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Abstract. Understanding the characteristics of workloads is essential
to improving the management of a High Performance Computing (HPC)
cluster. However, due to the restrictions of privacy and confidentiality,
real HPC workloads are rarely open for studying. Generating synthetic
workloads that mimic real workloads can facilitate related research, such
as cluster planning and scheduling. Thus automated HPC workload gen-
eration has long been an active research topic. In this paper, we intro-
duce a workload modeling approach that combines statistical modeling
and autoregressive analysis. The model we built can generate complex,
realistic HPC workloads with features that clearly describe the schedul-
ing process, including job arrival time and other job attributes that affect
scheduling such as job run time and job requested resources. Job arrivals
in HPC clusters are generally represented by stochastic processes. In
our proposed approach, job arrivals will be generated by a statistical
model that consists of multiple Poisson processes with constraints pro-
vided by Gamma distribution. Then, we perform autoregressive analysis
on the changing trends of job attributes to extract sequence information
from historical workload trends that reflect user habits and scheduling
habits in the cluster. Our approach generates job attributes based on the
extracted sequence information for each job in the generated job arrival
sequence. We evaluate the performance of the proposed approach using
multiple metrics as well as a real-world use case. Experiments on real
workloads from four supercomputing centers validate the effectiveness of
the proposed method.

Keywords: Workload generation · Workload characterization ·
Cluster scheduling · Statistical modeling · Autoregressive analysis

1 Introduction

Understanding the characteristics of workloads is essential to promoting the
management of an HPC cluster. These known workload characteristics enable
better services that have data dependence on workload status, such as cluster
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planning and scheduling [4,34]. However, real HPC workloads are rarely open
for studying because of the restrictions of privacy and confidentiality. Due to the
lack of publicly available real HPC workloads, synthetic workloads are widely
used in HPC research. For example, with synthetic workloads, portable I/O
analysis of commercially sensitive HPC applications can be conducted [11]. The
evaluation of scheduling algorithms also relies on the large number of synthetic
workloads available [24,30]. In particular, learning-based schedulers can be more
fully trained on a large number of available synthetic workloads [12,13]. There-
fore, automated HPC workload generation has long been an active research topic
among HPC providers and researchers [4,23].

To accurately synthesize HPC workloads, characterizing workload patterns
is essential. Some of these characteristics are intuitive and straightforward, such
as the natural fluctuations in workloads throughout the week. Weekday work-
loads tend to be heavier than weekend workloads. Besides, there are implicit
characteristics, such as workload fluctuations due to user habits [9]. Therefore,
it is crucial to construct a detailed model and incorporate a broad set of factors
to facilitate the extraction of all workload characteristics. With a comprehensive
understanding of these workload characteristics, synthetic workloads can then
be generated reasonably.

The classic approach to workload generation is statistical modeling [8,25,35].
Statistical modeling is a type of modeling method based on the regression of a
large number of independent data to obtain the statistical distribution of the
objective. For example, Poisson regression is a conventional method to simulate
job arrivals [4]. It assumes that a large number of randomly arriving jobs usually
follow a Poisson distribution. Then based on the time-dependent features, the
regression model will fit a Poisson distribution for the job arrivals in each time
interval. Other job attributes such as job run time are also typically generated
by statistical modeling. The distribution of job run time is usually obtained by
the empirical counting of the run time of all jobs in a period [8].

However, relying solely on statistical modeling frequently falls short of accu-
rate workload generation. The primary focus of statistical modeling is on the dis-
tribution of workloads, neglecting potential correlations between various work-
load sequences. In this paper, we combine statistical modeling and autoregressive
analysis for automatic HPC workload generation. At first, the job arrivals are
obtained by modeling and simulation. Then other job attributes are further gen-
erated for the generated job arrival sequence.

In our workload generation approach, a statistical model combining Poisson
regression and Poisson-Gamma regression is used to generate job arrivals. The
commonly used Poisson regression works well in clusters with large amounts of
job arrivals [9]. But in clusters with sparse workloads, the Poisson distribution
assumption of job arrival distribution is difficult to be satisfied. Overdisper-
sion of job arrivals occurs in these cases [32], which we deal with by introduc-
ing a Poisson-Gamma distribution. The hybrid model of Poisson regression and
Poisson-Gamma regression can handle more job arrival distributions than Pois-
son regression alone.
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Other job attributes, such as job requested resource and job run time, are
generated by the autoregressive model in our approach. These job attributes
are organized as time series in the historical job arrival sequences. In our app-
roach, we perform attentive sequential generation for these job attributes based
on autoregressive analysis of serial autocorrelation. Compared with statistical
modeling, our model can better reproduce the data correlation in the series [4].
Based on the seasonal scheduling behavior derived from historical workloads,
coupled with simulated job sequences provided by the job arrival model, job
attributes of each job can be reasonably generated in our approach.

We evaluate the proposed workload generation approach on real HPC work-
load traces from four different real-world supercomputing centers. Our results
show that our model can reveal the characteristics of real workload accurately.
The synthetic workload generated by the proposed model reproduces scheduling
information in the real workloads. In the evaluation, we use multiple metrics to
measure the effectiveness of existing methods as baselines and show the superi-
ority of our model.

The main contributions of this study are summarized as follows:

– We simulate job arrivals based on statistical modeling combining Poisson
regression and Poisson-Gamma regression, with which more diverse arrival
situations can be accurately represented.

– We conduct an autoregressive analysis to better model serialized workload
information so that we can perform attentive sequential generation for job
attributes realistically. So that the job attributes can be realistically generated
for the simulated job sequence.

– We evaluate the proposed method on real workload traces from four super-
computing centers. All evaluations demonstrate the superiority of using our
model to generate synthetic workloads.

Table 1. Specifications of workload traces from four platforms.

#nodes #cores/node #jobs Time span

Platform A 450 24/28 288K 364 days
Platform B 100 64 248K 364 days
Platform C 416 12 264K 364 days
Platform D 114 28 23K 364 days

2 Preliminary

We conduct our experiments on real traces from four different supercomputing
centers. They are Supercomputing Center of University of Science and Technol-
ogy of China [3], Center for High Performance Computing in Shanghai Jiao Tong
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University [1], Shanghai Supercomputing Center [2], and Gansu Supercomputing
Center respectively, and are subsequently referred to as platforms A, B, C, and
D. The workload trace data from platform A is a typical dataset to conduct our
experiments, and the inspiration for building our workload generation model is
mainly based on our exploration of it. The workload trace data from the other
three platforms are used as supplementary datasets in our evaluation experi-
ments to verify the generalization of our approach. The specifications of traces
from these four platforms are shown in Table 1. Among them, the traces of the
first three platforms have similar specifications, while the data size of platform
D is smaller.

These workload traces are recorded in the Standard Workload Format (SWF)
proposed by David Talby and refined through discussions by Dror Feitelson,
James Patton Jones, and others [6]. For each job, we mainly pay attention to
its user ID, submit time, run time, and requested resources. A complete job
sequence plus these job attributes can describe a complete scheduling process.
For evaluation of workload generation, the last 10 weeks of each trace will be
used as a test window, while all the data will be used to train the workload
generation model.

The above platforms used for evaluation experiments mainly carry scientific
computing workloads for researchers in various fields [1–3]. They are dominated
by these tightly coupled MPI jobs. Common scientific computing software, such
as VASP (Vienna Ab initio Simulation Package) [18] and Gaussian [10], often
submits a large-scale parallel computing job to the cluster. For reasons such
as adaptation or price, users’ main choice for computing resources is the CPU
rather than other acceleration devices such as GPU. The computing power of
the computing nodes of the above platforms is indeed mainly provided by the
CPU. So in this paper, job requested resources refer to the number of requested
computing nodes, most of which are computing nodes with multiple CPU cores.
Moreover, as the computing model expands, the run time of scientific computing
tasks will increase beyond linear corresponding increases [19]. Therefore, the
run times of jobs in these workloads vary greatly, with the longest scientific
computing jobs running for weeks and the shortest test jobs running for just
seconds.

3 Modeling Methodology

The workload generation model proposed in this paper consists of two major
components, the job arrival model and the job attribute model. The overview of
the modeling framework is shown in Fig. 1.

First, the arrival of jobs within each hour will be described by stochastic
processes. The job arrival model employs two regression tasks to model job
arrivals. Then, for each generated job with unknown attributes, the job attribute
model autoregressively generates job attributes that conform to user habits at
the user granularity, including requested resources, run time, job queue, etc.
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Fig. 1. Overview of modeling framework.

3.1 Job Arrival Model

The job arrival model employs two regression tasks, Poisson regression and
Poisson-Gamma regression to model the stochastic process of job arrivals. We
treat job arrivals at one-hour intervals within the trace range as random arrivals.
The feature vector of each interval is determined by the following three features:

– HoD: One-hot code, to indicate this interval belongs to which hour of the
day. Its dimension is 24.

– DoW : One-hot code, to indicate this interval belongs to which day of the
week. Its dimension is 7.

– WoY : One-hot code, to indicate this interval belongs to which week of the
year. Its dimension is 52.

HoD and DoW determine the feature vector of this interval in the regression
task. They describe the temporal characteristics of job arrivals on day and week
scales, respectively. WoY does not participate in the regression task. We use it
to calculate a trend correction term for job arrivals that changes with the No.
of weeks to make the regression model more generalizable. WoY is also used as
the basis for us to assign user IDs to jobs within a week.

Poisson Model. Poisson regression is widely used in the simulation of job
arrivals [4,13,16]. The probability distribution of a single Poisson distribution
is: f(y = k;λi) = λi

k

k! e−λi , k = 0, 1, . . . , and Poisson process assumes that in
interval i, it contains yi events arrive randomly. For interval i, we use feature
vector xi to describe its temporal features. HoD and DoW determine a 168×168
one-hot code feature matrix X. For any feature vector, it can be matched to a
row in the feature matrix. Then, the distribution parameters can be expressed
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as λ = eX β , where X is the feature matrix composed of independent feature
vectors, and β is the parameter matrix that needs to be regressed. The log-
likelihood function of Poisson regression can be calculated by:

l(β) =
n∑

i=1

(yixiβ − exi β ), (1)

where n represents that there are n observations in the training set, and yi is
the number of event arrivals when the corresponding feature vector is xi . The
partial derivative of the negative log-likelihood function in the direction of β is
used as Loss for training, and the β parameter can be optimized by minimizing
the negative log-likelihood estimation.

Poisson-Gamma Model. In real data, due to problems such as overdispersion
and zero-inflation [32], the naive Poisson process is difficult to fully describe the
arrivals in the real world. For such data, Its probability distribution can be
better represented by a negative binomial distribution, or a Poisson-Gamma
mixture distribution: f(y = k; r, p) = Γ (k+r)

Γ (k+1)Γ (r)p
r(1 − p)k, k = 0, 1, . . . . For the

overdispersed part, negative binomial regression can be chosen instead of naive
Poisson regression, by replacing the parameters as follows: αi = 1

r , μi = 1−p
αp .

Then the log-likelihood function of negative binomial regression can be calculated
by:

l(α,μ) =
n∑

i=1

{yiln
αxiμxi

1 + αxiμxi
+ lnΓ (yi +

1
αxi

)

− 1
αxi

ln(1 + αxiμxi) − lnΓ (yi + 1) − lnΓ (
1

αxi
)}.

(2)

Hybrid Model. The above two regression models will be trained to convergence
taking into account zero inflation of the data. At this point, we have two different
models describing job arrivals during each one-hour interval. The Poisson model
is more suitable for describing data with sufficient statistics and less interference.
The Poisson-Gamma model can describe overdispersed data more accurately. We
fuse these two models into a unified hybrid model based on Bayesian generalized
additive models [21].

This hybrid model serves as our final job arrival model to simulate job arrivals
within each one-hour interval. These job arrivals will be modified based on the
correction of the weekly job arrival trend according to the interval’s WoY . Then
a sequence of jobs with just arrival time is generated, J = {j1, j2, j3, · · · }. Also
based on WoY , we count the proportion of job arrivals for each user every
week and randomly assign user IDs to all jobs within a week according to the
generalized Bernoulli processes, which is based on the multinomial distribution
of job arrivals over the user set. Let the user set be U = {u1, u2, u3, · · · }, and
the entire job sequence J can be divided into multiple subsequences based on
user IDs: Ju1 = {ju1

1 , ju1
2 , ju1

3 , · · · },Ju2 = {ju2
1 , ju2

2 , ju2
3 , · · · }, · · · .
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3.2 Job Attribute Model

The function of the job attribute model is to generate reasonable job attributes
for each job in the simulated job arrival sequence {j1, j2, j3, · · · }. Then we
describe the attribute embedding, the autoregressive analysis process, and the
attentive sequential workload generation in our job attribute model.

Attribute Embedding. The job attributes recorded in HPC cluster trace
include many items, such as requested resources, run time, job queue, job sta-
tus, etc. The job attributes that are the targets of our modeling generation can
be specific to the following two items: (1) Job Requested Resource, indicates the
number of computing resources requested by this job, for example, 5 Computing
node cores; (2) Job Run Time, indicates the time that this job occupies com-
puting resources while running; Based on these two items, the job scheduling
process within an HPC cluster can be clearly constructed. Other miscellaneous
items that have a minor impact on the scheduling process are not our modeling
generation targets due to the inconsistency in trace record attribute types across
platforms. But all items will contribute features to our attribute embedding, let
the number of items be k. In order to facilitate attribute generation, we quantize
the job attributes, in which the values of these items will be mapped to k discrete
sets by clustering. In this way, the job attributes can be uniquely represented
by one-hot codes ∈ R

k×D, where D is the dimension of discrete sets. We encode
these items together into an embedding vector to represent the attributes of the
job:

A(j) = Embed[R(j), T (j), O(j)], (3)

where R(j), T (j), and O(j) respectively represent the requested resources, run
time, and other miscellaneous items of job j. A(j) ∈ R

d is an embedding vector
representing the attributes of job j. From this, job attributes can be generated
based on a multinomial distribution over k discrete sets. Our job attribute model
is built based on autoregressive analysis.

Autoregressive Analysis. For a user’s sequence of jobs sorted by arrival time,
job attributes are autocorrelated over time scales [4]. This temporal correla-
tion contains the user’s habit of submitting jobs in the cluster. We autore-
gressively analyze this temporal correlation between jobs to obtain the possi-
ble job attribute distribution. Assume a specific user u, we need to generate
job attributes {A(ju

1 ), A(ju
2 ), · · · } for each job in u’s simulated job sequence

{ju
1 , ju

2 , · · · }. The basis of this generation process is an autoregressive analysis
on u’s historical job attribute sequence, {A(ju

h1), A(ju
h2), A(ju

h3), · · · }.
Generally, for the attribute generation of user u’s i-th job, we have to extract

information from the previous part of the historical sequence to obtain its
attribute distribution:
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M(ju
i ) = softmax[extrac{A(ju

h(i−n)), · · · , A(ju
h(i−2)), A(ju

h(i−1))}], (4)

where M(ju
i ) represents the multinomial distribution of attribute values of user

u’s i-th job. In the following section, we will introduce how the approach proposed
in this paper autoregressively extracts historical sequence information to perform
workload generation.

Attentive Sequential Generation. The proposed approach mainly uses the
attention layer to extract historical sequence information. Compared with RNNs
(Recurrent neural networks) and statistical time series models such as ARIMA
(Autoregressive Integrated Moving Average Model), Transformer networks based
on the attention mechanism are superior in extracting long-term dependencies
in sequence information [31]. The attention mechanism can be defined as:

Attention(Q,K,V ) = softmax(
QKT

√
d

)V , (5)

where Q represents the queries, K the keys and V the values. The attention
block calculates a weighted sum of all values, where the weight between query
i and value j relates to the interaction between query i and key j. The scale
factor

√
d is to avoid overly large values of the inner product. In our method,

the attention layer is used to extract historical sequence information:

Au
i = {A(ju

h(i−n)), · · · , A(ju
h(i−2)), A(ju

h(i−1))},

Eu
i = Attention(Au

i W Q,Au
i W K ,Au

i W V ),
(6)

where W Q,W K ,W V ∈ R
d×d is the linear projection matrices. The intermedi-

ate representation Eu
i is then transformed through the feed-forward layer and

softmax layer, and finally the multinomial distribution M(ju
i ) of the attributes of

job ju
i is obtained. M(ju

i ) ∈ R
k×D is the probability distribution of job attributes

based on the user’s long-term habits obtained by autoregressively analyzing the
user u’s historical job sequence. A(ju

h(i)) ∈ R
k×D before embedding is the one-

hot code of the job attributes actually submitted by the user in this order, which
reflects the short-term considerations of user u. Generally, we randomly generate
job attributes for all jobs in the simulated job sequence according to the proba-
bility distribution [M(ju

i ) + A(ju
h(i))]/2. At this point, the workload generation

that mimics the cluster scheduling behavior but is not restricted to historical
workload patterns is completed.

4 Evaluation

In this section, we evaluate whether synthetic workloads can mimic the schedul-
ing behavior exhibited by real workloads from multiple perspectives. We first
evaluate the generated job arrivals and then evaluate the overall workload gen-
eration results. Also, we evaluate our workload generation model on a use case.
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Fig. 2. Evaluation of job arrival models with metric Mean.

4.1 Evaluation of Job Arrival Generation

We evaluate our job arrival generation model by comparing its outputs with
the outputs of Poisson regression model as the baseline. We use the following
evaluation metrics:

– Mean, is the average number of job arrivals in each feature interval.
– Devi, is the regression deviance that is twice the difference between the max-

imum achievable log-likelihood and the log-likelihood of the fitted model:
Devi = 2[l(y) − l(α,μ)].

As described in Sect. 3.1, the feature vector of each interval in the job arrival
model, which is a 168-dimensional one-hot code (7 days a week, multiplied by
24 h a day), represents the one-hour interval in one hour of the day of the week.
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We evaluate job arrival generation results over time intervals represented by all
168 different one-hot feature vectors. The evaluation will compare whether the
distribution of simulated job arrivals at each feature interval can approach the
distribution of real job arrivals from the above metrics.

For the metric, Mean, it is intended to judge whether the arrival model
can generate a reasonable number of job arrivals. The evaluation results for
this metric are shown in Fig. 2. It can be seen that our model and the Poisson
regression model both can generate a reasonable number of job arrivals in each
feature interval. In each feature interval, the average number of generated job
arrivals is very close to the statistical results in the real trace.

Fig. 3. Evaluation of job arrival models with metric Devi.

The metric, Devi, is intended to judge whether the regressions in arrival mod-
els converge well or not. The distribution obtained by Poisson regression will be
approximated for calculation of deviance as a negative binomial distribution of
μ = λ and α = 10−5. The evaluation results for this metric are shown in Fig. 3.
Taking platform A as an example, it can be seen that naive Poisson regression
is difficult to converge on the trace of platform A, while our model converges
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perfectly. This result shows that although the Poisson regression model can gen-
erate a reasonable number of job arrivals, it cannot restore the overdispersion
in the original data distribution. Notably, the periodic variation of deviance in
Poisson regression is strongly correlated with the periodic variation of the mean
of job arrivals in all features. The periodic variation in the mean of job arrivals
is due to the change in the amount of user job submissions caused by the alter-
nation of day and night. Similar periodic variation in regression deviance of job
arrivals indicates that there is a strong positive correlation between the degree
of overdispersion of job arrivals and the number of job arrivals in the evaluated
HPC cluster.

4.2 Evaluation of Workload Generation

We evaluate our overall workload generation results by comparing them with
the results of existing methods as baselines:

– Multinomial: This type of method directly generates workloads based on
the multinomial distribution of user job attributes based on statistics on all
historical traces. Many classic HPC workload modeling methods are of this
type [8,25,35].

– RepeatFlav: This method generates duplicate job attributes for all user jobs
in a period based on the most frequently occurring user job attributes in this
period. It was used as the main baseline in the work of Bergsma et al. [4].

– Bergsma: The work of Bergsma et al. serves as our main baseline [4]. Their
method can represent the state-of-the-art deep learning-based workload gen-
eration methods. They used LSTM combined with survival prediction as the
backbone network to conduct autoregressive analysis of historical sequence
information and gradually job attribute distribution step by step.

We use the following evaluation metrics:

– Coverage Accuracy, indicates how accurately the distribution used for job
attribute generation covers the real job attributes. For a job, if the probability
of generating real job attribute values in its generation distribution exceeds
80%, then this step of generation is counted as an accurate generation.

– Cosine Similarity, represents the cosine similarity between synthetic work-
load sequences and real workload sequences, Cosine Similarity(W , Ŵ ) =
W · Ŵ /(||W || ||Ŵ ||)

These two metrics measure the correlation between model output and real work-
loads from different perspectives.

Table 2 shows the metrics comparison on all platform traces of job requested
resource sequence generated by our model and baselines. It can be seen that
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Table 2. Evaluation of job requested resource generation.

Platform A
Coverage Accuracy Cosine Similarity

Multinomial 67.15% 0.5018
RepeatFlav 72.17% 0.5183
Bergsma 80.28% 0.6672
Our model 82.93% 0.7042
Platform B

Coverage Accuracy Cosine Similarity

Multinomial 77.93% 0.6512
RepeatFlav 80.82% 0.6791
Bergsma 88.21% 0.7117
Our model 89.14% 0.7291
Platform C

Coverage Accuracy Cosine Similarity

Multinomial 69.41% 0.5293
RepeatFlav 78.96% 0.6174
Bergsma 83.22% 0.6713
Our model 83.58% 0.7132
Platform D

Coverage Accuracy Cosine Similarity

Multinomial 77.37% 0.6884
RepeatFlav 79.51% 0.7375
Bergsma 85.16% 0.7927
Our model 90.84% 0.9015

our model has higher coverage accuracy and can better reflect the job requested
resource correlation in real workloads, compared to all baselines. In all platforms
on the dataset, the variation of job requested resources is not large, so even
Multinomial model can effectively generate the job requested resource for all
jobs.

Table 3 is the metrics comparison on all platform traces of job run time
generated by our model and baselines. Unlike the evaluation of the job requested
resource model, the performance of Multinomial model and RepeatFlav model
are poor, due to the variation of run time being too large in all platform traces.
In contrast, Bergsma model and our model achieve much better results on the
generation of job run time. Compared with the Bergsma model, our job running
time generation method also has advantages in both metrics.
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Table 3. Evaluation of job run time generation.

Platform A
Coverage Accuracy Cosine Similarity

Multinomial 27.31% 0.2018
RepeatFlav 37.26% 0.1475
Bergsma 51.40% 0.6034
Our model 57.32% 0.6437
Platform B

Coverage Accuracy Cosine Similarity

Multinomial 34.76% 0.2910
RepeatFlav 45.81% 0.3049
Bergsma 60.84% 0.6826
Our model 60.43% 0.6728
Platform C

Coverage Accuracy Cosine Similarity

Multinomial 33.19% 0.2941
RepeatFlav 44.29% 0.3121
Bergsma 59.11% 0.6186
Our model 59.41% 0.6472
Platform D

Coverage Accuracy Cosine Similarity

Multinomial 43.72% 0.3219
RepeatFlav 50.14% 0.4112
Bergsma 69.11% 0.7236
Our model 69.17% 0.7311

4.3 Use Case of Workload Generation

We evaluate our workload generation model on a real-world use case: cluster
planning [4]. Cluster planning is when the workload in the cluster is over-
loaded/underloaded, we need to plan the appropriate number of nodes to
add/reduce. For this problem, synthetic workloads are necessary to more fully
simulate and verify whether the cluster is load balanced after adding or reducing
the corresponding number of nodes. Figure 4 shows our evaluation results on the
trace of platform A of whether the synthetic workloads reflect cluster load levels.
In this experiment, we assume that the cluster has no limit on the number of
computing resources, and then count the number of computing node cores occu-
pied by the workloads in each time period to represent the cluster load level.
It can be seen that our synthetic workloads can well reflect the real load level,
where we treat the attribute distribution of each job as a discretization of the
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Gaussian distribution to calculate the 90% confidence interval of the synthetic
load level. Our synthetic workloads can be generated in large numbers based
on random patterns while simulating real load levels, making cluster planning
simulations more sufficient and credible.

Fig. 4. Evaluation of whether the synthetic workloads reflect cluster load levels.

5 Related Work

5.1 Workload Modeling in HPC

Workload modeling has long been an active topic in the HPC community. Many
existing works [8,25,35] were devoted to using statistical multinomial distribu-
tion to fit the workload modeling of supercomputing systems, which is a classic
HPC modeling method. Rodrigo et al. further characterized the workloads in
their HPC systems based on the system life cycle and evolution trends [29] and
proposed a modeling method for heterogeneous workloads based on this por-
trayal [28]. Our approach is inspired by these existing state-of-the-art methods
and further proposes a more comprehensive workload modeling for workload
generation.

5.2 Workload Modeling in Cloud Computing

For cloud computing, although the main workload service types are different,
their workload scheduling forms are similar to those in classic supercomputing
systems. The mainstream method of workload modeling in cloud computing is to
describe workloads’ changing stochastic processes. Calheiros et al. introduced a
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workload prediction model based on ARIMA [5]. Gao et al. conducted a detailed
study on the prediction of cloud resource allocation [15]. Cortez et al. constructed
a time series model of the complete workload trend from the historical charac-
teristics of virtual resource workload sequences [9]. Bergsma et al. established
workload modeling also based on historical sequence characteristics, which can
effectively generate complex and realistic workloads [4]. Our approach also draws
from stochastic considerations and generation techniques in modeling workloads
in cloud computing.

5.3 Resource Management in HPC

Workload modeling is beneficial for managing resources to improve utilization
of HPC clusters. Many resource management services are based on workload
profiling. The foundation of performance modeling and optimization of existing
scheduling systems such as Slurm is workload modeling [26,34]. Cluster planning
also relies on workload models for more adequate simulation [4]. Workload mod-
eling and generation is more widely used in the evaluation of scheduling algo-
rithms [24,30], ranging from classic schedulers [17], heuristic-based schedulers
[7,20,22], prediction-based schedulers [14], deep reinforcement learning-based
schedulers [12,13,27,33,36,37]. Motivated by these existing works, we plan to
design a novel cluster scheduler based on our workload modeling in future work.

6 Conclusion

In this paper, we proposed a method to model the workload in HPC clusters and
generate synthetic workloads for HPC clusters. We combined statistical model-
ing and autoregressive analysis in our model to better characterize the workload
scheduling behavior exhibited by real workloads. Using the proposed model,
we can generate a synthetic workload at any time involved in modeling, which
can reflect the most consistent workload distribution based on accurate histor-
ical characteristics extraction of real workloads. The proposed method greatly
improved the quality of automatically generated workloads and made the work-
load generation model more reliable for resource management services, such as
cluster planning and scheduling.

In the future, we plan to further evaluate how the synthetic workload reflects
real scheduling behavior and determine whether it can play a role in data aug-
mentation. On this basis, we will design a more efficient data-driven learning-
based cluster scheduler that can be further enhanced with synthetic workloads
for training.
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