehensive view of dynamic
hand gestures comprising appearance (RGB) and motion dynamics (OF). Our
chosen methodology for fusion leverages 3Dconv layers, designed to extract spa-
tiotemporal features by processing depth-wise spatial information across consec-
utive time steps. This is particularly advantageous for our input, which consists
of two consecutive images (RGB and OF) of size 640×640×3, as depicted in
Fig. 2. Thus, the input is initially shaped as 640×640×2×3. It then undergoes
two 3Dconv layers as follows:

– The data first passes through a 3Dconv layer with 32 filters and a spatial
stride of 2. This step processes the RGB and OF frames together, yielding an
output shape of 320×320×2×32.

– It then traverses another 3Dconv layer with 64 filters and spatial and temporal
strides of 2. This operation condenses the temporal dimension by effectively
merging the RGB and OF data, resulting in a 160×160×1×64 feature map
shape.

– The rest of the 2DCNN-based architecture processes this fused data by simply
reshaping the feature maps to 160×160×64.

In this way, our fusion strategy doesn’t just append one modality to another.
Instead, it learns and retains the spatial and temporal intricacies of both modal-
ities, setting the stage for subsequent processing stages to work with a richer
feature representation.
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Neck. Acting as an essential conduit between the foundational Backbone and
the decisive Head, the Neck in our architecture ensures efficient high-to-low level
feature communication. We incorporate the SPPF (Spatial Pyramid Pooling
Faster) structure [11], a faster variant of the traditional SPP [8]. SPPF enables
the network to capture multi-scale features by pooling feature maps at different
scales and concatenating them, as shown in Fig. 2, resulting in a robust repre-
sentation resistant to varying object sizes. Alongside, we employ the CSP-PAN
(CSP - Path Aggregation Network) structure, a modification of the conventional
PAN [14] built on the CSP principle [24]. CSP-PAN effectively redistributes
and aggregates feature maps across layers, enhancing the learning capability by
enabling efficient cross-scale feature communication. In essence, the Neck ensures
that fine-grained and coarse features are seamlessly bridged and prepared for the
final detection phase.

Head. The Head of our architecture is the last stage, where the processed
features are converted into predictions. Our implementation capitalizes on the
YOLOv3 Head [18], known for its high efficiency in real-time object detection
tasks. YOLOv3 introduces three sizes of anchor boxes at three different scales,
catering to varying object sizes. Each of these scales uses its set of anchor boxes
to predict both the bounding box coordinates and the objectness score. Addition-
ally, each bounding box prediction predicts the confidence score, which signifies
the probability of an object being present and how well the bounding box fits the
object. As illustrated in Fig. 2, the Head also benefits from a three-tier detection
mechanism, allowing detections at three different resolutions, thereby enhancing
accuracy across a range of object sizes. This meticulous design ensures precise
localization of hand gestures while optimizing computational overhead, making
it particularly apt for our purpose.

In summary, our single-stage architecture begins with the robust CSP-
Darknet53 backbone for feature extraction, then integrates RGB+OF inputs
through a simple yet effective 3Dconv fusion process. This harmonized informa-
tion then traverses the efficient SPPF and the adaptable CSP-PAN in the Neck,
culminating in the precise and real-time detection capabilities of the YOLOv3
Head. As illustrated in Fig. 2, our design prioritizes both accuracy and compu-
tational efficiency, presenting a significant contribution to HGRL.

4 State-of-the-art Optical Flow Methods

Dense Optical Flow (OF) consists of estimating pixel motion between consecu-
tive frames in a video sequence, making it an invaluable asset, particularly for
HGRL applications. As the movement of hands and fingers becomes intricate
and fast-paced, reliable OF estimation becomes essential to distinguishing ges-
tures accurately. Despite several OF methods existing in the literature, we focus
our selection on approaches that have demonstrated state-of-the-art (SOTA)
performance on conventional benchmarks, such as Sintel [3] and KITTI [5]. This
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section explores five leading methods, highlighting their contributions and eval-
uating their computational and performance capabilities.

RAFT: Recurrent All-Pairs Field Transforms [22]. Deviating from conven-
tional approaches that compute per-pixel displacements, RAFT employs recur-
rent neural networks and constructs a 4D cost volume to analyze all possible pixel
pairs, ensuring a more cohesive motion estimate across frames. Utilizing Con-
vGRU, it iteratively updates a dense flow field, beginning with a coarse level and
progressively refining it. This guarantees exceptional precision even in complex
dynamic scenes. This methodology not only contributes to its superior accuracy
but also results in visually coherent and smooth flow fields. RAFT has been
validated extensively, being the backbone of several incremental improvements,
underscoring its efficacy and relevance in the field of optical flow estimation.

GMA: Global Motion Aggregation [10]. GMA is a novel approach that
specifically targets the intricate issues presented by occlusions when estimating
OF. The authors introduce a transformer-based methodology that leverages an
attention mechanism to identify long-range interdependencies between individ-
ual pixels in the reference frame. This attention mechanism, often referred to
as the GMA block, enables the model to give varying importance to different
pixels, ensuring a more accurate and nuanced estimation, especially in occluded
regions. Instead of solely relying on local evidence, the method aggregates the
motion characteristics of these pixels on a global scale. This holistic approach
results in a more accurate and detailed representation of motion, particularly
in regions with prevalent occlusions. By incorporating GMA features into the
RAFT framework [22], a new SOTA performance has been established.

KPA: Kernel Patch Attention [15]. Despite the considerable advancements
made by deep learning-based OF methods, their primary emphasis lies in learn-
ing and measuring feature similarities, often neglecting the spatial relations that
reveal motion affinities. KPA addresses this by introducing kernel patch atten-
tion, which operates on each local patch to determine context affinities for better
flow field inference. Traditional optical flow algorithms emphasized both feature
similarities and spatial smoothness. In contrast, KPA effectively blends both
aspects, focusing on local relations based on context and spatial affinities. The
proposed KPA operator employs a patch-based sliding window strategy, offer-
ing a comprehensive solution for reliable motion understanding. Once more, the
KPA method builds upon the RAFT framework [22] to achieve a new SOTA
performance on standard benchmarks.

SKF: Super Kernel Flow Network [21]. Similar to GMA, the SKF method
is proposed to mitigate the impacts of occlusions in OF estimation. This app-
roach benefits from super kernels (SK), which provide enlarged receptive fields
to complement absent matching information and recover occluded motions. SKF
introduces an efficient architecture utilizing a conical design with residual con-
nections, which splits the convolution operation into depth-wise convolutions,
consisting of a large depth-wise kernel and an auxiliary smaller depth-wise ker-
nel. SKF introduces an efficient architecture with a conical design complemented
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by residual connections. This design aims to split the convolution operation into
depth-wise convolutions, using both a large depth-wise kernel and an auxiliary
smaller depth-wise kernel. Despite the architecture reminiscence of GMA, espe-
cially in using the GMA module, SKF distinguishes itself through the innovative
application of SK modules. It also differs from the RAFT framework by utilizing
the SK block as an updater instead of ConvGRU.

FlowFormer: Transformer Architecture for OF [9]. FlowFormer presents
a novel approach representing a fusion of transformer architectures with estab-
lished OF estimation techniques. It takes inspiration from the rising popularity
of transformers, known for modeling long-range relations. Unlike directly oper-
ating on image pixels that demand a large number of parameters and training
samples, FlowFormer incorporates the advantages of the cost volume from previ-
ous techniques. It employs an encoder-decoder architecture that transforms the
4D cost volume into compact, globally aware latent cost tokens. The proposed
cost decoder also adopts a recurrent attention layer inspired by RAFT [22].
This decoder treats cost decoding as a recurrent query process with dynamic
positional cost queries, delivering state-of-the-art performance.

Comparative Analysis. Table 1 presents a detailed comparison of the perfor-
mance and computational costs of the five OF methods. On evaluating the bench-
marks, the most recent addition to the field (FlowFormer, ECCV’22) exhibits
superior accuracy on the Sintel dataset, registering the lowest error rate of 2.09.
However, the KPA establishes superiority on the KITTI dataset with an error
rate of 4.60. Regarding computational efficiency, RAFT stands out for both input
resolutions, demanding 242.8 and 60.7 GFLOPs for 640×480 and 320×240 res-
olutions, respectively. FlowFormer, despite its leading performance, demands a
computational burden nearly three times heavier than that of RAFT. Nonethe-
less, GMA and SKF present a good trade-off of performance and efficiency. In
the next section, we delve deeper, evaluating the significance of these findings in
the RGB+OF context for HGRL.

Table 1. Computational cost and performance on standard benchmarking of the five
analyzed OF methods.

GFLOPs Results

Method Params (640×480) (320×240) Sintel KITTI

RAFT (ECCV’20) 5.26M 242.8 60.7 2.86 5.10

GMA (ICCV’21) 5.88M 272.3 68.1 2.47 4.93

KPA (CVPR’22) 5.99M 327.6 82.2 2.36 4.60

SKF (NeurIPS’22) 6.27M 295.2 73.8 2.27 4.84

FlowFormer (ECCV’22) 16.17M 756.5 173.5 2.09 4.68
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Fig. 3. Dynamic gestures with hand annotations from the IPN Hand dataset used in
the HGRL Evaluation.

5 Experimental Results

5.1 Dataset

In this paper, we utilize the IPN Hand dataset [2], a comprehensive collection
of dynamic gestures tailored for touchless screen interaction. The dataset com-
prises RGB videos recorded at 640×480 resolution and 30fps using PC or laptop
cameras. The videos originate from 28 distinct scenes involving 50 participants,
including challenges such as cluttered backgrounds and varying illumination
conditions.

For our evaluation, we assess the performance of HGRL on 11 specific ges-
tures, illustrated in Fig. 3, which account for a total of 3,457 gesture instances.
Given the absence of hand location data in the dataset, we manually annotate
82,769 keyframes from all instances. To facilitate this, we trained a YOLOv5 [11]
model on a smaller dataset to produce candidate hand locations. Subsequently,
we manually refine the hand annotations for each instance at an approximate
rate of 9 fps. The training set consists of 2,531 gesture instances from 37 sub-
jects, translating to 64,768 annotated frames. Conversely, the test set includes
926 instances from 13 subjects, generating 18,001 annotated frames.

5.2 Implementation Details

We use Python 3.7.16 and PyTorch 1.10.2 with CUDA 12.0 on an Intel Core i7-
9700K desktop with a single Nvidia GTX 2080Ti GPU for all experiments. To
train the proposed YOLO-based architecture with RGB+OF 3Dconv fusion, we
set 30 epochs using a batch size of 32 and cropped regions of size 640×640. We ini-
tialized the CSP-Darknet53 backbone with pre-trained weights from ImageNet,
specifically for the 2DConv layers, while training all other layers from scratch.
The optimization approach was Stochastic Gradient Descent, with a momentum
of 0.937, a learning rate of 0.01, and a weight decay of 0.0005. The loss functions
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utilized were the Binary Cross Entropy (BCE) for class and objectness evalu-
ations, and the Complete Intersection over Union (CIoU) for location loss, as
in [11]. Furthermore, we incorporated Mosaic Augmentation alongside random
rotation, scaling, and translation as part of our data augmentation strategy.

For OF approaches, we leveraged the official open-source implementations
and pre-trained models released by the authors of each method. We obtained
OF representations from the 82,769 annotated frames of the IPN hand dataset.

5.3 Analysis of of in the Proposed Fusion Framework

In this section, we delve into the impact of OF integration within our RGB+OF
framework. A comprehensive analysis was performed to objectively assess each
OF method’s contribution to our fusion scheme. Our evaluation is based on
standard metrics, such as Precision, Recall, and the mean Average Precision
(mAP) at varying Intersection over Union (IoU) thresholds.

Table 2 presents the results for our RGB+OF fusion model with different
SOTA Optical Flow methods, benchmarked against the “RGB only” results. As
expected, the fusion models consistently surpass the RGB-only metrics. In par-
ticular, the RGB+SKF combination achieves the highest scores in all categories,
yielding an average 10% improvement over the baseline. This emphasizes SKF’s
ability to represent motion nuances, enhancing gesture recognition when com-
bined with RGB. These findings reinforce that integrating OF can significantly
augment gesture recognition performance, primarily when implemented with the
right OF methodology.

Table 2. Evaluation of the proposed RGB+OF fusion model with SOTA OF methods.

Method Precision Recall mAP@0.5 mAP@0.5:0.95

RGB-only 54.24 61.23 57.85 46.15

RGB+RAFT 56.59 69.95 64.66 57.47

RGB+GMA 56.11 70.07 64.84 57.88

RGB+KPA 56.88 68.27 65.25 58.45

RGB+SKF 58.04 71.61 66.98 59.47

RGB+FlowFormer 56.98 68.07 64.40 57.77

For a more detailed analysis of the impact of OF integration, we present class-
specific Average Precision (AP) results. As illustrated in Fig. 4, the RGB+SKF
combination outperforms the RGB-only approach for most gesture classes. For
example, the “Point” gesture, one of the fundamental human-computer inter-
actions, witnesses a 5% increase in AP when augmented with SKF. Similarly,
more complex gestures like “2click” and “Zoom-in” observe substantial improve-
ments of more than 10% and 15%, respectively. However, for a couple of classes,
such as “Th-down” and “Open-2”, the RGB+SKF does not achieve top results.
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Fig. 4. Class-AP comparison between RGB+SKF and RGB-only methods.

Still, these differences are minimal, suggesting the overall positive impact of
the RGB+OF fusion. This detailed analysis reinforces the importance of blend-
ing motion information, particularly when recognizing gestures with complex
motions.

Figure 5 presents qualitative results of gesture recognition capabilities across
different methods. The static nature of RGB-only makes it challenging to dis-
cern the gestures in the first three examples, making the integration of RGB+OF
vital. Most RGB+OF approaches converge in their predictions, particularly for
’Zoom-o’ and ’Zoom-in’ gestures. Nevertheless, discrepancies arise in the third
and fourth examples, highlighted by RGB-only’s ’Grab’ misclassification and
the spurious gestures detected by GMA and FlowFormer due to the user’s head
movements. Interestingly, FlowFormer’s representation in the occluded-hand sce-
nario of the first example leans towards image appearance rather than actual
motion. This figure highlights the importance of accurately detecting motion to
improve gesture recognition in RGB+OF methods.

5.4 Ablation Study

Finally, we conducted an ablation study to explore the effectiveness of differ-
ent fusion methods in our RGB+OF framework. Table 3 presents the com-
parative results, where the baseline RGB-only model serves as a reference.
The initial attempt to integrate OF using 2DConvs exhibited a drop in pre-
cision but an increase in the remaining metrics. However, the transition to
3DConvs displayed evident advantages. A single layer of 3DConv brought sig-
nificant improvements in mAP over the RGB-only baseline, with negligible
computational overhead. Our proposed method, which incorporates two lay-
ers of 3DConvs (3Dconv2layers), achieves the highest recall and nearly the best
mAP@0.5 with just a marginal increase in parameters and GFLOPs. Further,
adding a CSP-3D block increased the precision but also added considerable com-
putational burden, increasing the GFLOPs by 11.3 compared to our proposed
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Fig. 5. Qualitative results of HGRL and the corresponding optical flow representa-
tions.eps

model. Notably, the increase in GFLOPs for our models is negligible when con-
sidering the computational requirements of optical flow estimators. This accen-
tuates that most of the computation lies in the OF estimation and not in the
fusion technique itself, making our choices in model design effective and efficient.

Table 3. Ablation study of different fusion approaches.

Method Params GFLOPs Precision Recall mAP@0.5

RGB-only 7.05M 16.1 54.24 61.23 57.85

2Dconv 7.06M (+0.01) 16.8 (+0.7) 47.78 68.99 60.42

3Dconv1layer 7.06M (+0.01) 16.8 (+0.7) 57.11 69.83 65.49

3Dconv2layers 7.10M (+0.05) 17.2 (+1.1) 58.04 71.61 66.98

3D2layers+CSP−3D 7.24M (+0.19) 27.4 (+11.3) 58.36 71.36 67.02

6 Conclusion

In this paper, we explored the integration of Optical Flow (OF) into RGB-
based hand gesture recognition and localization. We found that our YOLO-based
architecture with RGB+OF 3DConv fusion consistently surpassed the RGB-only
baseline, especially when fused with SKF. Our ablation study highlighted the
minimal computational overhead added by our fusion technique, emphasizing
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that the core computational cost lies in OF estimation. Qualitative results fur-
ther illustrated challenges and potential areas for improvement. For future work,
we aim to investigate loss functions that can penalize the RGB+OF contribu-
tion. Additionally, we intend to enrich temporal information by incorporating
multiple Optical Flow representations.
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