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Preface

This volume contains the papers presented at the 15th BenchCouncil International Sym-
posium on Benchmarking, Measuring and Optimizing (Bench 2023). The first nine
events constituted the BPOE workshops, which were held in conjunction with ASP-
LOS, VLDB, and ICS. Since 2018, the Bench symposium, originating from the BPOE
workshops, exhibits three defining characteristics: (1) it provides a high-quality, single-
track forum for presenting results and discussing ideas that further the knowledge and
understanding of the benchmark community; (2) it is a multi-disciplinary conference,
attracting researchers and practitioners from different communities, including architec-
ture, systems, algorithms, and applications; (3) the program features both invited and
contributed talks.

The Bench symposium invites papers addressing pressing problems in benchmark-
ing, measuring, and optimizing systems. The call for papers for the Bench 2023 con-
ference attracted a number of high-quality submissions. These underwent a thorough
review by at least four international experts. Ultimately, the program committee selected
11 papers for presentation at Bench 2023. The papers in this volume have been revised
as per the program committee’s recommendations.

At the conference, the International Open Benchmark Council (BenchCouncil)
presented the BenchCouncil Achievement Award, recognizing a senior member for
their enduring contributions to the field. Lieven Eeckhout from the Ghent University,
Belgium, was named the 2023 recipient of the BenchCouncil Achievement Award. In the
award’s keynote address, Eeckhout emphasized the importance of rigorous performance
evaluation. Eeckhout identified common pitfalls in both experimental design and data
analysis, proposing potential solutions.

The Bench 2023 conference included a keynote lecture by Dhableswar K. Panda
from Ohio State University, focusing on challenges and opportunities in designing
middleware and benchmarks for HPC, AI, Big Data, and Data Science.

We are deeply thankful to all authors for their exceptional contributions to the
Bench 2023 conference. Our gratitude extends to the invaluable support from the Bench
2023 Program Committee, and we express our sincere thanks to its members for their
commitment and effort in maintaining the high standards of the Bench symposium.

December 2023 Sascha Hunold
Biwei Xie
Kai Shu
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BenchCouncil Achievement Award Lecture: Essentially,
All Models Are Wrong, but Some Are Useful

Lieven Eeckhout

Ghent University, Belgium

Abstract: Performance analysis andmodeling is of critical importance to
computer systems and architecture research and development. We must
design and build our simulators, benchmarks, and analysis tools correctly,
and we must measure and analyze our performance results rigorously,
otherwise experimental research and development may lead to incorrect
andmisleading conclusions and ineffective optimizations. These tools are
critical to our understanding of both the problems and the solutions. In this
talk, I will revisit the importance of rigorous performance evaluation, and
decompose the performance evaluation challenge into two sub-problems,
experimental design and data analysis. I will discuss some of the (not so
obvious) pitfalls in both experimental design and data analysis, and argue
for potential solutions. I will also emphasize the importance of picking
the right level of abstraction for steering performance analysis tool as
there no one size fits all.

Biography: Lieven Eeckhout (PhD 2002) is a Senior Full Professor at Ghent Univer-
sity, Belgium, in the Department of Electronics and Information Systems (ELIS). His
research interests include computer architecture, with specific emphasis on performance
evaluation and modeling, dynamic resource management, CPU/GPUmicroarchitecture,
and sustainability. He is the recipient of the 2017 ACM SIGARCH Maurice Wilkes
Award and the 2017 OOPSLA Most Influential Paper Award, and he was elevated to
IEEE Fellow in 2018 and ACM Fellow in 2021. Other awards include three IEEEMicro
Top Pick selections (2007, 2010, and 2022), the ISPASS 2013 and MICRO 2023 Best
Paper Awards, and Best Paper Nominations at PACT 2014, ISPASS 2012, ISPASS 2014,
ISPASS 2015, ISPASS 2016, MICRO 2019, MICRO 2021, and ISCA 2023. He served
as the Program Chair for ISCA 2020, HPCA 2015, CGO 2013, and ISPASS 2009, and
has served or serves as General Chair for ISPASS 2010, IISWC 2023, and ASPLOS
2025. He served as the Chair of the IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) (2017–2018), Editor-in-Chief of IEEE Micro (2015–
2018), Associate Editor of IEEE Transactions on Computers (2016–2018), IEEE Com-
puter Architecture Letters (2013–2015), and ACM Transactions on Architecture and
Code Optimization (2010–2017). He has served as technical program committee mem-
ber for 50+ computer architecture conferences. He is the recipient of five European
Research Council (ERC) grants, including a Starting Grant, an Advanced Grant, and
three Proof-of-Concept Grants.



Designing High-Performance and Scalable Middleware
and Benchmarks for HPC, AI, and Data Sciences

Dhabaleswar K. (DK) Panda

The Ohio State University

Abstract: This talk will focus on challenges and opportunities in design-
ing middleware and benchmarks for HPC, AI (Deep/Machine Learning),
BigData, andData Science.Wewill start with the challenges in designing
runtime environments for MPI+X programming models by considering
support for multi-core systems, high-performance networks (InfiniBand,
RoCE, Slingshot), GPUs (NVIDIA and AMD), and emerging BlueField-
3 DPUs. Features and sample performance numbers of using the MVA-
PICH2 libraries over a range of benchmarks will be presented. For the
Deep/Machine Learning domain, we will focus on MPI-driven solutions
(MPI4DL) to extract performance and scalability for popularDeepLearn-
ing frameworks (TensorFlowandPyTorch), large out-of-coremodels, and
Bluefield-3 DPUs. MPI-driven solutions to accelerate Big Data appli-
cations (MPI4Spark) and data science applications (MPI4Dask) with
appropriate benchmark results will be presented.

Biography: DK Panda is a Professor and University Dis-
tinguished Scholar of Computer Science and Engineering
at the Ohio State University. He is serving as the Director
of the ICICLE NSF-AI Institute (https://icicle.ai). He has
published over 500 papers. The MVAPICH2 MPI libraries,
designed and developed by his research group (http://mva
pich.cse.ohio-state.edu), are currently being used by more
than 3,300 organizations worldwide (in 90 countries). More
than 1.74 million downloads of this software have taken
place from the project’s site. This software is empower-
ing many clusters in the TOP500 list. High-performance
and scalable solutions for Deep Learning frameworks and
Machine Learning applications from his group are avail-
able from https://hidl.cse.ohio-state.edu. Similarly, scalable
and high-performance solutions for Big Data and Data sci-
ence frameworks are available from https://hibd.cse.ohio-
state.edu. Prof. Panda is an IEEE Fellow and recipient of
the 2022 IEEE Charles Babbage Award. More details about
Prof. Panda are available at https://web.cse.ohio-state.edu/
~panda.

https://icicle.ai
http://mvapich.cse.ohio-state.edu
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ICBench: Benchmarking Knowledge
Mastery in Introductory Computer

Science Education

Zhenying Li1,2(B) , Zishu Yu1,2 , Lian Zhai1,2 , Xiaohui Peng1 ,
and Zhiwei Xu1,2

1 Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100190, China

{lizhenying20b,yuzishu19s,zhailian20s,pengxiaohui,zxu}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. In computer science education, a fundamental challenge is
to accurately assess a student’s knowledge mastery. Inspired by Knuth’s
view that “the ultimate test of whether I understand something is if I
can explain it to a compute”, we introduce the Knuth test and construct
ICBench for benchmarking knowledge mastery in introductory computer
science education. Three metrics of knowledge coverage, Bloom’s taxon-
omy, and traditional score are used in ICBench, where the former two
assess the breadth and depth of a student’s mastery, respectively. We
present the Rule-Property-Crux-Cohesion (RPCC) model for modeling
a knowledge point and the Encode-Construct-Personalize (ECP) method
to generate a personalized question set for each student. By analyzing
the data of over 1000 students in the UCAS CS101 course from 2021
to 2023, we find that ICBench improves both knowledge coverage and
Bloom’s taxonomy level. Furthermore, students who passed the test in
ICBench outperformed their peers on final exams, scoring an average of
14% higher.

Keywords: Automatic Assessment · Benchmark · Introductory
Computer Science Education · Knuth Test

1 Introduction

Accurate evaluation of a student’s knowledge mastery is crucial to identify-
ing shortcomings and improving the performance of the student. Automatic
approaches have been employed, assessing intended learning contents [4] based
on Bloom’s taxonomy [5,17] or generating personalized question sets [1,23,28]
to prevent cheating.

This project is partially funded by the National Natural Science Foundation of China
under grant No. 62072434 and the Beijing Natural Science Foundation under grant No.
4212027.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
S. Hunold et al. (Eds.): Bench 2023, LNCS 14521, pp. 1–17, 2024.
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Conducting an objective and comprehensive assessment of a student’s knowl-
edge mastery is challenging. The evaluation criteria should be free from teach-
ers’ subjective influences and uniformly applied across all students. Compre-
hensiveness requires coverage of key and difficult aspects of a knowledge point.
Approaches that only focus on question personalization help prevent student
cheating, neglecting the coverage of knowledge, which is usually completed by a
teacher’s manual selection [1,23,28]. Existing methodology that maps a question
to a knowledge point fails to consider various aspects of a knowledge point [4],
potentially leading to insufficient coverage.

Knuth proposed that “the ultimate test of whether I understand something
is if I can explain it to a computer” [8], a viewpoint he emphasized in 1974 [14],
1995 [15], and 2020 [8]. Knuth pointed out that the notion of an algorithm or
a computer program provides us with an extremely useful test for the depth of
our knowledge about any given subject. Utilizing a computer as an assessment
tool meets the requirements of objectivity and comprehensiveness. A computer
strictly follows the instructions of programs or the statements of specifications,
applying consistent standards across all students to yield objective evaluation
results. Execution requires all necessary details; any grammatical or semantic
errors could lead to erroneous outcomes.

Learning from the Turing test, Knuth’s perspective needs to be operational-
ized into the Knuth test, serving as a methodology to assess a student’s knowl-
edge mastery. The development of the Knuth test presents the following two
challenges:

– Assessment Criteria: How to describe the knowledge mastery level of a stu-
dent?

– Methodology Selection: What is the process of the Knuth test? How can this
methodology be scaled for a large number of students and prevent cheating?

This paper introduces the Knuth test, with which we construct a benchmark,
ICBench, for assessing knowledge mastery in introductory computer science edu-
cation. We construct question sets in ICBench, considering both knowledge cov-
erage and Bloom’s taxonomy levels, a set of hierarchical models used for the clas-
sification of educational learning objectives into different levels. Furthermore, we
present three degrees of personalization. The contributions of this paper are:

1. Introduction of the benchmarking methodology. We propose evaluation met-
rics to assess the breadth and depth of a student’s mastery, the Rule-Property-
Crux-Cohesion (RPCC) model to model knowledge points, and the Encode-
Construct-Personalize (ECP) method to generate a concise, personalized
benchmark with satisfactory coverage.

2. Implementation of ICBench for introductory computer science courses.
ICBench includes a prototype system and a set of seed questions, covering the
four types of computational thinking: logical, algorithmic, systems, and net-
work thinking. The prototype system produces ten thousand unique question
sets within one second using just hundreds of kilobytes of storage, demon-
strating scalability for a large number of students.
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3. Analysis of the ICBench’s effectiveness in real-world course data. ICBench
improves knowledge coverage and Bloom’s taxonomy level compared to the
previous exercises. On average, students who passed the Knuth test in
ICBench scored 14% higher on corresponding knowledge points in the final
exam than those who did not.

2 Overview

2.1 The RPCC Model for Knowledge Points

A knowledge point is a set of problems relevant to a specific topic. To explain
a knowledge point unambiguously to a computer, we express these problems
as algorithmic problems, as demonstrated in Table 1. If a student can correctly
explain all the problems to a computer, then mastery over a knowledge point is
achieved. We refer to the tasks provided for students during an assessment as
“questions”, which are distinguished from “problems” in modeling a knowledge
point. The questions provided for students can take multiple forms and variations
during an assessment.

A knowledge point can be modeled using Rule-Property-Crux-Cohesion
quadruples. Table 1 illustrates the RPCC model for Truth Table. Rule is the
constructive definition of the knowledge point, such as the truth table defini-
tion. Property refers to the key characteristics related to a knowledge point.
Crux denotes teaching challenges. Cohesion represents the interconnection of a
knowledge point with others in the course, such as applying truth tables in the
design of combinational circuits.

Table 1. RPCC model of Truth Table. All problems are designed to allow for automated
computer grading.

RPCC Element Problem

Rule P1: Given one or more arbitrary Boolean expressions, compute
the corresponding truth table

Property P2: Given the number of input and output variables, compute
the different numbers of truth tables

Crux P3: Given Boolean expressions containing implication operators,
compute the corresponding truth table

Cohesion P4: Given a truth table as input, determine the Boolean
expressions

P5: Given a proposition or digital circuit, determine the
Boolean expression and write the truth table

We only consider the knowledge points for which a computer can automati-
cally evaluate the correctness of the solutions, such as the Truth Table provided
in Table 1. Some knowledge points do not meet the automated computer grad-
ing requirement. For example, in the Introduction to Computer Science course
(CS101) at the University of Chinese Academy of Sciences (UCAS), students
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design and implement a dynamic webpage as a personal artifact [27]. This project
requires demonstrating creativity, and assessing creativity depends on teachers’
judgment.

2.2 Metrics

We introduce three metrics: knowledge coverage, Bloom’s taxonomy, and tradi-
tional score. Knowledge coverage and Bloom’s taxonomy represent the breadth
and depth of students’ knowledge mastery, respectively. The assessment should
provide a comprehensive set of questions to cover all important aspects of the
knowledge points. Our primary goal is to assist teachers in ensuring their assess-
ments comprehensively cover the content they expect their students to master.
We specifically focus on the content and concepts emphasized and prioritized by
the teacher within the course, rather than a complete exploration of the entire
knowledge point without any context. The knowledge coverage is computed as
the proportion of problems of a knowledge point in an assessment. For example,
if 2 out of 5 problems in Table 1 are assessed, then the coverage of Truth Table
is 40% in the assessment.

In Bloom’s taxonomy, the cognitive domain is divided into six levels: Remem-
ber, Understand, Apply, Analyze, Evaluate, and Create [17]. In this paper,
Apply, Analyze, Evaluate, and Create are collectively referred to as Create for
simplicity. Currently, Bloom’s taxonomy level of the question set depends on
manual annotation. The annotation of question instances presented to students
should align with the actual teaching context. For example, a task to design a
Turing machine for binary addition would fall under the Remember level if rules
for such a machine were taught. Students would simply recall and write down
these rules. If not previously presented, the same task tests students’ ability to
create a new solution, thus falling under the Create level of Bloom’s taxonomy.

2.3 The Process of the Knuth Test

The Knuth test involves three roles: teacher, student, and computer, as shown
in Fig. 1. We define the Knuth test as follows:

– Objective: The test evaluates whether the student S has mastered knowledge
point K.

– Process: During the interval [0, T], computer C asks any question q from the
question set Q associated with the knowledge point K to the student S. The
student S submits answer a to computer C, which determines the correctness.

– Result: If the accuracy of student S’s responses is above 90%, student S is
considered to have mastered the knowledge point K. The number 90% is an
empirical number based on the experience in the UCAS CS101 course.

The Knuth test process shown in Fig. 1 consists of six steps:

1. Knowledge explanation: The teacher explains a knowledge point K to the
student.
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2. Knowledge modeling: The teacher inputs the RPCC model that describes K
into the computer.

3. Problem annotation: The teacher associates the questions with K, annotates
the levels of Bloom’s taxonomy, and enters the annotated questions into the
computer.

4. Question set generation: The teacher specifies the requirements of the ques-
tion set, such as the knowledge points to be assessed, the desired level of
Bloom’s taxonomy, and the desired level of personalization. The computer
generates a question set adhering to these specifications and forwards it to
the teacher for review.

5. Question answering: The computer releases the teacher-reviewed questions to
the student, who then provides answers within a time period T.

6. Results analysis: The computer determines whether the student has passed
the Knuth test and provides feedback based on the student’s answers.

Note that questions might take the form of programming exercises and fill-
in-the-blanks instead of the single-choice questions to decrease the probability
of students guessing the correct answer.

Fig. 1. The process of the Knuth test for a knowledge point.

3 Methodology

This section introduces the methodology for constructing a question set. The tar-
get question set should meet the following four requirements. (i) The question
set should comprehensively cover the content and concepts that teachers empha-
size within their course, spanning various levels of Bloom’s taxonomy. (ii) The
question set should contain various question types, including focused questions
that assess specific aspects of the knowledge point and comprehensive questions
that assess multiple aspects. (iii) The method should generate different degrees
of personalized question sets according to the teacher’s needs. (iv) The question
set should be as concise as possible.
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To construct a question set that fulfills the necessary requirements for knowl-
edge point K, a teacher can use the three-step Encode-Construct-Personalize
(ECP) method. The seed questions shown in Fig. 1 serve as templates and can be
constructed with the help of a computer. A teacher encodes the questions math-
ematically, considering the knowledge content assessed and Bloom’s taxonomy
level. The computer identifies representative questions based on the teacher’s
requirements and creates a concise seed question set with the required cover-
age. After the teacher reviews the seed question set, the computer utilizes the
seed question set as templates to generate a personalized question set for each
student.

3.1 Encoding Questions

The key to automatically generating a question set with satisfactory coverage
is to find a question representation that can be analyzed by a computer. Con-
ventionally, teachers rely on their experience to select representative questions
from various types including focused questions that assess specific aspects of the
knowledge point and comprehensive questions that assess multiple aspects. This
manual approach can be time-consuming. To address this, we propose a mathe-
matical encoding of questions, enabling automatic analysis by a computer.

A question Qi associated with knowledge point K can be encoded with a
pair (Ci, Li), where Ci and Li respectively represent the knowledge content and
the level in Bloom’s taxonomy. Ci is a vector of length n (the total number of
algorithmic problems in K). If Qi assesses the j-th problem modeled in K, then
Cij is 1, otherwise Cij is 0. Li is scalar, with values 0, 1, or 2, representing the
Remember, Understand, and Create levels, respectively. For a comprehensive
question containing multiple sub-questions, Bloom’s taxonomy level is set to the
highest level among all sub-questions.

Take the following four questions for Truth Table as examples. The encoding
of Simple proposition is ((1, 0, 0, 0, 0), 0). Simple proposition only assesses
problem 1 of Table 1, and its truth table is given in the course, resulting in
Remember level. The encoding of Variables number is ((0, 1, 0, 0, 0), 2). This
question assesses problem 2 of the truth table and asks students to deduce the
number of variables from a given truth table, which is not explained in the
course, resulting in Create level. Similarly, the encoding of Model sentence and
Full Adder is ((1, 0, 1, 0, 1), 1) and ((1, 0, 0, 1, 1), 2), respectively.

– Simple proposition: Write the truth table for the proposition P ∧ Q.
– Model sentence: Write the truth table for R with respect to P and Q. P: It’s

raining today. Q: The road will be wet today. R: If it rains today, then the
road will be wet today.

– Variables number : Find the input variables in the given truth table (Table 2).



ICBench: Benchmarking Knowledge Mastery 7

Table 2. Find the input variables.

P Q R S T U V

0 0 0 0 1 1 0

0 1 0 1 1 1 1

1 0 0 1 0 0 1

1 1 1 1 0 1 0

– Full Adder : A full adder is a single-bit adder with 3 inputs and 2 outputs.
It has 5 Boolean variables: (1) a carry input variable Cin and two input
variables, X and Y ; (2) a sum output variable Z and a carry output variable
Cout. Please write the truth table and the Boolean expressions of the output
variables, Z and Cout.

The encoding for a question set Q can be derived from the encodings of the
included questions. Suppose n is the total number of the algorithmic problems
in the RPCC model of the Knowledge point K, QS = {Q1, Q2, . . . , Qm} =
{(C1, L1), (C2, L2), . . . , (Cm, Lm)}, then the encoding (CS , LS) of QS is defined
as follows:

CS =
m∨

1

Ci, where Ci ∨ Cj = (Ci1 ∨ Cj1, Ci2 ∨ Cj2, . . . , Cin ∨ Cjn) (1)

LS =
m

max
i=1

Li (2)

3.2 Constructing Seed Question Set

Inspired by the supercomputing community’s benchmarking strategy of using
spatial and temporal locality to select representative programs [27], this paper
selects representative questions based on the comprehensiveness of the questions
and the level of Bloom’s taxonomy. We define a question’s comprehensiveness
as the total number of the knowledge point’s algorithmic problems it assesses,
represented by the sum of its knowledge vector C elements. For example, Full
Adder covers three aspects, resulting in a score of 3, which is the maximum
among all questions for Truth Table in the CS101 course.

The four questions in Subsect. 3.1 above form a representative question set
Qr, reflecting four distinct combinations of knowledge comprehensiveness and
Bloom’s taxonomy level, as shown in Fig. 2. The questions: Full Adder, Model
sentence, Variables number, and Simple proposition, correspond to high-high,
high-low, low-high, and low-low combinations, respectively. The four combina-
tions encapsulate the spectrum of knowledge comprehensiveness and Bloom’s
taxonomy level observed in other questions.
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The identification of the representative question set Qr can be automatic
through a computer algorithm. When looking for questions that balance both
high knowledge coverage and Bloom’s taxonomy levels, the algorithm searches
based on the weighted importance of these two dimensions. To accommodate
diverse teaching objectives, our system offers a user-friendly interface, allowing
teachers to set the weights for these two dimensions, customizing the search
according to their needs.

The representative question set Qr can provide a coarse-grained evaluation
of a student’s mastery of knowledge. For instance, students who correctly answer
all four questions can be considered to have mastered the truth table knowledge
points up to the Create level. However, for a more fine-grained assessment of
students for a complex knowledge point with a large number of problems, addi-
tional questions may need to be selected to thoroughly cover all content of the
knowledge point.

To construct a question set that completely covers all aspects of a knowledge
point, we need to ensure that, for each problem indexed by i in the RPCC model,
the corresponding value of CQi is 1. We add constraint (3) as follows:

∀i ∈ {1, 2, . . . , n} , CQi = 1 (3)

it is imperative that the question set Q encompasses all questions in Qr. To
formalize this requirement, we introduce constraint (4):

Q ⊇ Qr (4)

To maintain the conciseness of the question set and save students’ time, we aim
to minimize the number of questions, m, as much as possible in constraint (5):

minm (5)

If these requirements cannot be met, the system is designed to prompt the
teacher to add new questions, thereby enriching the question pool to compre-
hensively address all aspects of the knowledge point.

3.3 Personalizing Question Set

Depending on the degree of personalization, question sets can be non-
personalized, personalized at the question-set level (assessing the same knowl-
edge points), or personalized at the knowledge level (assessing different knowl-
edge points according to the student’s status). For routine homework, we can
personalize the set to assess the same knowledge points, while for non-graded
tests, we can customize the set to cover different knowledge points based on each
student’s needs.

A template-based method is employed for question variation. Questions are
specified by Profile [26], a high-level specification language based on TLA+ [19].
A question profile contains elements such as the question stem, variation parame-
ters, scoring function, parameter generation function, and mathematical encod-
ing. We define a series of variation operators, such as parameter substitution
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Fig. 2. Construct a representative question set covering the knowledge point and
Bloom’s taxonomy level.

and randomization. For personalization at the question set level, we can gener-
ate personalized question sets through parameter variation. For knowledge-level
personalization, we can construct personalized question sets according to stu-
dents’ historical data of knowledge space [13].

4 Implementation

We have constructed the seed question sets in ICBench, utilizing the RPCC
model and ECP method. These question sets comprise 12 weekly assignments
and three programming projects, which evaluate logical, algorithmic, systems,
and network thinking. All questions are designed to support automatic scoring.
We have also implemented a prototype system that uses these seed question sets
to generate personalized question sets for each student.

The prototype system can automatically grade and determine whether stu-
dents pass the Knuth test. It supports teachers in adding new questions beyond
those in the ICBench seed question sets to assess new knowledge points. The
system should be scalable to handle a large number of students and extensi-
ble functionalities. The system is designed based on the Model-View-Controller
(MVC) architecture [16]. In the subsequent discussion, a brief overview of the
system’s functionalities will be presented. As shown in Fig. 3. The resources layer
provides annotated questions, knowledge points, and student data. The assess-
ment engine implements core computational logic. The interface layer offers Web
interfaces for both teachers and students.

The resources layer stores the RPCC models of knowledge points, annotated
questions, and student data. Student data can contain multiple types of informa-
tion, such as high-level Knuth test results, finer-grained descriptions of knowl-
edge mastery based on knowledge space, and raw data like student-submitted
answers and their scores. The system can construct personalized question sets
based on student data.
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Fig. 3. The architecture of the prototype system.

The assessment engine manages tasks such as constructing and varying ques-
tion sets, grading the submitted answers, and analyzing data. The engine is
designed to be extensible in terms of functionalities. Take the question variation
module as an example. This module utilizes three constraints for the variation
operators implementation: uniform interface, pure function, and composabil-
ity. The uniform interface allows for the extension of new variation operators.
The pure function enables the caching of variation results, enhancing scalability.
Composability allows the result of one variation operator to be passed to the
next operator for further variation, enabling personalization for a larger number
of students.

The interface layer offers Web interfaces for teachers and students. Teachers
can specify RPCC models of knowledge points and questions in Profile [26]. The
system then constructs, model checks, and varies the questions based on these
specifications. Students provide answers according to the constraints described
in the questions. Regarding the grading mechanism, the system employs string
comparison for questions with single, unambiguous answers, such as multiple-
choice or certain fill-in-the-blanks. For fill-in-the-blank questions that might have
multiple valid answers, teachers can integrate custom grading scripts to evaluate
student answers. For programming exercises, the system evaluates the correct-
ness of student code using grading scripts against provided test cases. The system
does not focus on the automatic grading of questions where standard answers
are difficult to judge via computer algorithms. This approach ensures precise
and flexible grading across various question types. After the system automati-
cally grades the answers, it provides feedback to both teachers and students. For
instance, for programming questions, students receive their total score and are
informed of the test cases they did not pass. In addition to specific question feed-
back, all students are provided with a Cumulative Distribution Function (CDF)
graph showing the performance of the entire class on that question.



ICBench: Benchmarking Knowledge Mastery 11

5 Evaluation

ICBench has been used as the routine exercise for the UCAS CS101 course in
2023. We analyzed the student performance in UCAS CS101 across 2021, 2022,
and 2023. The routine exercises in 2021 and 2022 emphasized personalization,
leaving coverage to teacher manual selection. Traditional, face-to-face classroom
instruction and exams were employed in 2021 and 2023. The course in 2022
adopted an online mode for both instruction and the final exam because of the
COVID-19 pandemic. Over the three-year period, the CS101 course was taken
by more than 1000 students.

Fig. 4. Knowledge point coverage in routine exercise. Routine exercise consists of pro-
gramming projects and assignments in the form of multiple-choice and fill-in-the-blank
questions. The knowledge coverage is the proportion of RPCC problems assessed in
the routine exercise.

Table 3. Bloom’s Taxonomy levels of routine exercises for the 12 knowledge points.

Year Create Understand Remember Not Assessed

2023 25% 42% 33% 0%

2022 17% 42% 33% 8%

2021 17% 42% 33% 8%

We analyzed 12 key knowledge points that were assessed in the final exams
at least twice over the three years. The 12 knowledge points were selected in
the exams due to their comprehensive coverage of Bloom’s taxonomy levels and
the four types of computational thinking. We use numerical identifiers for the
knowledge points to avoid revealing the final exam content. KP1-KP3 assess log-
ical thinking, KP4-KP6 assess algorithmic thinking, KP7-KP10 assess systems
thinking, and KP11 and KP12 assess network thinking.

ICBench improves both the coverage and the level of Bloom’s Taxonomy
compared to the routine exercises in 2021 and 2022. As shown in Fig. 4, 4 of the 12
knowledge points have improved in coverage. For example, ICBench improves the
coverage of KP10 from 20% to 100% and includes KP12, which was previously
overlooked in 2021 and 2022. ICBench does not fully cover KP2 and KP5. This
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was due to an emphasis on question set brevity, limiting each assignment to
around ten questions and omitting some less crucial content. ICBench improves
Bloom’s Taxonomy levels on one-fourth of the knowledge points. The level of
KP1 has been improved from Understand to Create, and KP10 has improved
from Remember to Understand. The results in Fig. 4 and Table 3 underscore the
necessity of computer-aided question set generation for comprehensive coverage.
Manual construction of question sets can potentially lead to coverage shortfalls.

5.1 Student Performance

Figure 5 shows the pass rate in the Knuth test from 2021 to 2023, and most
students passed the Knuth test. Figure 6 compares the exam performance of
students who passed the Knuth test to those who did not. In 2023, those who
passed the Knuth test in the fully covered knowledge points typically outper-
formed in the final exam, with an average improvement of 14% and a maximum
of 21%. Data from 2021 and 2022 indicate that when question sets do not fully
cover the knowledge points, assessment results may not accurately reflect a stu-
dent’s mastery of the knowledge. For instance, students who performed well in
routine exercises for KP1 and KP10 only showed a final score increase of 7%
and 6%, respectively, in 2022. In 2021, KP6 was presented as a group project,
with all group members receiving the same score. Students with higher scores
in the project did not perform better in the final exam than their peers. Note
that the interval between exercises and the final exam may introduce inaccura-
cies. For example, students who initially passed might not perform as well in the
exam due to forgetting. The performance in routine exercises in 2023 was not
as good as in 2021 and 2022 in some Knowledge points, such as KP4 and KP5.
A significant reason for this was that the 2023 questions predominantly adopted
fill-in-the-blanks format, replacing the multiple-choice questions of the previous
two years, which reduced the chances for students to guess answers correctly.

Fig. 5. Pass rate in the Knuth test. KP12 was not assessed in routine exercises in 2021
and 2022.
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Fig. 6. Final exam performance: students who passed vs. did not pass the Knuth test.
KP12 was not assessed in routine exercises in 2021 and 2022.

5.2 System Overhead

The prototype system generates personalized question sets for ten thousand
students within one second, demonstrating its scalability with respect to the
number of students. We conducted our experiments on a server equipped with
64 cores and 128 GB of memory. Take the example of the Truth Table: a per-
sonalized question set is created for each student by parameterizing the seed
questions. Figure 7 shows the relationship between question set generation time,
disk storage cost, and the number of distinct personalized question sets. The
term “distinct personalized question sets” implies that any two sets differ from
one another by at least one question. For a group of 1,000 students, the system
requires only 7 milliseconds and 51 KB of disk space. The system’s efficiency
and low overhead in generating personalized question sets can be attributed
to adopting the principle of separation of concerns. Instead of generating and
storing a complete question set for each student, the system only maintains the
question template, question parameters, and a mapping that links students to
these parameters.

Fig. 7. Generation time and disk storage of the prototype system.
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6 Related Work

This section categorizes related works on automatic assessment in terms of per-
sonalization and coverage. Depending on the degree of personalization, question
sets can be non-personalized, personalized at the question-set level, or personal-
ized at the knowledge level. For coverage, studies typically employ either manual
selection or human-machine collaboration.

6.1 The Personalization of Question Set

Non-Personalization. ArTEMiS [18] is an interactive learning assessment sys-
tem that emphasizes immediate feedback and scalability for a large number of
students. While it efficiently provides instant feedback on programming errors,
its primary focus isn’t on creating personalized question sets for individual stu-
dents. Ashraf Amria et al. [4] provided a framework for automatically generating
exam questions based on Bloom’s taxonomy. This work focused on the cover-
age of knowledge points instead of personalization. Other automatic assessments
concentrated on managing the difficulty of questions or offering interactive guid-
ance [11], yet they did not provide personalized question sets.

Question-Set-Level Personalization. Various works focused on personalized
lab environment [20] and personalized exercise [1,6,10,24,25]. Jan Vykopal et al.
[23] proposed a system to personalize the information security course’s lab envi-
ronment. Max Fowler et al. [12] developed a method for generating personalized
basic programming questions by altering function names, the order of function
parameters, and other features. The ontology-based approach is widely used for
question variation [2,7,21,22]. Laura Zavala et al. [28] proposed a method that
utilizes Linked Open Data (LOD) to modify programming question parameters.
This approach combined template-based question generation with LOD to auto-
matically generate context-specific programming exercises. This tool has been
used in introductory programming courses to generate questions of equivalent
difficulty for each student.

Knowledge-Level Personalization. Personalization at the knowledge level
enables assessing different knowledge points according to the degree of knowledge
mastery of students. Such approaches often model a student’s current state of
knowledge mastery based on their performance, represented in the form of a
knowledge space [13]. Personalized question sets will be provided to students
that correspond to their current learning state.

Unlike most of the aforementioned works, which lack the flexibility to spec-
ify the level of personalization, our work allows teachers to specify the degree of
personalization and generate question sets that meet different levels of person-
alization requirements.
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6.2 The Coverage of Question Set

Manual Control. In works [12,18,23,28], the emphasis isn’t on generating a
question set that fully covers the knowledge being assessed. Teachers utilizing
these systems are required to manually select questions or question templates
that satisfy coverage needs. CodeMaster [3] considered coverage with manually
selected 15 concepts for algorithmic programming and mobile applications.

Human-Machine Collaboration. Works based on knowledge space [13] and
learning space [9] construct a knowledge space that covers domain knowledge
via expert query. The system provides question sets to students based on this
constructed knowledge space, ultimately facilitating comprehensive domain mas-
tery. In contrast to our research, such studies typically do not concentrate on
the personalized variation of questions.

7 Conclusion

We constructed ICBench for introductory computer science courses, utilizing the
Knuth test. ICBench consists of seed question sets, a prototype system, and three
benchmarking metrics. We analyzed data from over 1000 students in the UCAS
CS101 course from 2021 to 2023 and derived the following three conclusions.

1. ICBench provides concise, personalized question sets for each student. The
seed question sets include 12 weekly assignments and three programming
projects, covering logical, algorithmic, systems, and network thinking. The
prototype system can generate personalized question sets and evaluate a stu-
dent’s mastery of knowledge using the three metrics. We demonstrated the
scalability of the system, which can generate personalized question sets for
ten thousand students within one second.

2. We improved both the coverage of knowledge points and the levels of Bloom’s
Taxonomy in ICBench. From our analysis of 12 representative knowledge
points, ICBench’s questions improved the coverage for one-third of the knowl-
edge points and improved the Bloom’s Taxonomy levels for a quarter of them,
compared to the routine exercises of 2021 and 2022.

3. An assessment with higher coverage can more accurately reflect the knowledge
mastery level of students. In 2023, students who passed the Knuth test in the
routine exercise outperformed their peers by 14% in the scores on relevant
knowledge points. Data in 2021 and 2022 show that if the coverage of an
assessment is low, students with higher scores on this assessment may not
perform better in the final exam than their peers.

In practical education, the Knuth test not only serves for student evaluation
but also aids in improving the effectiveness of teaching. In future work, we will
focus on enhancing the automation of the Knuth test and undertake a more
comprehensive analysis to further explore the effectiveness of ICBench and the
Knuth test.
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Abstract. Topological Data Analysis (TDA) characterizes data based
on topological invariants present in the data. In general, TDA treats the
data as a discrete sampling of an underlying manifold. While based in the
field of topology, TDA is primarily vested in the three computational ele-
ments: Persistent Homology, Euler Characteristic, and mapper. The focus
of this paper is on developing infrastructure to generate synthetic test
data suitable to evaluate computational elements of TDA. The objective
of this work is to generate test data with known topological invariants.
While it is possible to use test data of known topological objects such
as n-spheres and n-tori, these structures present limited opportunities
to fully exercise TDA tools. This is especially true for high-dimensional
and big data. This work supports the generation of test data with tools
that use algebraic expressions of manifold structures to sample the data.
The approach is augmented with additional tools to combine test data
sets (possibly from various dimensions ni) into an ambient dimension
k (k ≥ ni) with rotations. The motivation for this work is to support
verification of algorithms to implement TDA computational elements.

Keywords: Synthetic Test Data · High Dimensional Data ·
Topological Invariants · Persistent Homology · Topological Data
Analysis

1 Introduction

Topological Data Analysis (TDA) extracts information about topological invari-
ants present in data [16,21,49]. Topological invariants are measurable properties
of a space, such as connectedness, cardinality, or homology; they are resilient to
noise and continuous deformation of the data. TDA has demonstrated success in
fields such as network analysis [36,38,48], images and movies [4,17,39,43,45,59],
protein analysis [14,26,61], genomic sequencing [13,19,44,48] and many others.

In general, TDA treats data, X , as a sampling of a manifold and reports the
topological invariants found therein. One important invariant reported by TDA
tools is the persistence of homologies in the data [30]. Unfortunately the compu-
tation of Persistent Homology (PH) exhibits exponential time and space com-
plexities for increasing homology classes. This has motivated many optimizations
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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and approximations in the computation of PH [2,3,9,11,20,22,40,46,53,58]. Ver-
ification and characterization of these optimizations and approximations are per-
formed on synthetic and real-world data and analyzed with respect to ground
truth results. Unfortunately few data sets labeled with ground truth topological
invariants are available; this is especially true of high-dimensional and big data.

While theoretical bounds on error are often established for TDA algorithms,
the practical error of the methods are often well below the bound [6]; as such,
experimental results can highlight the practical impact of a TDA algorithm
beyond its formal limits. In the TDA community, synthetic test data generally
comes from geometric objects in R

2 and R
3 [57]. While higher dimensional real-

world test data is available from the data mining community [23], it is at best
labeled for classification or clustering and seldom characterized by the topological
features contained therein. In a few cases, general purpose k-dimensional test
data with known topological properties are available [8,50,52].

This paper presents a method to generate k-dimensional test data with known
topological features for verification and accuracy analysis of TDA algorithms.
The approach is based on Hamiltonian Markov Chain Monte Carlo (HMC) [5,33]
to generate samples from a posterior distribution using algebraic varieties [37]
representing differentiable manifolds. This approach enables the generation of
more unique and topologically interesting data sets. By representing the topo-
logical features as algebraic varieties the homology of the manifolds can be com-
puted, mitigating non-trivial intersections found through feature placement of
geometric objects. In general, the approach permits the generation of individ-
ual test data components (from this technique or other existing techniques) to
be formed at any dimension ni and combined and embedded into an ambient
dimension k (k ≥ ni). Thus, this work includes tools to combine, rotate, and
embed test data into an ambient dimension.

The remainder of this paper is organized as follows. Section 2 contains back-
ground on TDA. Section 3 reviews some of the previous work on test data gen-
eration for TDA. Section 4 introduces the technical approach for generating syn-
thetic test data using algebraic varieties. Section 5 reviews the challenges and
mechanisms to establish ground truth validation for the topological invariants in
the data. Section 6 contains examples of generating test data from this approach.
Section 7 discusses the limitations and challenges of these test data generation
techniques. Finally, Sect. 8 contains some concluding remarks.

2 Background

Several notable computational elements of TDA include: Persistent Homology
(PH) [21,30,46], the Euler Characteristic (EC) [41,51], and mapper [54]. PH
characterizes discrete data by the persistence of homological classes over a filtra-
tion. Topological invariants, such as the Euler Characteristic, are computed over
a filtration as well. mapper filters the data (often through some clustering mech-
anism) to reduce the data and focus it into regions where significant topological
information can be extracted. Each of these elements capture the existence of
homological classes in the data with slightly different perspectives.
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Homological classes are of interest as a topological invariant because they
represent algebraic structure and can compare the structures of different spaces.
For example, the H0 homology group characterizes connected components, the
H1 homology group characterizes cycles or loops, H2 characterizes voids, and so
on to their higher dimensional analogues.

A key component in the computation of PH and EC is the construction
of a filtration of the data. The filtration represents an ordered set of complexes
arranged by their connectivity distances ε = (ε0, ε1, · · · , ε∞) s.t. ∀i, j : i < j, εi <
εj . Each complex contains all edges and higher-order construction (simplices) less
than the connectivity distance. Formally, PH constructs a filtration, KF of the
data as a sequence of nested subcomplexes such that:

∅ ⊆ Kε0 ⊆ Kε1 ⊆ ... ⊆ Kε∞ = KF . (1)

The filtrations are then examined to determine the persistence of homological
classes found in the data, each individually referred to as a topological feature
[21,32,49,62]. In general, PH examines the filtration to characterize the persis-
tence of homologies in the data by the tuple: 〈dim, εbirth, εdeath〉, where dim
reports the dimension of the topological feature, εbirth (and εdeath) records the
connectivity distance where the topological feature first appears (disappears).

PH is a widely used tool for TDA, however, it suffers from exponential growth
in memory and time. This exponential growth occurs both in the size of the data
and dimension of homology classes to realize. Due to the computational com-
plexity, the application of PH to big and high-dimensional data is impractical
without significant constraints or approximations. As a result, a large body of
research has been performed to develop techniques for optimizing and approxi-
mating the computation of PH [10,20,22,24,27,28,40–42,55,56,58]. An impor-
tant complication of these methods is the need for testing data with known
topological features. This is especially important in studies with higher dimen-
sional homologies where no known real-world test data has been characterized
and where no techniques to synthesize generalized manifold-based point cloud
data exist. Finally, studies with algorithm scalability to data is highly limited
without the ability to adequately generate scalable test data.

3 Related Work

Understanding and experimenting with TDA tools require diverse and significant
topological data sets for testing and evaluation. Despite advancements in TDA
tools, few widely available public bench-marking data sets suitable for TDA exist.
This is especially true in dimensions above R

3. That said, there are a few test
data generators that can generate common topological shapes in any dimension
n (although this ability is often limited to the generation of n-spheres).

One popular library for generating topological shapes is the Python
tadasets library, which can generate n-sphere, swiss roll, infinity sign, and
torus samplings [52]. Each of these shapes is parameterized to change the scale
and bounding of the generation. For example, the n-sphere of tadasets can be
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generated in any arbitrary dimension and rotated into an ambient dimension in a
single call to the library. This functionality has proven useful in testing and val-
idating lower-dimensional topological data analysis, however, high-dimensional
interactions can be difficult to model and assess. In addition, there are several
other libraries that can generate specific samplings or distributions of topological
shapes. For example, fiblat is a python library capable of generating Fibonacci
spheres in R

n. Likewise, the data generation package tda can sample uniformly
from a n-sphere [31]. Finally, the package kodama is a spiral set generator [12].

Complementary to the equational based approach for generating manifolds
outlined in this paper, Diaconis et al presents a method to generate datasets by
manifold sampling [29]. Although related to this work, the approach suffers from
various technical problems inherent to Markov Chain Monte Carlo (MCMC)
simulations, in particular: non-convergence, low probability regions, and so on.
These challenges are identified and rectified in this work to employ an MCMC
sampling of algebraic varieties representing differentiable manifolds.

A topology assisted comparative study has demonstrated to improve the
Monte Carlo Uncertainty Propagation(MCUP) models [47]. The approach has
completely different motivation and was developed to topological compare the
posterior distribution of probabilistic geological models and uncertainty index
models to improve generation of plausible models. However, the approach does
not provide capability to generate through algebraic varieties and validation of
ground truth for topological characterization. This paper approaches test data
generation to support the generation of benchmarking datasets with known topo-
logical features (and invariants) for TDA tool development and evaluation. In
particular, the work in this paper exploits the algebraic origins of TDA to gen-
erate point clouds homotopic to manifolds with known topological properties.

4 Overview of the Approach

This paper details a technique for test data generation for verification and val-
idation of TDA algorithms and approximations. The approach is based on the
Hamiltonian Markov Chain Monte Carlo (HMC) method [5,33] to generate
samples from a posterior distribution using algebraic varieties [37] represent-
ing differentiable manifolds. This approach enables the generation of unique and
topologically interesting data sets. By representing the topological features as
algebraic varieties the homology of the manifolds can be computed, mitigating
non-trivial (unexpected) intersections that can arise among topological features
in the manual placement of geometric objects.

In addition to this data generation component described here, the system also
contains secondary components to generate simple geometric objects as well as
manipulate, place, and embed objects (possibly from various dimension spaces)
into a common ambient space to compose the test data. Furthermore, the genera-
tion components of this work can also be combined with other generators such as
tadasets [52]. The remainder of this section discusses: (i) data generation using
algebraic varieties, (ii) a review of several design alternatives that were explored
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Algorithm 1. Sampling a Manifold to Capture Test Data
1: function ManifoldSampler(

ss: Sample Size; dim: Dimension; av: Algebraic Variety; ε: Epsilon;
disp: dispersion; step: Stddev of Step Size; maxHeat: Maximum Threshold)

2: testData ← φ
3: indx, heat, stepS, onManifold ← 0, 0, step, False
4: C ← 〈x0, x1, · · · xdim−1〉 � Begin with a random point from R

dim

5: while True do
6: newC ← C

� Move a coordinate value following a normal distribution
7: newC[indx] ← N(newC[indx], stepS)

� Using two acceptance functions
8: tstv1 ← acceptFn1(av, newC, ε, disp)
9: tstv2 ← acceptFn2(av, newC, ε, disp)

10: if (tstv1 or tstv2) and sparseTest(testData, newC) then
11: testData.append(newC)
12: C ← newC � Move to less sampled region
13: onManifold, heat, stepS ← True, 0, step � Reset
14: else
15: heat++ � Count num of failures
16: if heat > maxHeat and stepS < maxStep then
17: stepS ← Increase(stepS)
18: heat ← 0 � Cool down as step is increased

� Find a starting point for C near the manifold
19: if not onManifold then C ← newC
20: if len(testData) == ss then break
21: indx ← (indx + 1) mod dim
22: return testData � Samples of a Smooth Manifold Surface

in the development of this work, and (iii) some of the sensitivities of the solution
to user definable critical parameters. A python library of the test data generation
techniques of this paper is available with the LHF code base [50].

4.1 HMC Sampling of Algebraic Varieties

The steps to sample points on algebraic varieties are captured in Algorithm 1.
The algorithm begins at a random point in the dimensional space of interest,
R

dim (Line: 4). Each iteration (Line: 5) of the algorithm moves about the region
of the last point added to the test set. Since the algorithm begins with the random
selection of a point in the target space, the algorithm must first determine if that
point is within an acceptance distance of the manifold surface (discussed below).
Once a point passes the acceptance test (it is sufficiently near the manifold
surface) it is added to the test data set and the onManifold variable is set to
True. Thereafter, the algorithm searches for another acceptable point near the
surface of the manifold; that is, it moves around in the “nearby” region of the
space to find additional points that pass the acceptance test. If no additional
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Algorithm 2. Accepting Function for Points on a Manifold Surface
1: function acceptFn1(av: Algebraic Variety; point; ε: Epsilon; disp: Dispersion)
2: if ε < |av(point)| then
3: return False
4: else
5: if av(point) > 0 then noise ← (1 − av(point)

ε
)−1

6: else noise ← (1 + av(point)
ε

)−1

� acceptStrict (default) or acceptRelaxed (not shown)
7: acceptProb ← acceptStrict(noise, disp)
8: return (uniform(0,1) < acceptProb)

Algorithm 3. Accepting Function for Points on a Manifold Surface
1: function acceptFn2(av: Algebraic Variety; point; ε: Epsilon; disp: Dispersion)
2: pDV ← point×ε

|point|
3: mag1 ← av(point + pDV )
4: mag2 ← av(point − pDV )
5: if (mag1 × mag2) > 0 then
6: return False
7: else
8: mag1, mag2 ← |mag1|, |mag2|
9: if mag2 > mag1 then noise ← mag2

mag1

10: else noise ← mag1
mag2

� acceptStrict (default) or acceptRelaxed (not shown)
11: acceptProb ← acceptStrict(noise, disp)
12: return (uniform(0,1) < acceptProb)

points are found or if the region becomes over-sampled, the nearby distance step
size is increased (Line: 17) to grow the region of the search for new points. Finally
the heat variable records the number of failed attempts to find a new point in
the region. The algorithm will increase the size of the search region if the heat
variable exceeds a maximum (maxHeat) (Line: 16). The regional walk for points
and the point evaluation for inclusion in testData set are discussed below.

In each successive iteration, the algorithm adjusts the value of one of the coor-
dinates using a normal distribution function N (Line: 7) to find the next point to
test for inclusion into testData. This test is twofold: (a) is the point within the
acceptable region of the manifold surface (Lines: 8 and 9), and (b) is the local
region of the manifold underrepresented by the points in testData (Line: 10)?
Parameters ε, disp, and av and functions (acceptPt1 and acceptPt2) deter-
mine if the new point is within the acceptable region of the manifold surface.
Parameter ε defines a boundary distance (above and below) about the mani-
fold surface that a point can be successfully drawn; disp defines how acceptable
points are dispersed throughout the boundary (disp = 1 defines a uniform dis-
tribution; increasing values push the density of points closer to the manifold
surface). The functions acceptPt1 and acceptPt2 use the algebraic variety
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Fig. 1. Impact of Different Dilation Procedures (Color figure online)

and boundary parameters to determine if a new point is a candidate for inclusion
in testData (Line: 11). These function are described below.

An acceptance test for each point considered by Algorithm 1 is performed by
two functions, namely: acceptFn1 (Algorithm 2) and acceptFn2 (Algorithm
3). These algorithms consider the new point (point) and evaluates it against
its “nearness” to the manifold surface. The manifold surface and the acceptance
region about the manifold is defined by the av (the algebraic variety), ε and disp
parameters. More precisely, ε determines a boundary distance above and below
the manifold surface and disp describes the probability of acceptability for a
point to lie at that distance from the manifold surface. The dispersion of points
are more frequently positioned closer to the manifold surface as the dispersion
parameter (disp) is increased. In some senses, the ε and disp parameters permit
the characterization of “noise” in the generated data. The remainder of this
paper will use the term ε-dilation boundary to characterize the region about the
manifold surface defined by the ε and disp parameters.

Algorithm 2 (acceptFn1) tests the ε-dilation boundary by offsetting the
algebraic curve above and below the manifold surface by the ε factor. The impact
of this test is shown by the purple and green Fish curves of Fig. 1a. This approach
behaves differently for higher order curves; the fish curve is an order 4 curve and
the offset between green and purple curves varies by the location on the Fish
surface. The corresponding sampling effect is shown in Fig. 1c where the right
side of the Fish curve suffers from a sparse sampling. The algorithm computes
the noise of the ε-validated point at Lines: 5 and 6.

Algorithm 3 (acceptFn2) overcomes the issue of Algorithm 2 (acceptFn1)
by approaching the dilation with respect to a fixed point, ideally the Barycentric
point of the curve. Algorithm 3 evaluates two vectors within the neighborhood
of the point to establish acceptance from the fixed point (Lines: 3 and 4). The
orientation of the vectors with respect to the ε-dilation boundary is evaluated at
Line: 5. If both of these vectors lie on same side of the manifold boundary the
point is rejected (returning False at Line: 6). Conversely, if the two vectors lie
on opposite sides, the surface passes between those two points. To identify the
relative distance of the manifold surface from the two vectors, noise is computed
at Lines: 9 and 10. Based on this noise, the algorithm decides whether to accept
or reject this point by checking it against an acceptance function (Line: 11).
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Algorithm 4. Strict Acceptance Rule
1: function acceptStrict(noise, dispDegree)
2: return 1 −

√
(1 − noise−dispDegree)

Algorithm 5. Relaxed Acceptance Rule
1: function acceptRelaxed(noise, dispDegree)
2: return (1 + (noise − 1)dispDegree)−1

In testing of this approach, two different acceptance functions were evalu-
ated, namely: acceptStrict (Algorithm 4) and acceptRelaxed (Algorithm
5). These functions return a probability of acceptance for each point based on
its location in the ε-dilation boundary. The acceptance probability curves corre-
sponding to Algorithms 4 and 5 are shown in Fig. 2 for dispersion degree values
0, 1, 2, 3, and 4. In testing, it was observed that the best results were found with
acceptStrict and thus, it is used in both Algorithms 2 and 3.

The final step of Algorithms 2 and 3 is to accept or reject the point with
probability proportional to the acceptance score. Algorithm 1 accepts a new
point if it passes the acceptance test from either acceptFn1 or acceptFn2.
The acceptance rate for the algorithm vary with the selection of the sampling
parameters. The acceptance rate varied between 0.25 to 0.62 for datasets gen-
erated in this paper indicating the number of iterations required for datasets
in Sect. 6, in worst case is 4 times the sample size. For larger value of sample
size, the approach can be parallelized with different starting locations to reduce
generation time.

4.2 Sensitivity of HMC Parameters

As previously stated, this work uses a variant of the Hamiltonian Markov Chain
Monte Carlo (HMC) method for generating a sampling from regions about a
manifold surface that is characterized algebraically. Sampling from the region

Fig. 2. Acceptance Functions
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Fig. 3. Dispersion impact for Circle in R
2 with N = 5000 and inverse-crowding =

0.00001

about a manifold surface has been studied earlier [29] but their approach is
unrealistic for surfaces with higher algebraic degrees and spatial dimensions. One
of the major issues that sampling algorithms face in higher dimensions occurs
when a change in a dimension parameter significantly affects other dimensions.
This impact can be mitigated by sampling from dilated/inflated surfaces.

The algorithm of this work (Algorithm 1) uses a collection of parameters
that are crucial to generate points on and about the surface of a manifold.
These parameters collectively manage the search for points that are evaluated
for inclusion into a test data set. The remainder of this section discusses some
of the key concepts of this approach and describes how some of the parameters
impact the overall operation of the algorithm.

ε-dilation boundary: Constructing test data strictly from the surface of a man-
ifold represents an overly simplistic construction of test data; this is especially
true if the data is to mimic properties such as noise of real-world data. The
outlined approach addresses this by constructing an ε-dilation boundary about
the manifold surface to collect data. More interestingly, the ε-dilation boundary
does not simply define a fixed region about the surface from which test data
can be sampled. Instead this boundary includes a dispersion factor that estab-
lishes a probabilistic profile spanning this boundary from which points can be
selected. An example of the ε-dilation boundary is illustrated in Fig. 3. The sam-
pled points are more frequently closer to the manifold surface as the dispersion
parameter is increased (here the value of ε is held constant).

The ε-dilation boundary forms a neighborhood to control sampling noise at
distances from the surface; however, this can result in a significant number of
rejected samples. For example, Fig. 1 illustrates how a surface experiences dif-
ferent dilations. Figure 1a depicts the offset (purple, green) of the parametric
equation (red). The interior of these curves represent the sampling region. This
results in a variable sampling based on the surface complexity and can result in
an incomplete sampling as shown in Fig. 1c. A second approach (Fig. 1b) over-
comes this issue with a second acceptance criteria (Sect. 4). The approach illus-
trates a mechanism where an object is rotated around a sphere with radius equal
to ε and its barycentric coordinates to identify a stable ε-dilation for uniform
sampling. Unfortunately, this approach suffers from low sampling near intersec-
tion points (Fig. 1d). Since each approach has complementary sampling issues,
a solution is to incorporate both for acceptance testing.
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Fig. 4. Variable Step Size Impact on Performance

Step Size: The step parameter controls the maximum distance of each jump to
the next point in a testing region. That is, Algorithm 1 draws a new point from a
normal distribution with the mean corresponding to the current coordinate value
and the standard deviation equal to the step size (Line: 7). The mean ensures
that the new sample is drawn around the last successful draw of the coordinate
and the standard deviation enables a jump within the vicinity. This approach
ensures a higher acceptance probability of a newly drawn point. This concept
is illustrated in the images of Fig. 4. For example, Fig. 4a shows an idealized
sampling of a circle. However, if the step size is too small, the algorithm might
not walk the entire surface (e.g., the half circle of Fig. 4b). In contrast, a large
step size can cause the walk to skip large portions of the surface (e.g., the
missing parts of the circle in Fig. 4c). Even worse, for highly convoluted surfaces
a constant step size is not always suitable and thus an adjustable step size is
utilized in this adaptation of the HMC method. The normal distribution for
various step sizes is shown in Fig. 4d. The HMC based frog-leaping approach
enables sampling by changing step size dynamically using a heating and cooling
mechanism embedded in Algorithm 1.

Dispersion and the Acceptance Functions: As previously discussed, the dis-
persion parameter characterizes a probability profile of points expected in the
test data based on their distance from the manifold surface. Higher dispersion
values cause Algorithms 4 and 5 to accept points closer to the manifold surface
with higher probability. The impact that dispersion has on the acceptance proba-
bility is illustrated in Fig. 2. The strict acceptance curve has a higher acceptance
probability for points with less noise (Fig. 2a); the relaxed acceptance curve,
has higher probability for even lower noise (Fig. 2b), resulting in more accepted
points than the strict curve. While both methods provide some degree of success
in use, the generation of test data in higher dimensions is generally best served
with the acceptStrict function (Algorithm 4) and therefore it is used in the
acceptance functions shown in Algorithms 2 and 3.

Inverse-Crowding: The sparseTest function (Line: 10 of Algorithm 1) is used
to ensure that a region of the manifold surface is not over represented (over
crowded) by the points in the final test set. That is, the current testing infras-
tructure is designed to ensure a fairly uniform representation of points in any
particular region of the final test data. The parameter controlling this (not shown



28 R. P. Singh et al.

in Algorithm 1) limits overcrowding by rejecting points within close vicinity of
already sampled points. This step also ensures that, for large enough sample
space, the points are uniformly sampled irrespective of surface curvature.

4.3 Combine, Rotate, and Embed Constructions

Most existing TDA test generators operate by sampling test data from known
geometric objects (n-spheres, n-tori, and so on). Data sampled from geometric
objects can then be composed together provided they are placed into an ambient
dimension space in a way that controls their respective positioning. For example,
combining two spheres of different radii centered at the origin will create a
different result than shifting one of the spheres to lie outside of the other.

This tool suite includes capabilities to support embedding, rotations, and
shifting of test data (sampled from geometric objects or a manifold surface)
into an ambient space in an expected manner. To embed objects in a higher-
dimensional ambient space, trailing zeros are added to pad the dimensions to the
higher-dimensional embedding. Embedding, combined with a rotation into the
ambient space, distributes the lower dimensional data through the dimensions
to create more complexity of the test data.

Due to non-trivial intersections, neither geometric or algebraic variety gener-
ated data is immune to creating unexpected homology classes. However, the geo-
metric approaches lose the equational definitions of each separately constructed
data; with the algebraic varieties the polynomial manifold equations can be
transposed, rotated, or embedded using linear algebra that retains the manifold
definition. In summary, the final equations from the algebraic varieties can be
used to determine the homology of the manifolds (Sect. 5).

5 Ground Truth Validation

Although high-dimensional test data exist for use with TDA tools, few are
labeled with their true homology classes. Those few that are labeled are typically
for low dimension homology classes (Hd, d ≤ 3) and are generally trivial in their
analysis. This work is interested in creating complex, labeled, high-dimensional
homology class test data that can validate and characterize TDA tools.

Homology classes (Hd) are defined as connected components (H0), loops
(H1), voids (H2), and higher-dimensional voids identified in the data. More
specifically, a homological class in a mathematical object is a topological struc-
ture which prevents the space from being continuously deformed to a point.
Formally, a subspace Y of a space X can be categorized as a homology if either:

– Y has no boundary (e.g., a loop has no end points, represents a hole in R
2).

– Y is not a boundary of anything else (e.g., a empty/hollow spherical surface
does not bound anything, represents a void in R

3).

An equivalent definition for a homology class comes from the study of nice and
smooth surfaces. In differential topology, a form is closed if its derivative is 0,
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and a form is exact if it is the derivative of something else [35]. This is analogous
to following statements:

– Y is closed.
– Y is not exact.

This manner of measuring homology classes is called de-Rham cohomology: the
k-dimensional de-Rham cohomology of a space is the quotient of the space of
closed k-forms by the space of exact k-forms. For smooth differential manifolds,
the simplicial, singular, and de-Rham co-homologies are isomorphic and yield
the same homology groups [60].

The algebraic computation of homology provides a manner to label datasets
with known homology groups from algebraic varieties. Fortunately, various soft-
ware implementations exist to perform commutative algebra and compute de-
Rham cohomology groups [1,25,34]. These platforms provide a method to com-
pute de-Rham cohomology classes for a set of polynomials. Data generation from
algebraic varieties representing differential manifolds are defined by a set of n
polynomials of degree d. The number of polynomials, n, impacts the combinato-
rial complexity and the degree of polynomials, d, defines the algebraic complex-
ity of the space. The algebraic varieties are used to generate data and can be
simultaneously evaluated to establish the manifold’s homology using de-Rham
cohomology. This concept is illustrated with the deRham.lib library to compute
co-homology classes for polynomial algebraic varieties in Singular [25]:1

2-Torus ring r = 0, (x, y, z), dp;

list L = (x2 + y2 − 5)2 + z2 − 9;

output Hn : 1 1 1 2

3-Sphere ring r = 0, (x, y, z, w), dp;

list L = (x2 + y2 + z2 + w2 − 1);

output Hn : 1 1 0 0 1

3-Roman surface or Steiner surface

ring r = 0, (x, y, z), dp; (2)
list L = (x2 ∗ y2 + z2 ∗ y2 + x2 ∗ z2 − 10xyz); (3)
output Hn : 1 1 0 4 (4)

The Roman surface depicted in Fig. 5c is defined by the polynomial in Eq. 3
over a ring r determines by ground field 0, ring variables x, y, z and monomial
ordering dp in Eq. 2. The de-Rham cohomology groups are captured in Eq. 4.
From the output, it can be observed that the surface encloses a 4-void (H3) in
R

3 as depicted in Fig. 5c. This provides a basis to generate point cloud from
the manifolds described by these algebraic varieties and extract their known
homology groups.
1 The output is a list, where the ith entry is the (i−1)th de-Rham cohomology group

of the complement of the complex affine variety given by the polynomials in L.
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Fig. 5. Roman Surface (a = 1) (R3) and Fish Surface (a = 1) (R2)

Fig. 6. Pretzel, Bretzel2, Bretzel5, Spiral Tube and Boys Surfaces in R
3

6 Examples of Data Generation

This section is focused on data generation from algebraic varieties represent-
ing differentiable manifolds using the HMC approach detailed in Sect. 4. These
constructions are topologically interesting structures and are provided to show
coverage and examples. Initially, data generation in R

2 and R
3 is demonstrated in

Sect. 6.1. Examples of higher-dimensional generations are presented in Sect. 6.2.
Examples used in these sections are validated against their known homological
classes and source equations are included for reproduction.

6.1 Data Generation in R
2 and R

3

This section illustrates surfaces generated using HMC sampling of algebraic vari-
eties. The approach requires several parameters to achieve the desired sampling
distribution (Sect. 4). For example, the user can choose how close the samples
should be from the manifold surface; using more strict parameters may lead to
longer sampling times as the acceptance region can be reduced significantly.

Figure 5a depicts a sampling from a Roman Surface (Eq. 7) with a relaxed
noise parameter. This leads to fast generation of samples, but results in a rough
surface in R

3. Likewise, the Fish curve (Eq. 5) in R
2 is shown in Fig. 5b with a

rough surface. An improved sampling distribution can be achieved with stricter
acceptance controlled by parameters at the cost of longer sampling times; this
impact is depicted in Figs. 5c and 5d.
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Surfaces with different genus (holes) can be generated from corresponding
algebraic polynomials [7]. Figures 6a and 6b depict a surface of a Pretzel and a
Bretzel with genus 2, respectively; Fig. 6c shows a surface in R

3 with genus 5.
These surfaces are constructed from the polynomials in Eqs. 8, 9, and 10.

Another class of datasets that are useful in the study of TDA tools is the
spiral. Spirals come in different flavors; one such spiral is shown in Fig. 6d cor-
responding to Eq. 11. The samples from the Spiral tube are more uniformly
distributed when compared to the Boys surface captured by Fig. 6e and Eq. 12.
The result is due to the inverse crowding parameter. This parameter prevents
overcrowding by rejecting valid samples that are too close, thereby forcing the
algorithm to sample uniformly through the manifold surface.

Fish : (x2 + y2)2 − ax(x2 − y2) = 0 (5)
Salmon : (x2 − a2)2 + (y2 − a2)2 − b4 = 0 (6)
Roman : x2y2 + z2y2 + x2z2 − r2xyz = 0 (7)
Pretzel : (((x − 1)2 + y2 − a2)((x + 1)2 + y2 − a2))2 + z2 = 0 (8)

Bretzel2 : (x2(1 − x2) − y2)2 +
1

2
z2 − f(1 + b(x2 + y2 + z2)) = 0 (9)

Bretzel5 : ((x2 +
y2

4
− 1)(

x2

4
+ y2 − 1))2 +

z2

2
= 0 (10)

Spiral : (x − Rcos(
z

a
))2 + (y − Rsin(

z

a
))2 − r2 = 0 (11)

Boys :

64(a − z)3z3 − 48(a − z)2z2(3y2 + 3y2 + 2z2)

+12(1 − z)z(27(y2 + y2)2 − 24z2(y2 + y2)+

36
√
2yz(y2 − 3y2) + z4) + (9y2 + 9y2 − 2z2)

(−81(y2 + y2)2 − 72z2(y2 + y2) + 108
√
2

yz(y2 − 3y2) + 4z4) = 0

(12)

6.2 Data Generation in R
n for n > 3

The HMC technique can efficiently generate data in higher dimensions. In high
dimensions most topological surfaces can be created using the surgery technique
on finite manifolds: when combined in a controlled manner they generate another
manifold [15]. This paper limits the scope of the discussion to higher-dimensional
surfaces that can be created from other manifolds by the surgery theorem.

Surgery can be performed on n-spheres (denoted by S
n−1) and n-tori

(denoted by T
n−1) to obtain manifolds as self products or cross products. For

example, a n-Clifford torus here on C
n−1 is a product of two S

n−1
2 or three

S
n−1
3 spheres, or in general j- S

n−1
j spheres. Other interesting surfaces can be

constructed by products of different factors on n-spheres to obtain Clifford man-
ifolds (e.g., Sm ∗ S

n gives a Clifford surface C
m+n).



32 R. P. Singh et al.

Fig. 7. Stationarity and Probability Distributions

Toratopic Notation and Spheration is an encoded representation of
torus-like objects constructed in higher-dimensional spaces [18]. Genus-1 ((II)II)-
toratope manifold from Eq. 13 in R

4; Genus-2 ((II)(II))-toratope manifold from
Eq. 14 in R

4; and Genus-1 ((II)III)-toratope manifold from Eq. 15 in R
5 can be

represented.

S2.S1 : (
√

x2 + y2 − R)2 + z2 + w2 = r2 (13)

S1.C2 : (
√

x2 + y2 − Ra)
2 +

√
z2 + w2 − Rb)

2 = R2 (14)

S3.S1 : (
√

x2 + y2 − R)2 + z2 + w2 + v2 = r2 (15)

This process can be applied to teratopes in higher-dimensional spaces with more
combinatorial possibilities, but with increasing computational complexities.

7 Limitations and Challenges

Algorithm 1 is sensitive to the parameters that impact the sampling distribution.
There are several ways to infer values for these parameters which will be a focus
of future research to better understand their use for arbitrary algebraic varieties.
The sampling from a manifold depends on several factors, including:

– n ∝ surface area(S): the sample size n must be sufficient to cover the surface S

– IC ∝ surface area(S)
sample size(n) : inverse crowding should be selected based on sample size and

surface area
– sharpness ∝ Degree(d): the degree of acceptance defines the boundary sharpness
– step Size ∝ inter Component Distance: the step size must be adaptively adjusted

for disconnected surfaces

As shown in Fig. 7, the Salmon curve (Eq. 6) with different parameters gener-
ates significantly different test data. The probability distribution provides insight
into how the different coordinates are distributed across the sampling space.
Visual inspection is sufficient for surfaces up to R

3 to verify the sampling qual-
ity. In high dimensions visual inspection becomes insufficient. The HMC chain
of samples drawn as shown in Fig. 7c and 7d can provide significant information
about the distribution of points. Despite this, the surface generated can not be
fully verified from these parameters.
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Unfortunately, in higher dimensions the sampling quality is not easily estab-
lished. Multiple runs with different parameters can provide estimates for the
surface complexity and can aid in the selection of appropriate parameters. For-
tunately, one can determine the sampling quality by PH computation using TDA
tools and verify it with de-Rham cohomology computations.

8 Conclusions

This paper presents a novel data generation tool to sample algebraic varieties
representing differentiable manifolds. The method introduces a technique to ran-
domly walk the surface about a differentiable manifold to sample points, result-
ing in topologically interesting constructs for verification and characterization of
TDA tools. The experimental results demonstrate the efficacy of a generalized
approach and can cater to generation of complex topological spaces, enabling
further analysis of high-dimensional homological classes and their constructions.

Acknowledgements. Support for this work was provided in part by the National
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Abstract. AI for science (AI4S) is an emerging research field that
aims to enhance the accuracy and speed of scientific computing tasks
using machine learning methods. Traditional AI benchmarking meth-
ods struggle to adapt to the unique challenges posed by AI4S because
they assume data in training, testing, and future real-world queries are
independent and identically distributed, while AI4S workloads anticipate
out-of-distribution problem instances. This paper investigates the need
for a novel approach to effectively benchmark AI for science, using the
machine learning force field (MLFF) as a case study. MLFF is a method
to accelerate molecular dynamics (MD) simulation with low computa-
tional cost and high accuracy. We identify various missed opportunities
in scientifically meaningful benchmarking and propose solutions to eval-
uate MLFF models, specifically in the aspects of sample efficiency, time
domain sensitivity, and cross-dataset generalization capabilities. By set-
ting up the problem instantiation similar to the actual scientific applica-
tions, more meaningful performance metrics from the benchmark can be
achieved. This suite of metrics has demonstrated a better ability to assess
a model’s performance in real-world scientific applications, in contrast to
traditional AI benchmarking methodologies. This work is a component of
the SAIBench project, an AI4S benchmarking suite. The project home-
page is https://www.computercouncil.org/SAIBench.

1 Introduction

Benchmarks are extensively utilized in computer science research and the IT
industry to assess and compare the performance patterns of various types of
entities, from abstract and mathematically specified problem definitions and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
S. Hunold et al. (Eds.): Bench 2023, LNCS 14521, pp. 38–52, 2024.
https://doi.org/10.1007/978-981-97-0316-6_3
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algorithms to fully materialized software + hardware systems [6,20]. The term
“benchmark” originated from land measurement practices, where marks were
carved onto a stone, creating a “fixture” for mounting measurement equipment.
Modern computer science benchmarks follow a similar concept. To measure per-
formance metrics, a “fixture” is created by instantiating the target problem into
a standardized set of computing resources and tasks. For instance, in machine
learning benchmarks, problem instantiation is achieved by mapping high-level
goals (e.g., image classification) to a concrete dataset, such as ImageNet [9]. A
critical factor in benchmarking is to ensure that the problem instantiation aligns
with the stakeholders’ interests. In the context of machine learning benchmarks,
this means that the chosen dataset should cover all typical scenarios implied by
the high-level goals. Consequently, if a machine learning model performs well on
the dataset, it is expected to perform well in real-world applications.

AI for science (AI4S) is an emerging research field that focuses on leveraging
machine learning methods to improve accuracy and speed in scientific computing
tasks [16,23]. Benchmarking AI4S is crucial, as it allows scientific researchers to
evaluate the quality of an AI4S machine learning model and ensure its successful
integration into the scientific computing pipeline.

The ultimate goal of AI4S is to assist scientific researchers in exploring the
unknown, which often challenges fundamental assumptions in machine learn-
ing. For instance, traditional machine learning assumes that the training and
testing instances share the same distribution, and so do instances from any
future queries. While this assumption works well with traditional workloads
such as object recognition in ImageNet, where the dataset is indeed randomly
sampled from all possible objects “in the wild”, a scientific computing pipeline
is well expected to encounter entirely new instances. In other words, the “in-
distribution” assumption fails in AI4S scenarios, where encountering “out-of-
distribution” data is anticipated.

Consequently, traditional AI benchmarking methods struggle to adapt to the
AI4S context due to this “out-of-distribution” challenge. Good performance in
training and simple testing no longer guarantees that the model will perform
well when integrated into a real-world scientific computing pipeline. Adhering
to conventional AI benchmarking practices will invariably result in a biased
problem instantiation that is misaligned with the objectives of AI4S.

This ponders the question: do we need to carry over the practices from con-
ventional AI benchmarking by collecting a comprehensive dataset like ImageNet,
or do we need a completely different approach to benchmark AI for science effec-
tively? In this paper, we study a particular example in AI for science, molecular
dynamics (MD) simulations. MD simulation serves as a crucial tool that is exten-
sively employed in chemical physics, materials science, biophysics, and related
fields. MD simulation models the motion of atoms and molecules within a chem-
ical system and how it evolves over time. Machine learning was proposed to
accelerate MD simulation. At the core of the machine learning acceleration lies
the machine learning force field (MLFF), which computes the forces applied to
each atom in the chemical system.
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We identify numerous missed opportunities in scientifically meaningful
benchmarking MLFF models, and we propose solutions that allow us to inves-
tigate the behavior of MLFF models in greater detail. Our contribution is as
follows. 1. We propose an evaluation of the sample efficiency of MLFF models,
specifically focusing on their performance in scenarios with sparse data. This is
in contrast to conventional AI workloads, such as large-scale language models
and image recognition tasks, which often have access to vast amounts of data. 2.
While conventional AI benchmarks assume that the samples in the dataset are
independent and identically distributed, we propose to take advantage of the fact
that the MD simulation produces time-series data, and we furthermore evaluate
the time domain sensitivity of the models. 3. Contrasting to conventional AI
benchmarks that typically treat different datasets as separate entities, we pro-
pose the development of cross-dataset generalization tests for MLFF models. 4.
While our primary objective is to evaluate the performance of MLFF models, we
also uncover an intriguing correlation between the test results and a similarity
metric known as Smooth Overlap of Atomic Positions (SOAP). This discovery
can, in turn, help us to improve the simulation pipeline.

2 Preliminaries

MD simulation is an essential tool that simulates atomic motions within chemical
systems, providing key insights for computational chemistry, biology, and physics
to unravel thermodynamic and kinetic phenomena. The key of an MD simulation
is to integrate atomic motion by applying computed forces to each atom and
subsequently displacing atoms following Newton’s Second law f i = miai, where
f i, mi, ai are the force, mass, and acceleration of atom i. Traditionally, the
atomic forces are computed with empirical inter-atomic potentials or with ab
initio methods as the negative gradient of potential energy (Eq. 1).

f i = − ∂

∂xi
E(x1,x2, . . . ,xn) (1)

In empirical potentials, the potential energy functionals are relatively simple
analytical equations, such as in Lennard-Jones potential [15]. They often assume
that each atom is only affected by its neighboring atoms,

f i = − ∂

∂xi
Ei(xi,xj1 ,xj2 , . . . ,xjni

) (2)

where jk are atoms that are close to the atom i with |xjk − xi| < rcut. This
locality assumption leads to an O(Natom) complexity for classical force fields.
On the other hand, the ab initio methods solve Schrödinger’s equation to obtain
potential energy, with a complexity of O(NK

electron), K = 3 − 5. Even though
the empirical potentials are easy to compute and often scale linearly with the
number of atoms Natom, they are limited to systems without the formation and
breaking of chemical bonds. In contrast, ab initio MD (AIMD) methods incor-
porate quantum mechanic effects, providing a more precise representation of the
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potential in chemical reactions, albeit at the expense of prohibitive computation
time. This accuracy-cost trade-off makes it prohibitive to use MD simulation to
model systems with chemical reactions.

Machine learning enables a new solution, MLFF, to solve this accuracy-cost
trade-off problem. It uses neural networks [5] or Gaussian Process [2] for the
potential energy functional. The functional is more complicated than empirical
force fields but keeps the O(Natom) scaling. Hence MLFF can scale up to large
molecular systems that were previously impossible to simulate with empirical
force fields while maintaining an acceptable level of accuracy [14].

As mentioned before, MD simulation is an iterative process where each step
computes the forces applied to each atom in the system. Based on the force
field, the algorithm iteratively updates the velocities and positions of the atoms
over time steps, generating a trajectory of the molecular system that illustrates
the evolution of the system over time. Given a chemical system of Natom atoms,
the force field takes the cartesian coordinates and atomic numbers as input and
outputs the potential energy and forces as written in Eq. 1.

The construction and training of MLFF constitute the following steps.

1. Obtain training data from ab initio methods, which contains cartesian coor-
dinate x1,x2, . . . ,xN , atomic numbers z1, z2, . . . , zN , total potential E, and
forces f1,f2, . . . ,fN . For simplicity, all the variables can be written as matri-
ces: x,F ∈ R

N×3, Z ∈ R
N×3, E ∈ R, where F = − ∂

∂XE.
2. construct a machine learning model

˜E, ˜F = F(X, z) (3)

where F can be a neural network or a Gaussian Process model.
3. Design a loss function L over both the forces and the energy. An example is

to use mean square error.

L =
∑

batch

[α(E − ˜E)2 + β
∑

i

∑

u=x,y,z

(fi,u − ˜fi,u)2] (4)

4. Optimize the functional F over the training data, to minimize L.
5. Evaluate the performance of the trained model.

3 Related Works

The rapid development of MLFF models [3,18,21] has garnered significant inter-
est in various applications, such as drug discovery and material design. These
applications require high numerical accuracy from MD simulations, making the
quality of a trained MLFF model crucial for successful deployment. As high-
lighted by [10,22], a suboptimal MLFF model can introduce errors in the pre-
dicted potential energy and forces, which accumulate throughout the iterative
simulation steps. These accumulated errors can result in simulation failures,
manifesting as non-physical conformations of the chemical system or numerical
runaway conditions.
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Numerous benchmarking suites have been developed to evaluate machine
learning workloads [11,13,17]. The evaluation metrics chosen by each benchmark
correspond to the interests of the stakeholders. For instance, machine learning
model benchmarks emphasize convergence rate and accuracy and focus on met-
rics such as the validation and test loss function performance, while industrial AI
benchmarks prioritize cost-efficient model deployment [12] and concentrate on
performance metrics such as model throughput and hardware resource utiliza-
tion. Recently, benchmarks specifically targeting AI for science are also proposed
[19], which carries over the methodologies of conventional AI benchmarking.

In the context of MLFF, the primary interest of stakeholders lies in the suc-
cessful integration of the MLFF model into MD simulations. However, conven-
tional benchmarking methods encounter difficulties in accurately reflecting this
objective. Traditional AI evaluation metrics primarily concentrate on statistical
performance across the entire dataset; however, Tong et al. [22] observed that
failures in MD simulations with MLFFcan likely be traced back to a few poor
force predictions, resulting in irrecoverable error accumulation. Moreover, con-
ventional AI evaluation metrics are derived directly from the difference between
model output and ground truth data, while Tian et al. [10] pointed out that sta-
bility in simulation does not align with training and testing performance. There-
fore, we argue that conventional benchmarking methods are not well suited for
evaluating MLFF.

Despite the efforts in existing works, it remains desirable to characterize
MLFF better. This motivates us to develop a novel benchmark specifically for
MLFF, aiming to ensure MLFF quality.

4 Benchmarking MLFF

The benchmark uses focuses on evaluating NequIP [4], an equivariant graph
neural network architecture specifically designed for learning MLFF from ab-
initio calculations. NequIP emerges as a prominent representative of the state-of-
the-art in this field, distinguished by its exceptional data efficiency and superior
performance when compared to previous HDNN-style neural networks [5] and
kernel-based methods [2]. NequIP’s remarkable data efficiency enables accurate
modeling of MLFF with minimal training data, making it an appealing choice
for scenarios where data availability is limited or costly to obtain.

To assess the performance of the machine learning model, we utilize a bench-
marking fixture created from the revised MD17 (rMD17) dataset [8]. The original
MD17 dataset [7] comprises data points obtained from MD simulation trajecto-
ries based on density functional theory (DFT), encompassing a predefined set of
molecules. The rMD17 dataset further enhances the MD17 dataset by employing
a more accurate level of theory, thereby mitigating numerical noise and improv-
ing data quality. It is important to call out that we adopt a different fixture
setup compared to conventional machine-learning-style practices. In a conven-
tional machine-learning-style setup, it would assume that the data points (from
both the MD17 and rMD17 datasets) are randomly sampled from the ground
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Fig. 1. Sample Efficiency Benchmarks

truth problem space. Training and testing are subsequently conducted by ran-
domly partitioning the data into subsets. However, MD17 data points are drawn
from simulated trajectories, resulting in inherent correlations in the time domain.
Consequently, randomly sampling training and test subsets can lead to the inter-
leaving of data points from different time steps. While this scenario aligns with
the ideal situation in MLFF-powered MD, where simulated data covers a wide
range of molecule conformation space, we argue that it is not the case for the
MD17/rMD17 dataset, which will be demonstrated in the forthcoming experi-
mental results. The rMD17 dataset is often consumed in a random train/test
split manner, as mentioned before because the data points are not ordered as
a trajectory time series. This can be mitigated by sorting the data with the
“old_index” field, which maps the data points back to the original MD17 and
restores temporal order in the data. Our benchmarking fixture is established on
this calibrated dataset by splitting out the last 10% data in the time series as
the test subset.

4.1 Sample Efficiency

We evaluate the sample efficiency of the model by fixing the training data window
to the first 90% of the trajectory simulated on an aspirin molecule and progres-
sively sample more data (200, 400, 600, 800, 1000, 15000, and 50000 samples,
respectively) from the window into different training subsets, and compare the
performance of trained models on the test subset. The training process for each
subset is given a fixed wall time budget, allowing all to converge properly. We
compare both per-atom force mean average error (MAE) and per-atom energy
MAE for the trained models. The benchmarking results are illustrated in Fig. 1.

We can see that the model has good sample efficiency, achieving per-atom
energy MAE of less than 4 meV over the test data given only 200 training sam-
ples. More specifically, given a fixed training data window, the performance of
the trained models progressively improves with more training data points. Both
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the performance on energy and forces follow a similar trend, where increasing
the number of samples results in proportional improvements up to 1000 samples,
but the gain decreases exponentially afterward, where the benefit of increasing
the size of the training set from 1K to 15K samples is not as good as increasing
from 200 to 400, albeit at the cost of much longer computational cost spent in
each training epoch.

In conventional AI benchmarking, it is not practical to evaluate the perfor-
mance on parts of each data point, such as the first ten tokens generated from
a model or the accuracy of prediction about the top-left part of an image. How-
ever, the structural and composable nature of molecular data allows for a more
versatile projection of performance results, providing a unique opportunity to
evaluate AI performance in multiple dimensions and giving more insights into
the model’s behavior and capabilities. For example, Fig. 1a additionally presents
per-atom forces MAE for each species of atoms (Hydrogen, Carbon, and Oxy-
gen). The analysis reveals that the error on different species generally follows the
same trend, and the error on Hydrogen is significantly lower than the others due
to its low atomic charge. Interestingly, the errors are not strictly proportional to
the atomic charge of each species, as one might expect the errors of Oxygen to
be proportionally higher than that of Carbon, but the data shows otherwise.

This observation suggests that force prediction is sensitive to the structural
configuration of the molecule in addition to the invariant features of each atom.
Moreover, it indicates that the model captures more structural information to
reflect the steepness in the potential energy surface than an empirical potential
energy equation.

4.2 Time-Series Extrapolation

The previous benchmark evaluates the model performance when the entire range
of trajectory up to the test window is available to the training process. That is,
the model is trained on data sampled from 9 times more time steps (90%) to
predict the immediately upcoming steps (10%). In real-world MLFF-powered
MD simulations, it is expected that the MLFF model should be able to sup-
port longer runs with more time steps, where the training window might not
cover a large number of time steps compared to the inference steps and may not
be immediately adjacent to the inference window. To evaluate the model’s per-
formance under such conditions, multiple variations of benchmarks are created
using a grid-scan method to vary the size of the training window and its starting
point. The training window sizes are set to 30%, 45%, 60%, 75%, and 90% of
the whole trajectory, while the starting points are set to 0%, 15%, 30%, 45%,
and 60% of the whole trajectory. For each of these training window variants,
two models are trained with 1K and 15K data points sampled from the window,
respectively, and their performance is tested on the final 10% of the trajectory.

Figure 2 presents the time-series extrapolation benchmarking results. Each
horizontal line segment in the left part of the chart represents a training win-
dow variant, with starting/ending points in the 0%-90% range. The bar on the
right corresponds to the per-atom force MAE evaluated on the test window
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Fig. 2. Time-Series Extrapolation Benchmarks

for the model trained on this specific training window. The data is sorted by
test performance, with the training window on the first row having the best
test performance. The data shows that the test performance varies significantly
with different training windows, and the patterns differ for 1K and 15K train-
ing samples. For the 1K samples, the best window is the one closest to the test
window, with the narrowest range (60%-90%). In contrast, for the 15K samples,
the best window is the widest (0% to 90%). This observation suggests that, even
though the model demonstrates excellent sample efficiency, 1K samples still lead
to underfitting when a large window is used. The reason is that there is not
enough data within each subsection of the window for the model to generalize
to similar cases effectively.
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Fig. 3. Time-Series Extrapolation Benchmarks (projected)

Both the 1K and 15K charts show that a small window temporally distant
from the test window (0%–30%) results in the worst performance. This obser-
vation suggests that maintaining the model’s accuracy over a long trajectory is
challenging, as it may not have enough information from distant data to gener-
alize effectively to the test window.

In order to better evaluate the models trained on different windows, it is
a good idea to project the results by grouping the data by window size and
plotting each group to show the performance changes based on different window
positions. Similarly, we can analyze how the performance changes with different
window sizes for each starting position. This approach is visualized in Fig. 3.
From the data, it is observed that both 1K and 15K models exhibit a pattern
where, given a fixed window starting position (in short, winpos), the perfor-
mance increases monotonically with the window size, except for 1K samples
with a winpos of 0.15. However, given a fixed window size, the performance
does not monotonically increase as the training window moves closer to the test-
ing window. To understand why this occurs, the SOAP (Smooth Overlap of
Atomic Positions) descriptor [1] is leveraged. The SOAP descriptor computes a
high-dimensional feature vector for a given molecular system, allowing for the
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comparison of different molecular configurations. The correlation between two
molecular configurations can be calculated by computing the cosine similarity of
their corresponding SOAP descriptors. By computing all pairwise correlations
between the training windows with a 30% range and the testing window, the
mean average values are used to represent the similarity of the training windows
to the test window. This information is visualized in Fig. 4.

Fig. 4. Training data window vs. Test window SOAP similarity

The similarity curve presented in the figure demonstrates that similarity does
not monotonically increase as the training window moves closer to the testing
window. This result has two significant implications. First, the finding suggests
that the trajectory does not constantly move away from the initial molecular
configuration. Instead, it occasionally “bounces back” into the data distribu-
tion of earlier trajectories. This behavior indicates that the MD simulation may
exhibit a certain degree of periodicity or recurring patterns in the molecular
configurations, which can be essential in understanding the system’s underly-
ing behavior. Second, the result shows a clear relationship between the window
similarity metric and the test performance. This relationship suggests that a
real-world MLFF-powered MD system could leverage this metric as an accuracy
indicator. When the similarity drops below a certain threshold, it signals that
the MLFF-powered MD loop is heading towards out-of-distribution space. In
such cases, the model may require further fine-tuning to maintain accuracy and
stability.

4.3 Cross-Molecule Generalization Benchmarks

The revised MD17 dataset consists of multiple MD simulation trajectories for a
fixed set of molecules. Traditionally, separate benchmarking fixtures are created
for different molecules because cross-molecule performance is poor and consid-
ered impractical for simulation purposes.



48 Y. Li et al.

However, it is important to consider this as an opportunity to evaluate the
out-of-distribution generalization capabilities of a target machine learning model.
While the results may not be practical for direct simulation purposes, they can
provide valuable insights into the relationship between the potential energy sur-
faces of different molecules and the fine local structures within these molecules.

Table 1. Dataset Builds For Generalization Benchmarks

Training Set
Train on 1 molecule f, b, a
Train on 2 molecules ab, bc, de
Train on 3 molecules abg, abd, cef
Train on 4 molecules abeg, bcdf, abce
Train on 5 molecules abceg, abcde, bcdef

First, we deterministically sample 1000 data points from each trajectory.
These datasets are designated ‘a’ to ‘g’ and will be combined to create datasets
that consist of multiple types of molecules. We select three different combinations
of these datasets for one to five types of molecules. The dataset builds are shown
in Table 1. As shown in the table, the datasets are selected to create overlaps
between combinations of the same number of molecule types (for example, abg
vs. abd), and between the combinations of different numbers of molecule types
(for example, ab vs. abg). This allows us to analyze the performance impact of
progressively adding more trajectories to the datasets.

It is important to note that various molecular systems exhibit significantly
different potential energy levels. When merging distinct trajectories into a single
dataset, we normalize the energy levels by conducting a linear regression across
the entire dataset to calculate the reference energy for each type of atom.



Does AI4S Need Another ImageNet? A Case Study of MLFF 49

Fig. 5. Cross-Molecule Generalization Benchmarks (Color figure online)

After constructing the fixtures, we proceed to train a model for each com-
bined training set and individually evaluate their performance on the trajectories
not present in the combined training set. We intentionally design the test set in
this manner because when trajectory data for a known molecule is being tested,
its performance will be significantly better than that of unseen molecules. Con-
sequently, this would statistically obscure the performance patterns of the latter.
We also remove molecules with a completely unseen species of atom (for example,
Nitrogen in molecule g) in the training set from the test sets.

Furthermore, it is important to note that even if the partial energy contribu-
tions of all atoms are normalized by the reference energy points, the combined
output should still be considered biased. This bias arises because the reference
energy itself contains a high error margin, which would consequently offset the
predicted potential energy level towards the most seen configurations. As a result,
our primary focus lies on the forces where the offset bias is eliminated by the
gradient operator.

Figure 5 illustrates the cross-molecule generalization evaluation results. Sim-
ilar to previous experiments, we present per-atom force MAE both over all the
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atoms and over different atom species. Each row in a plot represents training
conducted on a specific combined dataset and testing conducted on one indi-
vidual unseen molecule. The left side of each plot presents the training (blue)
and testing (orange) molecules, and the horizontal bar on the right presents the
per-atom force MAE.

Upon sorting the rows by testing performance, a distinct pattern emerges,
revealing that certain molecules (such as f and d) are easier to generalize than
others, while some (like c) prove difficult to generalize. Intriguingly, molecules d
and f are the only two that consist of just two types of atoms, namely Hydrogen
and Carbon, while molecule c is the only one that contains two Oxygen atoms
arranged in a symmetrical configuration.

The charts also reveal that different atom species do not consistently gener-
alize best on the same molecule. While molecule f exhibits the overall best gen-
eralization, the top-performing molecule for each atom species varies: molecule
d for Hydrogen, molecule f for Carbon, and molecule e for Oxygen.

This observation implies that the generalization performance is highly sensi-
tive to the local structure and symmetries of the molecules. Although molecule
d is the only one containing two Benzene rings and thus exhibits unique global
structure features, its symmetries and the proximity around each atom resemble
those of other molecules. Conversely, while the inter-atomic distances and dihe-
dral angles in molecule c resemble other molecules, the symmetrical arrangement
of dual Oxygen atoms results in configurations that are largely unseen in other
molecules.

Counter-intuitively, expanding the training data to include a new molecule
does not always enhance the model’s ability to generalize onto a specific molecule.
Rather, we observe that the quality of generalization largely depends on the
similarity between the training and testing molecules. Expanding the training
set to include a molecule with low similarity to the testing molecule will most
likely decrease generalization performance.

This finding suggests that although neural networks excel at processing a
large number of training samples with diverse characteristics, for the specific
application of MD, if generalization over unseen molecules is a required capabil-
ity, it may be more effective to consider the similarities of the molecules instead
of feeding conflicting data into a single model. By partitioning the training data,
training separate models, and dynamically routing the inference to the most
compatible model, we can potentially achieve better generalization performance
across a range of molecular structures.

5 Conclusion

Benchmarking on AI for Science requires careful design to combine the bench-
marking steps for machine-learning-based AI methods and scientific computing.
When the combined approach encounters conflicting assumptions, we override
the conventional AI benchmarking settings with the scientific computing set-
tings, for example, to embrace out-of-distribution problem instances. The end
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result is an interleaved procedure that closely follows the conventional AI bench-
marking practices by creating datasets, training AI models, and evaluating the
performance on the test set but prioritizes scientifically meaningful setups in each
step. More concretely, we demonstrate how this procedure is designed for MLFF-
powered MD, a computational chemistry tool that plays a significant role in
many scientific research applications. Conventionally, MLFF evaluation adopts
methodologies from AI benchmarking. This approach treats data points within
the same trajectory as independent and identically distributed (i.i.d.), while data
points in different trajectories of distinct molecules are considered to be com-
pletely differently distributed, often resulting in separate evaluations. However,
we argue that the evaluation of MLFFs should be tailored to accurately represent
real-world MD computations. This would enable the time-domain correlation of
trajectory data to be exploited in order to assess the generalization capabilities
of an MLFF model when predicting future time steps. Additionally, incorporat-
ing configurations from various molecules would test the model’s adaptability
to previously unseen spatial structures, which are common in chemical reaction
simulations. As a result, this leads to a realistic setup in the context of MLFF
applications. Taking advantage of the scientific research application setup, we
can produce more scientifically meaningful performance metrics from the bench-
mark compared to conventional AI benchmarking methods, and contribute to the
development of more robust and generalizable AI4S machine learning models.
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Abstract. In recent years, there has been a growing demand for the
prediction of complex molecular properties in the fields of drug design,
material science, and biotechnology. Compared to traditional laboratory
methods, the deep learning method has many advantages such as saving
enormously time and money. The deep learning method achieves rev-
olutionary success in predicting molecular properties and many models
based on the deep learning method has been developed in this field. How-
ever, there still lacks reliable and multidimensional benchmarks for eval-
uating these artificial intelligence (AI) models. In this paper, we develop
a general method to evaluate AI models for predicting molecular prop-
erties. More precisely, we design multiple evaluation metrics based on
the MoleculeNet datasets and introduce an extensible API interface to
benchmark three types of AI models: molecular fingerprint based models,
graph-based models, and pre-trained models. The purpose of the work
is to establish a fair and reliable benchmark for future innovation in the
field of molecular property prediction, emphasizing the importance of
multidimensional perspectives.

Keywords: Molecular Property Prediction · Metric · Bench ·
MoleculeNet

1 Introduction

In recent years, the demand for high-quality molecular characterization in the
fields of drug design, material science and biotechnology is growing. In addition
to the traditional wet lab method, researchers have also developed numerous
AI models for predicting molecular properties. While traditional wet lab exper-
iments can accurately predict molecular properties, they are known to be time-
consuming and costly [9,18]. In contrast, deep learning technology can overcome
these shortcomings by enabling researchers to quickly predict molecular proper-
ties, significantly accelerating the drug development process and reducing costs
[13,17,27,38].
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Generally speaking, in order to steadily develop AI models in a certain field,
it is necessary to establish standardized benchmarks. For example, ImageNet has
driven the development of the field of image classification [8], while PDEBench
has promoted the advancement of AI models for solving partial differential equa-
tions (PDEs) [42]. In the field of molecular property prediction, a robust bench-
mark should guarantee the availability and reliability of datasets, encompass a
comprehensive range of current AI models, and offer a multidimensional evalua-
tion of a model’s performance and functionality through diverse metrics. While
existing benchmarks like MoleculeNet provide well-recognized datasets [47], they
only evaluate supervised models and utilize limited metrics. In addition, a com-
mon problem in the evaluation of current AI models is that researchers tend to
directly compare their experimental results with classic models in the literature,
which ignores differences in experimental conditions, such as hyperparameters.
Researchers often carefully tune hyperparameters for their models and report
only the best results, leading to potentially unfair comparisons and reducing
the credibility of their findings. Therefore, it is necessary to establish a univer-
sal benchmark to evaluate existing molecular property prediction models. Only
when the benchmark is fair and credible can it be more conducive to our further
research and innovation.

In this paper, we propose MolBench, a novel benchmark designed for the
evaluation of AI models aimed at predicting molecular properties, which has
the following distinctive features: (1) Different from the simple machine learning
(ML) models selected by MoleculeNet, our MolBench selects more advanced AI
models, including not only molecular fingerprint-based models, but also graph-
based models and pre-trained models. The pre-trained models in this paper are
mainly based on three types of self supervised learning (SSL) strategies: pre-
dictive [20], contrastive [41,44]and denoising [21,26,52]. (2) Our evaluations are
based on the MoleculeNet datasets, which are currently the most widely rec-
ognized datasets, with approximately 2,000 citations. (3) In order to evaluate
these molecular property prediction models, MolBench sets up multidimensional
evaluation indicators, including analyzing model stability, ranking model best
performance and calculating task coverage. (4) Create an extensible API inter-
face for evaluation services.

The rest of this paper is organized as follows. Section 2 presents an overview
of existing benchmark evaluation efforts in the field of molecular property predic-
tion. Section 3 describes the benchmark datasets and models that we have chosen
in the MolBench. In Sect. 4, we conduct a series of experiments to evaluate the
performance of the benchmark models using multiple indicators. Section 5 con-
cludes this paper and outlines our insights and considerations for future work.

2 Related Work

To the best of our knowledge, three benchmark methods for molecular property
prediction are presented below.

MatBench [10] introduces a benchmark testing suite and an automated ML
procedure to evaluate models designed for supervised machine learning to predict
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the properties of bulk inorganic materials. This benchmark includes 13 distinct
ML tasks, including the prediction of properties based on the composition and/or
crystal structure of materials.

MoleculeNet [47] is a large-scale benchmark for molecular machine learn-
ing. MoleculeNet compiles multiple public datasets, establishes evaluation met-
rics, and provides implementations of previously proposed molecular charac-
terizations and algorithms. It shows that learnable representations can provide
superior performance for molecular representation learning compared to fixed
representations.

MUBen [25] is a benchmark evaluation of uncertainty in pre-trained models
for molecular representation learning. By meticulously fine-tuning different back-
bone molecular representation models, utilizing various molecular descriptors as
input, and integrating uncertainty quantification(UQ) methods from different
classes, MUBen provides a rigorous examination of the impact of architectural
decisions and training strategies.

The above three benchmarks have made outstanding contributions in their
respective fields. It should be noted that MatBench is aimed at evaluating super-
vised models of inorganic materials, MUBen focuses on the uncertainty of pre-
trained models for molecular property prediction tasks, and MoleculeNet does
not include evaluation of the latest deep learning models due to its earlier pub-
lication year. We attempt to establish a benchmark for deep learning models
for molecular property prediction tasks based on MoleculeNet, which includes
supervised models and pre-trained models.

3 Methodology

In this section, we first provide a detailed description of the pre-training datasets
used in MolBench and the datasets selected from MoleculeNet for molecular
property prediction. Then we present the following three types of AI models
used in MolBench: Extended Connectivity Fingerprint (ECFP)-based models,
graph-based models, and pre-trained models. Finally, we provide multidimen-
sional evaluation metrics that explain model results, including widely accepted
performance, stability, and task coverage metrics.

3.1 Datasets

In this part, we describe the pre-training dataset used in MolBench and the
dataset selected from MoleculeNet for molecular property prediction.

Pre-training Datasets

Considering the highly recognized datasets utilized by popular pre-trained mod-
els, we have selected ZINC15 [39] and ChEMBL [14] as our pre-training datasets,
and the benchmark models in MolBench are pre-trained using subsets of these
datasets. (1) ZINC15 is a freely accessible virtual screening database that
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includes over 230 million purchasable compounds [39]. (2) ChEMBL is a manu-
ally curated database of bioactive molecules with drug-like properties containing
over 2 million compound records [14].

MoleculeNet Datasets

At present, MoleculeNet datasets are the most widely used and most highly rec-
ognized in the field of molecular property prediction, so we choose some Molecu-
leNet datasets as benchmark datasets for MolBench [11,53]. These benchmark
datasets contain classification tasks and regression tasks, covering the domains
of quantum mechanics, physical chemistry, biophysics, and physiology.

The Quantum Mechanics category comprises three datasets: QM7, QM8, and
QM9. (1) QM7 dataset: determines the three-dimensional Cartesian coordi-
nates and electronic properties of the most stable conformation of each molecule
[3,31,37]. (2) QM8 dataset: applies more methods than QM7 on a set of
molecules with up to eight heavy atom [33]. (3) QM9 dataset: provides prop-
erties in geometry, energy, electronics, and thermodynamics [32].

The Physical Chemistry category comprises three datasets: ESOL, Free-
Solv and Lipo. (1) Estimated Solubility (ESOL) dataset: contains the
solubility values of a series of compounds in water [7]. (2) Free Solvation
(FreeSolv) datast: includes the hydration free energy data of a series of
organic compounds obtained through experiments and computations [29,30]. (3)
Lipophilicity (Lipo) dataset: contains the lipophilic affinity data of a series
of compounds [15].

The Biophysics category comprises two datasets: HIV and BACE. (1) HIV
dataset: is derived from the antiviral screening of the Drug Therapy Program
(DTP)1. The screening tests the compounds’ ability to inhibit the replication
of the HIV virus. (2) Beta-secretase 1 (BACE) dataset: provides a set of
quantitative and qualitative binding results for human β-secretase (BACE-1)
inhibitors [40].

The Physiology category comprises five datasets: BBBP, Tox21, Tox-
cast, SIDER and Clintox. (1) Blood-Brain Barrier Penetration (BBBP)
dataset: As a membrane separating circulating blood and brain extracellular
fluid, the blood-brain barrier blocks most drugs, hormones, and neurotrans-
mitters [28]. (2) Toxicology in the 21st Century (Tox21) dataset: aims
to create a public database for compound toxicity2. (3) Toxicity Forecaster
(ToxCast) dataset: provides toxicology data for a large compound library for
high-throughput in vitro screening [34]. (4) Side Effect Resource (SIDER)
dataset: classifies drug side effects according to MedDRA [24]. (5) Clinical
Toxicity (ClinTox) dataset: compares FDA-approved drugs and drugs that
failed in clinical trials due to toxicity reasons [2,16].

1 https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data.
2 https://tripod.nih.gov/tox21/challenge/.

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://tripod.nih.gov/tox21/challenge/
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3.2 Models

In this part, we succinctly outline the diverse set of models employed for con-
ducting our rigorous benchmark evaluation on chosen datasets. Our selections
encompass traditional ML techniques based on ECFP, such as Support Vector
Machines (SVM) [6], Random Forests (RF) [4], XGBoost [5], and Multi-Layer
Perceptron (MLP) [12], along with an array of graph-based models including
Graph Convolutional Network (GCN) [23], Graph Attention Network (GAT)
[50], Graph Isomorphism Network (GIN) [43], AttentiveFP [49], and Directed
Message Passing Neural Network (D-MPNN) [51]. We also employ pre-trained
models such as PretrainGNN [20], MolCLR [45], GROVER [36], and Uni-Mol
[53]. These models are carefully chosen to cover molecular representations com-
prehensively, as well as to encompass both supervised and self-supervised learn-
ing methods. Moreover, each is highly recognized and widely utilized in current
research, serving as a reputable baseline for our analysis.

ECFP-Based Models

ECFP is a widely used molecular characterization method in cheminformatics,
providing an efficient way for machine learning [35]. ECFP takes into account the
topological environment of the atoms in the molecule, encoding this information
as a binary vector, typically 1024 or 2048 dimensional. Furthermore, ECFP is
highly flexible and adaptable, with its radius parameter allowing for a balance
between specificity and generality in the encoded information.

Traditional ML methods, such as SVM, RF, and XGBoost, have made signif-
icant contributions to molecular property prediction. Based on fixed molecular
representations, these methods offer remarkable computational efficiency, inter-
pretability, and the ability to handle high-dimensional data. Thus, while deep
learning continues to make progress in this field, the unique strengths of tradi-
tional machine learning methods underscore their continued importance.

SVM: is a supervised learning technique predominantly employed for classifica-
tion and regression tasks, aiming to discern the optimal hyperplane for separating
different data classes in a high-dimensional space [6].

RF: is an ensemble learning method composed of multiple decision trees. Each
decision tree is trained on a random subset of the data, and a random subset of
features is used at each split point in the tree [4].

XGBoost: is a high-performance gradient boosting framework for supervised
learning, which iteratively builds weak prediction models to improve accuracy
and reduce errors from previous iterations [5].

MLP: is a kind of artificial neural network with a minimum of three layers:
input, one or more hidden, and output layers [12].
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Graph-Based Models

A molecule graph is a natural graph structure data where each molecule can be
transformed into an undirected graph G(V,E). Here, V = (x1, · · · , xN ) repre-
sents the set of atom nodes, and E represents the set of chemical bond edges
[22]. In our experiments, we initialize node features and edge features in the
molecular graph using the properties of the molecule itself.

Graph Neural Networks (GNNs) are transformative in molecular property
prediction [48]. Through end-to-end training, GNNs capture atomic and bond-
level relationships within molecular structures and can adaptively learn task-
specific molecular features to more accurately understand chemical properties.
This combination of features has led to superior performance in a diverse range
of prediction tasks, making GNNs a crucial tool in fields such as drug design and
material science.

GCN: is a neural network model designed to handle graph data [23]. GCN
extends convolutional operations to graphs, enabling the model to share param-
eters between a node and its neighbors, thereby capturing the local structure of
the graph.

GAT: is a model that introduces the attention mechanism into graph neural net-
works to compute the weights of a node and its neighbors [50]. When aggregat-
ing neighbor information, GAT takes into account the importance of neighbors,
assigning greater weights to important neighbors.

GIN: works through a special aggregation mechanism that allows the network
to distinguish between different graphs even if these graphs are structurally
isomorphic [43].

AttentiveFP: is a graph neural network model specifically designed to handle
molecular structures [49]. AttentiveFP utilizes a self-attention mechanism to
capture the topological structure of molecules and aggregates graph information
through Gated Recurrent Unit (GRU) and virtual nodes.

D-MPNN: is a powerful graph neural network that handles directed graph data
[51]. D-MPNN adopts a directed message passing mechanism that can distinguish
edge directionality, thereby capturing more complex and detailed graph structure
information.

Pre-trained Models

Pre-trained models have brought significant advances in molecular property pre-
diction tasks. They efficiently leverage the vast amounts of unlabeled data in the
biological domain, allowing for transfer learning and enrichment of the feature
representations. Furthermore, these models save computational resources and
time by minimizing the necessity for task-specific training from scratch. Conse-
quently, they not only expedite model deployment but also foster the discovery
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of novel chemical entities, thereby revolutionizing predictive modeling in fields
like medicinal chemistry and material science.

PretrainGNN: introduces a suite of methods for node-level and graph-level
pre-training of GNNs, such as context prediction, masking, and graph-level pre-
diction [20]. These methods leverage both unlabeled and labeled data derived
from relevant auxiliary supervised tasks.

MolCLR: is a self-supervised learning framework [45]. In the pre-training phase,
it employs three molecular graph augmentation techniques: atom masking, bond
deletion, and subgraph removal. A contrastive estimator is then utilized to max-
imize the agreement between augmentations of the same molecule and minimize
the coherence of distinct molecules.

GROVER: A novel framework to collect rich structural and semantic infor-
mation from a wide range of unlabeled molecular data using well-designed self-
supervised tasks at the node, edge, and graph levels [36]. To efficiently encode
such complex information, GROVER incorporates MPNN into a Transformer-
style architecture, resulting in a more expressive class of molecular encoders.

Uni-Mol: is capable to directly accept and generate 3D locations as input and
output [53]. It consists of three main components: backbone, pre-training, and
fine-tuning. During the pre-training stage, in addition to the masked atom pre-
diction task, a 3D position denoising task is also utilized to learn a 3D spatial
representation.

3.3 Metrics

In this part, we provide a comprehensive explanation of the metrics used for
evaluating models, including widely accepted performance, stability metrics, and
task coverage metrics for multidimensional evaluation.

Performance Metric

Following the recommendations of MoleculeNet and authoritative articles pub-
lished to date, our MolBench employs a range of metrics for various tasks:

Receiver Operating Characteristic (ROC) Curve and Area Under
Curve (AUC): For classification tasks, we rely on the AUC of the ROC curve,
which is currently the most widely used metric for molecular property prediction
tasks [11,53]. The ROC curve is a graphical representation of the true positive
rate (sensitivity) against the false positive rate (1-specificity) across different
threshold values. The AUC measures the entire two-dimensional area under-
neath the curve and provides an aggregate measure of performance across all
possible classification thresholds. The calculation formula of AUC value is:

AUC =
∫ 1

0

True Positive Rate (TPR)d( False Positive Rate (FPR)). (1)
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Mean Absolute Error (MAE): For quantum mechanics datasets, we utilize
the MAE. It’s a measure of the absolute differences between predictions and
actual values. The formula for MAE is:

MAE =
1
n

n∑
i=1

|yi − ŷi| , (2)

where yi is the actual value, ŷi is the predicted value, and n is the number of
observations.

Root Mean Square Error (RMSE): To evaluate other regression tasks,
RMSE is used. RMSE indicates the square root of the second sample moment
of the differences between predicted values and observed values or the quadratic
mean of these differences. The formula for RMSE is:

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)
2
, (3)

where yi is the actual value, ŷi is the predicted value, and n is the number of
observations.

It is important to note that for datasets encompassing multiple tasks, we
report the average metric value across all tasks.

Stability Metric

After running the model multiple times on each task, we calculate the standard
deviation and mean of the model’s performance for each task. The Coefficient of
Variation (CV) is then computed for each task by dividing its standard deviation
by its mean performance [1]. Finally, we determine the average CV across both
classification and regression tasks. This average CV is used as a stability metric
for the model to provide insight into the consistency and reliability of the model’s
performance.

Task Coverage Metric

A benchmark for a given task is set by computing the average performance of
all benchmark models on a single dataset. A model is considered competent for
the task if it exceeds the average performance for a certain dataset. Otherwise,
it is considered incompetent.

4 Experiments

In this section, we present the performance, stability, and task coverage of the
selected benchmark models on various datasets. The ECFPs we used are all 1024-
dimensional, which is a common choice because it provides a good balance of
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capturing sufficient information about the molecule while maintaining relatively
low computational and storage overhead [19,46]. It should be noted that for the
pre-trained model, we load the pre-trained model from the original paper and
use it for the molecular property prediction tasks.

When evaluating the model, we performed three independent runs using the
same random seed (0, 1, 2). We employed an NVIDIA GeForce RTX2080 Ti
graphics card, which features 11 GB of memory and 4,352 CUDA cores, and the
CUDA version is 12.2. No model is allowed to train for more than 24 h. Using
multiple GPUs can indeed reduce computation time and expand accessible mem-
ory. However, it may simultaneously inject more complexity into the implemen-
tation process. We set time boundaries for the model to improve its efficiency
and ensure reproducible experiments. It should be noted that the experimental
results we provide do not cover the performance of all benchmark models on all
benchmark datasets, because some models may run for too long or consume too
much memory, resulting in a lack of experimental results for some tasks. For sub-
sequent research, strategies such as optimized data loading and preprocessing,
cumulative gradients, and model parallelism can be explored to reduce compu-
tational time. We hope that future researchers can achieve more comprehensive
and detailed evaluation results based on ours.

4.1 Results

To present the results in a more intuitive and clear manner, we have divided the
datasets into classification and regression tasks. The classification task consists
of seven datasets: BACE, BBBP, ClinTox, HIV, SIDER, Tox21, and ToxCast.
The performance of the models is evaluated using the ROC-AUC metric. Addi-
tionally, the regression task is divided into two parts based on the evaluation
metrics. The first part includes three datasets: ESOL, FreeSolv, and Lipo, with
the models’ performance evaluated using the RMSE metric. The second part
includes the datasets QM7, QM8, and QM9, with the evaluation based on the
MAE metric.

Classification Tasks

In this part, we present the results of various classification tasks shown in Fig. 1,
and all evaluation indicators are ROC-AUC values.

For the BACE dataset, RF, SVM, XGBoost, and pre-trained methods exhibit
better performance. This can be attributed to the limited size of the data, which
constrains the ability of graph networks to extract task-relevant representations
from such a small amount of data.

For the BBBP dataset, D-MPNN and pre-trained models perform better,
indicating that incorporating 3D information and pre-training enriches the mod-
els’ capacity to extract valuable insights.

For the ClinTox dataset, despite its limited number of molecules, the mod-
els generally perform well, particularly the GNNs and pre-trained models. This
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Fig. 1. Results of BACE/BBBP/ClinTox/HIV/SIDER/Tox21/ToxCast.
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could be due to the dataset having fewer key functional groups representing tox-
icity. After performing scaffold splitting, the differences between the training,
validation, and test subsets are not significantly large.

For the HIV dataset, all models generally perform well. This can be attributed
to the large data volume and its single-task nature. GNNs, given an abundance
of training data, can effectively demonstrate their advanced capabilities, even
comparable to pre-trained models.

For the SIDER dataset, all models generally perform poorly. This is likely due
to the dataset’s limited size, consisting of only 1,427 molecules but encompassing
27 classification tasks. Extracting a representation capable of identifying multiple
distinct features from such a small number of molecules has proven to be a
difficult task.

For the Tox21 dataset, GNNs and pre-trained models outperform RF, SVM,
and XGBoost. With relatively abundant training data, graph networks capa-
ble of learning molecular representation vectors exhibited superior performance
compared to traditional machine learning methods based on ECFPs, even com-
parable to pre-trained models.

For the ToxCast dataset, all models generally perform poorly, and the pre-
trained models are slightly outperforming the other two types of models. This
can be attributed to ToxCast encompassing over 600 tasks, posing a consider-
able challenge for limited-length molecular representation vectors. Pre-trained
models, having acquired domain knowledge from vast unlabeled datasets, offer
an advantage in tackling such multifaceted tasks.

Regression Tasks

In this part, we present the results of various regression tasks in Fig. 2 and Fig. 3,
with RMSE as the evaluation metric for the ESOL, FreeSolv, and Lipo datasets,
and MAE as the evaluation metric for the QM7, QM8, and QM9 datasets.

For the ESOL and Lipo datasets, the graph networks models and pre-trained
models outperform RF/SVM/XGBoost. When there is sufficient training data,
the graph network, which can learn molecular representation vectors, demon-
strates superior performance compared to traditional machine learning methods
like ECFPs. However, it still falls short of the performance achieved by pre-
trained models. For the FreeSolv dataset, the performance of each model is
slightly different, possibly due to the limited amount of data, and the specific
reason remains to be analyzed. It is worth noting that the results of MolCLR
are better than those of the untrained GIN and GCN models, proving that pre-
training does improve model performance to a certain extent.

For the QM datasets, Uni-Mol achieves the best performance. This can be
attributed to the fact that Uni-Mol introduces the three-dimensional coordinates
of molecules during the pre-training stage, which directly relates to the various
properties of quantum mechanics.
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Fig. 2. Results of ESOL/FreeSolv/Lipo.

Fig. 3. Results of QM7/QM8/QM9

Since the selected datasets cover multiple domains and include both classifi-
cation and regression tasks, it is difficult for a single model to achieve optimal
performance on all tasks. In order to better quantify the performance of the
model in molecular property prediction tasks, we propose a scoring method. The
specific steps of this method are as follows: taking the top three as an example,
calculate and rank the performance of each model on the aforementioned 13
datasets, tally the number of times each model achieves first, second, and third
place. If the model comes first it gets three points, for second it gets two points,
for third it gets three points, and finally the total score is calculated. Similarly,
the top five scores and the top ten scores can also be calculated. This article
only takes the top five scores as an example, because the top three scores may
cause most models to score. The results are shown in Table 1.
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Table 1. Model Evaluation Scores

Models No.1 No.2 No.3 No.4 No.5 Score

SVM 0 0 0 0 0 0
RF 0 1 2 0 0 10
XGBoost 0 2 0 1 1 11
MLP 0 0 0 0 0 0
GCN 0 0 0 1 0 2
GAT 0 0 0 0 2 2
GIN 0 1 1 0 0 7
AttentiveFP 0 1 0 1 1 7
D-MPNN 1 2 3 2 1 27
PretrainGNN 1 2 1 0 0 16
MolCLR-GCN 0 0 0 0 0 0
MolCLR-GIN 0 0 1 3 3 12
GROVER 1 1 0 2 1 14
Uni-Mol 7 0 2 0 1 42

According to the results shown in Table 1, we can see that the model with
the highest top five score is Uni-Mol, the second is D-MPNN, and the third is
PretrainGNN. Based on these findings, we can infer that pre-training and incor-
porating 3D information are beneficial for molecular representation learning.

4.2 Stability

Since the datasets originate from different fields, it is impossible to determine
their relative importance, and there is no appropriate theoretical basis for assign-
ing weights to them. Therefore, we consider them to have equal weight. In this
part, we initially computed the average performance of each model on classifica-
tion and regression tasks, and the results are shown in Fig. 4. For classification
tasks, higher values are better, and for regression tasks, lower values are better.
It is should be noted that due to computational constraints, we only consider
three datasets (ESOL, FreeSolv, and Lipo) to compute the regression task.

For classification tasks, the models with the best average performance are
Uni-Mol, PretrainGNN and D-MPNN. Uni-Mol and PretrainGNN are robust
pre-trained models that provide beneficial influence for downstream tasks
through extensive unlabeled datasets and rich pre-training tasks. On the other
hand, D-MPNN incorporates comprehensive three-dimensional information into
the traditional MPNN model, significantly enriching the molecular information
extracted by the graph network.

For regression tasks, graph network models demonstrate superior perfor-
mance. However, since we only analyzed three regression datasets, this metric
should be considered as a preliminary indication. Future studies should include
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additional regression datasets to thoroughly evaluate the models’ capability in
handling regression tasks.

Fig. 4. Average Performance of Models on Classification and Regression Tasks

During the experiment, we simultaneously computed the standard deviation
and determined the average CV of the model across all tasks. The results are
depicted in Fig. 5, illustrating the stability of the models.

Fig. 5. CV of Model Performance on Classification and Regression Tasks

For classification tasks, models that performed well in terms of stability
include GCN, MolCLR-GIN and GAT.

For regression tasks, the models that exhibited better performance are
MolCLR-GCN, MLP and GCN.

4.3 Task Coverage

In this part, according to the calculation method of task coverage, we present
the results in Table 2.
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Based on this evaluation criterion, the top five performing models are
Uni-Mol, D-MPNN, GROVER, MolCLR-GIN, and AttentiveFP. Uni-Mol,
GROVER, and MolCLR-GIN are all pre-trained models that can achieve bet-
ter generalization and prediction performance, thereby exceeding the average on
multiple tasks. D-MPNN combines three-dimensional information with typical
MPNN models, and AttentiveFP is improved on the basis of GAT.

4.4 API

We provide an extensible API that allows researchers to leverage the models
and datasets mentioned in this article. At the same time, other data sets are
also available, and researchers only need to upload them in the specified format
and determine the model used to obtain the results. We hope that this API can
facilitate subsequent research in related fields. The relevant code will be made
publicly available at https://github.com/xiuyuJ/MolBench.

Table 2. Statistics on Task Coverage

Models Task Coverage Tasks

SVM 10% BACE

RF 40% BACE/HIV/SIDER/FreeSolv

XGBoost 40% BACE/HIV/SIDER/FreeSolv

MLP 10% BACE

GCN 10% ClinTox

GAT 40% ClinTox/SIDER/ToxCast/ESOL

GIN 40% ClinTox/Tox21/ESOL/Lipo

AttentiveFP 60% BACE/HIV/Tox21/ToxCast/ESOL/Lipo

D-MPNN 90% Except ToxCast

MolCLR-GIN 70% BACE/BBBP/ClinTox/HIV/Tox21/ESOL/Lipo

MolCLR-GCN 30% HIV/FreeSolv/Lipo

GROVER 70% BACE/BBBP/Tox21/ToxCast/ESOL/FreeSolv/Lipo

Uni-Mol 100% All

5 Concluding Remarks

In this paper, we propose MolBench, a novel benchmark specifically designed for
the evaluation of AI models in the domain of molecular property prediction. Mol-
Bench reveals the advantages and limitations of SOTA AI models, which helps
to better understand and use these models. Furthermore, MolBench serves as a
reference for future research on molecular property prediction. Despite signifi-
cant progress made by deep learning models in this field, further enhancements
are necessary to meet the increasing demand in current applications. On one

https://github.com/xiuyuJ/MolBench
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hand, existing models generally perform poorly on datasets with small data vol-
umes but multi-tasks, thus a possible important future direction is to improve
model performance on such datasets. On the other hand, traditional machine
learning models may still outperform existing advanced pre-trained models in
certain tasks, so traditional machine learning models cannot be ignored. How
to combine traditional machine learning models with advanced deep learning
models is an issue worth further research.
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Abstract. The rapid expansion of the Internet of Things (IoT) indus-
try highlights the significance of workload characterization when evalu-
ating microprocessors tailored for IoT applications. The streamlined yet
comprehensive system stack of an IoT system is highly suitable for syn-
ergistic software and hardware co-design. This stack comprises various
layers, including programming languages, frameworks, runtime environ-
ments, instruction set architectures (ISA), operating systems (OS), and
microarchitecture. These layers can be bucketed into three primary cate-
gories: the intermediate representation (IR) layer, the ISA layer, and the
microarchitecture layer. Consequently, conducting cross-layer workload
characterization constitutes the initial stride in IoT design, especially in
co-design. In this paper, we use a cross-layer profiling methodology to
conduct an exhaustive analysis of IoTBench-an IoT workload benchmark.
Each layer’s key metrics, including instruction, data, and branch locality,
were meticulously examined. Experimental evaluations were performed
on both ARM and X86 architectures. Our findings revealed general pat-
terns in how IoTBench’s metrics fluctuate with different input data.
Additionally, we noted that the same metrics could demonstrate varied
characteristics across different layers, suggesting that isolated layer anal-
ysis might yield incomplete conclusions. Besides, our cross-layer profiling
disclosed that the convolution task, characterized by deeply nested loops,
significantly amplified branch locality at the microarchitecture layer on
the ARM platform. Interestingly, optimization with the GNU C++ com-
piler (G++), intended to boost performance, had a counterproductive
effect, exacerbating the branch locality issue and resulting in performance
degradation.

Keywords: IoT · Benchmark · Cross-layer profiling

1 Introduction

IoT enables us to connect to the internet using a wide range of devices, greatly
enhancing our daily lives. The IoT industry is experiencing rapid growth, as
highlighted in a report by IoT Analytics [2]. It states that the number of IoT
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devices increased by 18% in 2022, reaching 14.3 billion, projected to reach 16.7
billion in 2023. The IoT devices span from simple thermometers to sophisti-
cated smartphones and self-driving cars. Furthermore, IoT applications encom-
pass diverse scenarios, including cloud and fog computing [10]. Consequently,
selecting appropriate processors for specific IoT applications becomes crucial,
and IoT benchmarks serve as an effective tool in this process.

IoT system always has a streamlined but comprehensive system stack, which
is highly suitable for synergistic software and hardware co-design. And work-
load characterization plays a crucial role in exploring co-design. There are three
main layers in the workloads’ system stack for characterization: the IR, ISA,
and microarchitecture layers. The IR layer, which is ISA-independent, includes
programming languages and programming frameworks. The ISA layer, which is
microarchitecture-independent, consists of runtime environments and the ISA,
such as the GNU C Library (glibc) and the X86 ISA. The microarchitecture
layer is where the actual execution of machine code occurs on a processor, and
its performance can be measured using hardware performance counters.

Existing IoT benchmarks commonly employ performance metrics based on
the microarchitecture layer for evaluation. For example, IoTBench [5] incorpo-
rates metrics such as iterations per second and cycle per instruction (CPI).
In addition to IoT benchmarks, other general workload analyses also primarily
focus on microarchitecture layer [3,7,8,12,13,15,17]. Except for the microarchi-
tecture layer, the IR and ISA layers are also important and allow researchers
to do analysis before running the workloads on the specific hardwares [9,16].
All those researches only focus on the characteristics of one layer, but focusing
solely on a single layer may result in an incomplete understanding of workload
characteristics and potentially biased conclusions [18]. Our experiments on IoT-
Bench also support this observation, highlighting the need for comprehensive
cross-layer profiling to better understand workload characteristics.

This paper proposes a cross-layer profiling approach to comprehensively ana-
lyze IoTBench for the first time. We deconstruct the system stack into three
layers: the IR, ISA, and microarchitecture layers. Subsequently, we investigate
instruction, data, and branch locality across these three layers. Our experiments
cover both ARM and X86 architectures to provide a comprehensive analysis. The
details of our evaluation methodology are shown in Sect. 3. The contributions of
our study are as follows:

– We conducted a novel cross-layer profiling of IoTBench, which yielded insight-
ful results. Our findings revealed significant correlations between the IR and
ISA layers, while a weaker correlation was observed between the ISA and
microarchitecture layers. Furthermore, we observed that different configura-
tions of input data had varying impacts on the metrics. The size of the data
had a significant impact on data locality, specifically at the IR and ISA lay-
ers. When the data size doubled, the data locality also doubled. However,
there were no linear rules for the microarchitecture layer. The dimension of
the data predominantly influenced instruction locality. For each increase in
dimension by one, the instruction reuse distance at the IR layer increased by
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approximately 20%, and at the ISA layer, it increased by about 10%. Branch
locality was mainly affected by the data dimension. Whenever the dimension
increased by one, the branch locality increased by around 5% at both the IR
and ISA layers. However, the data type also influenced the branch locality at
the microarchitecture layer. When the dimension was one, and the type was
integer, it had the smallest values.

– We conducted a comparative experiment between typical ARM (Kunpeng
920) and X86 (Intel Xeon Gold 5120T) platforms. Our cross-layer profil-
ing revealed that the convolution task of IoTBench, characterized by deeply
nested loops, significantly increased branch locality at the microarchitecture
layer on the typical ARM platform. Surprisingly, the G++ ‘-O3’ optimiza-
tion worsened this issue. With ‘-O3’, branch locality moderately increased at
the ISA layer (1.4 times), but significantly increased at the microarchitecture
layer (485.6 times). As a result, the typical ARM platform had a much higher
branch locality and lower instructions per cycle (IPC) compared to the typical
X86 platform. This suggests a mismatch between G++’s optimization capa-
bilities (the ISA layer optimization) and the branch predictor implementation
(the microarchitecture layer design) on the tested ARM platform. To address
this, we use G++’s ‘-O1’ optimization for the convolution task on Kunpeng
920, which reduced branch locality by 0.45 times and increased execution
speed by 1.5 times.

2 Background and Related Work

2.1 IoT Benchmarks

There are several commonly used IoT benchmarks available. Dhrystone [19],
developed by Reinhold P. Weicker in 1984, is a synthetic computing benchmark
widely used for general processors. However, Dhrystone only focuses on integer
operations and has limitations, including its susceptibility to compiler influ-
ence. In 2009, the Embedded Microprocessor Benchmark Consortium (EEMBC)
introduced CoreMark [6] as an improved alternative to address the shortcomings
of Dhrystone. CoreMark eliminates the impact of compilation optimization on
results and incorporates specific rules for execution and reporting. Despite these
advancements, both Dhrystone and CoreMark have fixed input data formats,
which may not meet the requirements of diverse scenarios. To address this limi-
tation, IoTBench [5] was developed in 2022, offering three tasks: list operation,
matrix processing, and convolution. IoTBench’s key advantage lies in its ability
to easily adjust input data, including data scales, dimensions, and types. The
detailed information on workloads and configuration space is shown in Table 1.

2.2 Workload Characterizations

Each workload execution encompasses multiple layers, which can generally be
categorized into three main layers: the IR layer, the ISA layer, and the microar-
chitecture layer. The IR layer incorporates programming languages and frame-
works and is independent of the ISA layer. For instance, when the Javac compiler
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Table 1. IoTBench workloads

Workload Data size Data dimension Data type

List search/sort Any 1/2/3 INT/Float32/Double64
Matrix add/multiply Any 1/2/3 INT/Float32/Double64
Convolution Any 1/2/3 INT/Float32/Double64

compiles a Java file, it is transformed into bytecodes and packaged as a Java
archive (JAR) file. The JAR file is associated with the IR layer. The ISA layer
comprises runtime environments and the ISA itself. Examples include the GNU C
Library (glibc) library and the X86 ISA. Finally, the machine codes are instan-
tiated as an OS process, executing on the processor as an instruction stream
specific to the underlying microarchitecture. In summary, the IR layer encom-
passes programming languages and frameworks, the ISA layer includes runtime
environments and the ISA itself, and the microarchitecture layer involves the
actual execution of machine codes on the processor, facilitated by the OS.

Existing research has predominantly focused on individual layers. Shao et
al. [16] were the first to propose an ISA-independent method for workload
characterization. They utilized computing, control, and memory indicators to
quantify program characteristics. Their findings revealed that including ISA-
related elements in workload behavior analysis resulted in significant deviations
due to limitations in the number of registers, making it challenging to effec-
tively reflect the program’s essential characteristics. Hoste et al. [9] introduced a
microarchitecture-independent workload characterization approach to mitigate
the impact of microarchitecture defects. By instrumenting the binary instruc-
tion stream of a program, they analyzed 47 indicators, including instruction
proportion, data span, and misprediction rate. A significant body of research
has concentrated on the microarchitecture layer [3,7,12,13], where characteris-
tics are measured based on hardware performance counters. Although the time
overhead is relatively small, the analysis results are closely tied to the specific
microarchitecture being studied. In summary, while some approaches have aimed
to be ISA-independent or microarchitecture-independent, a considerable amount
of research has focused on the microarchitecture layer, leveraging hardware per-
formance counters for workload characterization.

However, focusing solely on the characteristics of a single layer may result
in biased conclusions. To address this limitation, Wang et al. [18] introduced
a comprehensive methodology called Whole-Picture Workload Characterization
(WPC). This methodology incorporates three layers and aims to identify the pro-
portional contributions of critical components to specific bottlenecks. Drawing
inspiration from WPC [18], this paper adopts a cross-layer profiling approach
to investigate IoTBench, enabling a more comprehensive understanding of its
behavior and performance. By considering multiple layers, we can uncover the
inter-dependencies and inter-actions among different components, leading to a
more accurate assessment of the workload’s characteristics.
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3 Evaluation Methodology

Workload profiling is the basis and premise for guiding system design and co-
optimization of software and hardware. Most of the existing workload profiling
only focuses on the performance of the microarchitecture layer, and lacks con-
sideration of the essential behavioral characteristics of the workload, dependent
libraries, runtime environment, etc. Drawing inspiration from WPC, this paper
uses a cross-layer profiling method to comprehensively analyze the characteristics
of IoTBench.

3.1 Methodology

The workload under investigation is IoTBench, which comprises three tasks:
list, matrix, and convolution. IoTBench offers three configurable input param-
eters: data size, data dimension, and data type. By varying the values of these
parameters, we can observe the impact of input data on program characteris-
tics. Regarding the data size parameter, we explore values that cover the L1
data cache size. For the data dimension parameter, we conduct tests using one,
two, and three-dimensional data. Additionally, we evaluate different data types,
including integer, float, and double. To obtain cross-layer metrics, we divide the
system stack into three layers: IR, ISA, and microarchitecture. Given our focus
on memory access and control behavior, we select three key metrics across these
layers: instruction locality, data locality, and branch locality. Further details
about these metrics are provided in Sect. 3.2. Next, we perform the profiling in
the following steps:

– Analyze raw data. We analyze the mean and standard deviation of the raw
data to identify cross-layer variation trends for different tasks under varied
data input configurations.

– Do fusion analysis. We utilize two metrics: Z-Score [1] and Pearson coef-
ficient [14], to explore the relationships among the three layers. The Z-
Score is employed to mitigate discrepancies resulting from different data
units across the layers. It is a statistical measure, calculated by the formula:
Z = (X − μ)/σ, where X is the raw data point, μ is the mean of the data
set, and σ is the standard deviation. The resulting Z-Score indicates how
many standard deviations a particular data point is away from the mean. It
is employed in the analysis to mitigate discrepancies resulting from differ-
ent data units across the layers. On the other hand, the Pearson coefficient
is utilized to quantify the linear dependency between the layers. It is com-
puted based on the covariance of the two variables divided by the product of
their standard deviations. It ranges from -1 to 1, where a value of 1 indicates
a perfect positive linear relationship, -1 represents a perfect negative linear
relationship, and 0 indicates no linear relationship between the variables.

– Draw conclusions and insights.
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3.2 Metric

As presented in Table 2, this paper utilizes three key metrics to investigate the
characteristics of IoTBench: instruction locality, data locality, and branch local-
ity. These metrics provide insights into the memory access behavior (instruction
and data locality) and control behavior (branch locality) exhibited by the work-
loads. Instruction locality reflects the front-end pauses of the pipeline and the
better the instruction locality, the less front-end pauses. Data locality reflects
the back-end pauses of the pipeline and the better the data locality, the less
back-end pauses. Branch locality reflects the complexity of branch prediction
and the better the branch locality, the easier it is to predict branch results. To
analyze these metrics across different layers of the system stack, specific counter-
parts are selected at IR, ISA, and microarchitecture layers. At the IR and ISA
layers, the metrics chosen are instruction reuse distance, data reuse distance,
and branch entropy. Instruction reuse distance measures the average number of
instructions between two consecutive accesses to the same instruction address.
A higher value indicates poorer instruction locality. Similarly, data reuse dis-
tance calculates the average number of data accesses between two consecutive
accesses to the same data address, with a higher value indicating poorer data
locality. For branch locality, the linear branch entropy metric is adopted, as intro-
duced by Yokota et al. [20]. The formula for linear branch entropy is defined as
H(X) = 2·min(p(x), 1−p(x)), where p(x) represents the probability of taking the
branch x. At the microarchitecture layer, the corresponding metrics are instruc-
tion MPKI, data MPKI, and branch MPKI. These metrics provide insights into
the cache misses or mispredictions associated with instructions, data accesses,
and branches, respectively.

Table 2. Metrics

Layer Instruction locality Data locality Branch locality

IR Instruction reuse distance Data reuse distance Branch entropy

ISA Instruction reuse distance Data reuse distance Branch entropy

Microarchitecture L1I MPKI L1D MPKI Branch MPKI

3.3 Tool

Table 3 enumerates the tools utilized in this study. The LLVM compiler [11] is
utilized to obtain the IR code of the workload. By incorporating instrumentation
code and compiling it alongside the tested code, we can extract the instrumen-
tation analysis code of the program. To obtain the ISA code of the workload,
we employ DynamoRIO [4]. DynamoRIO is also based on instrumentation tech-
niques, but it offers a comprehensive interface and pre-built tools. By leveraging
these tools, we collect the metric values associated with the ISA layer. For met-
rics pertaining to the microarchitecture layer, we utilize Perf. Perf is a native
tool integrated into Linux that retrieves metric values by accessing the hardware
performance counters.
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Table 3. Tools

Layer Tool

IR LLVM 9.0
ISA DynamoRIO 9.0.1
Microarchitecture Perf 5.4.235 (X86), Perf 4.18.0 (ARM)

4 Experiment and Result

Our experiments involved testing the workload on two platforms: ARM and
X86. ARM is a widely used platform in IoT, while X86 served as a comparative
experiment platform for analysis and comparison purposes. For each platform,
we conducted a profiling of three metrics for IoTBench tasks across different
layers. The IoTBench tasks were compiled using the G++9.4 compiler with the
optimization level set to 3. More configurations of the platforms are provided in
Table 4.

Table 4. Configuration details

ARM X86

Processor Kunpeng920 Intel(R) Xeon(R)
Gold 5120T CPU @ 2.20 GHz

L1D Cache 64 KB 32 KB
L1I Cache 64 KB 32 KB
L2 Cache 512 KB 1024 KB
L3 Cache 32768 KB 19712 KB
Memory 382 GB 376 GB
G++ Compiler 9.4 9.4
G++ Optimization -O3 -O3

4.1 Experiment on ARM Platform

4.1.1 Instruction Locality
In Fig. 1a, the instruction locality of three tasks from IoTBench on the ARM
platform is depicted across three layers. We varied the configurations of the input
data, represented on the x-axis of Fig. 1b, and calculated the average and stan-
dard deviation of the three tasks: list, matrix, and convolution. It is evident that
the instruction locality remains relatively consistent across all three layers for
the three tasks. The observed differences are within a factor of two, indicating
that variations in input data configurations have minimal impact on instruction
locality. Among the three configuration variables (data size, data dimension, and
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data type), experiments indicate that instruction locality is closely associated
with data dimension. Figure 1b provides the instruction locality of IoTBench
across three layers with varied configurations of the input data, revealing the
following trends: (i) At the IR and ISA layers, instruction locality increases as
the data dimension grows. Specifically, there is approximately a 20% increase in
instruction locality from one-dimensional data to two-dimensional data, and a
10% increase from two-dimensional data to three-dimensional data. This can be
attributed to the increased calculation of array subscripts and the presence of
nested for loops resulting from higher data dimensions. These additional instruc-
tions contribute to the observed rise in instruction locality. (ii) In the microarchi-
tecture layer, the changing trend of instruction locality is more complex, and no
clear rule can be discerned. However, on the whole, instruction locality exhibits
relative stability, with a CoV of less than 17%.

Fig. 1. Instruction locality of IoTBench on ARM platform.

Figure 2 illustrates the correlation analysis of instruction locality across three
layers. Several observations can be made: (i) The analysis results vary among
the three layers. In Fig. 2a, it can be observed that the trends of IR and ISA are
consistent, whereas microarchitecture exhibits a different pattern. Specifically,
for the list task, the instruction locality values are above average at the IR and
ISA layers, but below average at the microarchitecture layer. For the matrix task,
the values consistently remain below average across all three layers. In the case
of the convolution task, the values are below average at the IR layer but above
average at the ISA and microarchitecture layers. (ii) A strong linear relationship
(Pearson correlation coefficient of 0.76) exists between the IR and ISA layers.
However, the values between the ISA and microarchitecture layers exhibit linear
independence (Pearson correlation coefficient of -0.13). This observation suggests
that compared to the IR and ISA layers, the microarchitecture layer becomes
more complex and relies heavily on specific implementations.
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Fig. 2. Correlation analysis of instruction locality among three layers.

4.1.2 Data Locality
Figure 3a presents the data locality of three tasks from IoTBench on ARM across
three layers. Several observations can be made: Firstly, the data localities of the
three tasks exhibit significant variance across all three layers, indicating that
different configurations of input data have a substantial impact on data locality.
Additionally, the change in data locality is predominantly influenced by the
size of the input data, as depicted in Fig. 3b. This figure illustrates that data
locality increases as the data size grows across all three layers. Specifically: (i)
At the IR and ISA layers, doubling the data size leads to a doubling of data
locality. (ii) At the microarchitecture layer, there is an approximately 1.4-fold
increase in data locality from 32KB to 64KB. However, the increase is more
substantial, approximately 3.9-fold, from 64KB to 128KB. This discrepancy
can be attributed to the fact that the L1D cache of the ARM platform has a size
of 64KB. Consequently, when the data size exceeds the L1D cache capacity, the
L1D cache MPKI experiences a significant increase.
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Fig. 3. Data locality of IoTBench on ARM platform.

Figure 4 depicts the correlation analysis of data locality across three layers.
Several observations can be made: (i) The analysis results vary among the three
layers. In Fig. 4a, it is evident that the change trends of IR and ISA layers
are consistent, while the microarchitecture layer exhibits a different pattern.
Specifically, for the list task, the data locality values are below average at the
IR and ISA layers but above average at the microarchitecture layer. For the
matrix task, the values consistently remain above average across all three layers.
In the case of the convolution task, the values are above average at the IR
and ISA layers but below average at the microarchitecture layer. (ii) There is
a strong linear relationship (Pearson correlation coefficient of 0.99) between the
IR and ISA layers. Additionally, there is a moderate linear relationship (Pearson
correlation coefficient of 0.45) between the ISA and microarchitecture layers.

Fig. 4. Correlation analysis of data locality among three layers.

4.1.3 Branch Locality
Figure 5a illustrates the branch locality of three tasks from IoTBench on ARM
across three layers. Several observations can be made: The microarchitecture
layer exhibits significantly higher branch locality values for the convolution task
compared to the other tasks. Specifically, the branch locality for the convolution
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task is 21 times larger than that of the list task and 107 times larger than that
of the matrix task at the microarchitecture layer. One of the reasons for this
significant difference is the presence of deep nesting loops within the convolution
task, which poses challenges for branch prediction. The complex loop structures
make it difficult for the processor to accurately predict the outcome of conditional
branches, resulting in a higher branch locality. Figure 5b presents the variation of
branch locality for the convolution task with different input data configurations.
The following observations can be made: (i) At the IR and ISA layers, branch
locality shows a slight increase with data dimension. The coefficient of variation
(CoV) is 7% at the IR layer and 3% at the ISA layer. (ii) However, at the
microarchitecture layer, the change in branch locality is drastic. The CoV is
46%, and the maximum value is three thousand times larger than the minimum
value. The minimum value occurs when the data is one-dimensional and consists
of integers.

Fig. 5. Branch locality of IoTBench and convolution task on ARM platform.

Further experiments conducted in our study have revealed that the significant
increase in branch locality at the microarchitecture layer is primarily attributed
to G++ compiler optimization. Figure 6a demonstrates the impact of different
optimization levels (ranging from -O0 to -O3) on branch locality. The results
indicate that at the IR layer, the branch locality remains consistent across dif-
ferent optimization levels. However, at the ISA and microarchitecture layers,
the branch locality increases. Specifically, at the ISA layer, the branch locality
experiences a moderate increase of approximately 1.4 times. In contrast, at the
microarchitecture layer, the branch locality undergoes a dramatic increase of
approximately 485.6 times. This observation suggests that the specific imple-
mentation of the branch predictor at the microarchitecture layer on the ARM
platform does not perform well in conjunction with G++ compiler optimiza-
tion. Actually, with the G++ optimization levels ranging from -O0 to -O3, the
number of branch instructions decrease (Fig. 6b), but the performance is worse
(Fig. 6c).

Figure 7 presents the correlation analysis of branch locality across three lay-
ers. Several observations can be made: (i) The analysis results differ among
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Fig. 6. The effect of G++ optimization.

the three layers. In Fig. 7a, the change trends of the IR and ISA layers exhibit
consistency, whereas the microarchitecture layer displays a different pattern.
Specifically: For the list task, the branch locality values are above average at
the IR and ISA layers but below average at the microarchitecture layer. For the
matrix task, the branch locality values consistently remain below average across
all three layers. For the convolution task, the branch locality values consistently
remain above average across all three layers. (ii) The linear correlations of the
three tasks also differ. For the convolution task, there is a strong linear corre-
lation between the IR and ISA layers (Pearson correlation coefficient of 0.99),
indicating a close relationship. However, the ISA and microarchitecture layers
are found to be linearly independent (Pearson correlation coefficient of 0.01).
For the list and matrix tasks, there is a weak linear correlation between the IR
and ISA layers (Pearson correlation coefficient of -0.2 for the list task, 0.49 for
the matrix task). However, a stronger linear correlation is observed between the
ISA and microarchitecture layers (Pearson correlation coefficient of 0.55 for the
list task, 0.60 for the matrix task).

Fig. 7. Correlation analysis of branch locality among three layers.

4.2 Comparative Experiment of ARM and X86

Figure 8 presents a comparison of locality results between ARM and x86 architec-
tures. Generally, both ARM and x86 exhibit similar trends in terms of instruction
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Fig. 8. Locality comparison between ARM and X86.

and data locality, but branch locality differs significantly. Specifically, the vari-
ance of instruction locality is relatively small, while the variance of data locality
is relatively large. Notably, the most prominent characteristic of branch locality
is the exceptionally high value observed for the convolution task on the ARM
platform at the microarchitecture layer.

Instruction locality demonstrates minimal variation across different input
data for both the ARM and x86 platforms. The coefficient of variation (CoV)
remains below 14% for all three tasks at each of the three layers. Furthermore, the
maximum value of instruction locality does not exceed 1.8 times the minimum
value for any of the three tasks. Figure 9 illustrates that instruction locality is
primarily influenced by data dimensions. Notably, at the IR and ISA layers,
instruction locality shows a slight increase with the growth of data dimensions.
However, at the microarchitecture layer, the relationship becomes more intricate
and multifaceted.

Fig. 9. Instruction locality comparison between ARM and X86.

Data locality changes drastically with different input data on both ARM and
X86 platform. The variance in data locality is large and the CoV for different
configurations is about 60% on both ARM and X86 at three layers. As discussed
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above in Sect. 4.1.2, this is because the size of the input data is different. The
variation of instruction locality with data size is shown in Fig. 10. We can see
that, at IR and ISA level, for every doubling of data size, data locality also
doubles. At microarchitecture layer, when data size is larger than L1D, the L1
data MPKI will increase significantly.

Fig. 10. Data locality comparison between ARM and X86.

As shown in Fig. 11, branch locality shows different trends on ARM and X86
platforms. At microarchitecture layer, the ARM’s branch locality is much larger
than that of X86. ARM’s branch MPKI is 1.43, 0.28 and 30.52 for list, matrix
and convolution task, while X86’s branch MPKI is 0.45, 0.45 and 0.36 for those
three tasks. We can see that, the branch MPKI of the convolution algorithm on
the ARM is particularly large. As discussed above in Sect. 4.1.3, the intricate
nature of the convolution algorithm, combined with limitations in G++ opti-
mization techniques for ARM, leads to extremely high values of branch locality at
the microarchitecture layer. Figure 11c illustrates that as the optimization level
increases, the execution speed improves on x86 platforms. However, on ARM
platforms, the execution speed initially increases but eventually decreases with
higher optimization levels. The convolution task achieves optimal performance
on the ARM platform with an optimization level of -O1. In this configuration,
the branch locality is reduced by 0.45 times, and the execution speed is improved
by 1.5 times compared to -O3 optimization level.

Fig. 11. G++ optimization comparison between ARM and X86.
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4.3 Experiment Summary

We can summarize the key findings of the experiment as follows:

– The profiling revealed that different metrics are influenced by specific con-
figuration parameters of the input data. Specifically, the instruction locality
showed an increase with data dimensions, data locality increased with data
size, and branch locality exhibited an increase with both data dimension and
data type. These observations highlight the diverse impacts of input data
configurations on various performance metrics.

– A strong linear correlation was observed between the IR and ISA layers,
indicating that changes in the IR layer significantly affect the resulting ISA
layer. However, a weak correlation was found between the ISA and microar-
chitecture layers, suggesting that factors beyond the ISA layer influence the
microarchitecture layer’s behavior.

– The ARM platform has a weakness in its branch predictor when dealing with
deep nested for loops that are optimized by G++. This suggests that the
ARM architecture and G++ optimization may not work well together when
it comes to complex loop structures.

5 Conclusions

The paper introduces a novel cross-layer profiling approach to conduct a com-
prehensive analysis of IoTBench, considering the system stack divided into three
distinct layers: IR, ISA, and microarchitecture layers. The study reveals several
key findings: (1) The same metric exhibits diverse characteristics across different
layers. Consequently, analyzing each layer in isolation may result in conflicting
conclusions. This highlights the importance of considering multiple layers simul-
taneously for a holistic understanding of the workload. (2) A notable observation
is that deep nesting of loops can lead to poor performance of the branch pre-
dictor on ARM when used in conjunction with G++ optimization. This finding
emphasizes the impact of code structure and compiler optimizations on microar-
chitecture behavior.
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Abstract. Multimodal data, integrating various types of data like
images, text, audio, and video, has become prevalent in the era of big
data. However, there is a gap in benchmarking specifically designed for
multimodal data, as existing benchmarks primarily focus on traditional
and multimodel databases, lacking a comprehensive framework for eval-
uating systems handling multimodal data. In this paper, we present a
novel benchmark program, named MMDBench, specifically designed to
evaluate the performance of multimodal databases that accommodate
various data modalities, including structured data, images, and text.
The workload of MMDBench is composed of eleven tasks, inspired by
real-world scenarios in social networks, where multiple data modalities
are involved. Each task simulates a specific scenario that necessitates the
integration of at least two distinct data modalities. To demonstrate the
effectiveness of MMDBench, we have developed a hybrid database sys-
tem to execute the workload and have uncovered diverse characteristics
of multimodal databases in the execution of hybrid queries.

Keywords: Benchmark · Multimodal Database · Hybrid Query

1 Introduction

In the era of big data, the quantity and variety of data are growing at an unprece-
dented pace. Among these diverse data types, multimodal data has garnered sig-
nificant attention. Multimodal data refers to the integration of multiple modes
or types of data, such as images, text, audio, and video. This data often con-
tains abundant and complementary information, enabling a more comprehen-
sive understanding of underlying concepts and phenomena. Multimodal data
has become increasingly prevalent in various domains, including social media
analysis [4], healthcare [3], knowledge graph (Fig. 1) [15], and so on. Moreover,
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the emergence of artificial intelligence technologies has provided robust support
and impetus for multimodal data analysis, enabling effective exploration and
utilization of the latent information within multimodal data.

Fig. 1. An Example of Multimodal Data: Multimodal Knowledge Graph [21]

Despite significant advancements in benchmarking techniques for traditional
databases and even multimodel databases, there still exists a gap when it comes
to benchmarking specifically designed for multimodal data. Existing benchmarks
primarily focus on relational databases [12], NoSQL databases [5], or evaluate
the performance of multimodel data management systems [7,10,18,19]. In recent
years, there has been an emergence of multimodal data management systems
[16,20] that can handle both structured and unstructured data. However, there
is a lack of comprehensive benchmarking frameworks specifically tailored for
evaluating the performance of systems handling multimodal data.

In order to evaluate the performance advantages and bottlenecks of such sys-
tems in executing hybrid queries, enforce manufacturers to continuously improve
the performance of the system, and promote the further development of new
database technology, we put forward a benchmark which is called MMDBench.
As shown in Fig. 2. It provides a multimodal data generator and a multimodal
data analytic workload in social network scenario. The contributions of MMD-
Bench are as follows:

– Data Generator. We have developed a generator capable of producing mul-
timodal data in social network scenarios. It uses the property graph model
as the foundation to associate unstructured data such as text, and images
with the graph data. The generator supports the generation of data in vari-
ous scales while adhering to the distribution patterns observed in real-world
scenarios.
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– Query Workload. We have designed a workload for hybrid queries that
simulate typical operations of querying structured and unstructured data in
social networks.

– Benchmark Framework. We have designed and implemented a unified
framework that provides interfaces for system integration to facilitate the
completion of benchmark testing. This framework serves as a standardized
platform for evaluating different systems under consistent conditions, ensur-
ing fairness and comparability in performance evaluations.

– Experiment. We selected several systems and databases for experimental
validation and summarized the characteristics and applicable scenarios of
hybrid queries based on the experimental results.

Fig. 2. Overview of MMDBench

This paper is organized as follows. In Sect. 2, we review related work in bench-
mark for multimodal data, highlighting the limitations of existing benchmarks.
In Sect. 3, the modalities of different data are covered. In Sects. 4 and 5, details
of the data generator and workload are introduced. The experimental results are
shown in Sect. 6. Lastly, the conclusion is covered in Sect. 7.

2 Related Work

In the field of databases, conducting benchmark testing and performance eval-
uation for different types of data (structured, unstructured, and multi-model)
is of great importance. Structured data refers to tabular data commonly found
in traditional relational databases, while unstructured data includes data in for-
mats such as text, images, and audio. On the other hand, multi-model data refers
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to database systems that can simultaneously handle multiple data models. This
section provides an overview of the data models supported by these benchmark
testing programs.

2.1 Single Model Benchmark Programs

Linkbench [1] is a benchmark tool developed for evaluating graph database sys-
tems. It provides a set of simple CRUD (Create, Read, Update, Delete) opera-
tions to replicate query patterns in Facebook’s graph database TAO [2]. LDBC-
SNB [6] is a comprehensive graph database benchmark. It evaluates systems
across various social network workloads, including complex queries, updates,
and data generation.

NOBENCH [5] is a benchmark testing tool developed for evaluating NoSQL
database systems. It provides basic NoSQL queries for JSON documents, includ-
ing selection, projection, and aggregation operations. By using NOBENCH, the
performance and functionality of different NoSQL database systems in handling
JSON documents can be evaluated.

2.2 Multi-model Benchmark Programs

Unibench [18,19] is a benchmark testing tool designed for evaluating multi-model
database systems. It is designed to simulate various data operations and queries
in multi-model data management systems. The goal of Unibench is to provide
a repeatable and comparable way to assess the performance and capabilities of
different multi-model database systems. Unibench supports multiple data models
such as relational, document, and graph models, allowing for the simulation of
complex data management and query tasks.

M2Bench [10] is a benchmark testing tool developed for evaluating multi-
model database systems. It focuses on simulating multi-model queries and trans-
action processing in multi-model data management systems. M2Bench provides
a set of complex queries and transaction scenarios, including cross-model queries,
schema evolution, transaction consistency, and data consistency. By executing
these queries and transactions and measuring their performance and resource
consumption, the performance and scalability of multi-model database systems
can be assessed.

3 Data Modalities

With the development of artificial intelligence, modern application analytics data
is no longer limited to structured data, and the exploitation of unstructured data
is becoming increasingly important. Many applications represent their data as a
combination of multimodal data. Similarly, MMDBench represents a database in
a combination of these modal data. This section will describe the data modality,
focusing on the following two aspects:
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Table 1. Key operations of MMDBench

Data type Operation

Structured Graph Data Join

Selection

Aggregation

Pattern Matching

Shortest Path

Unstructured Data Unstructured Property Filtering

Relationship Inference

Similarity Matching

Data Representation. The property graph is one of the most suitable meth-
ods for describing social networks due to its convenience in implementation, and
in MMDBench, graph data is chosen as the structured data representation. The
property graph represents structured data using nodes and edges in a graph
structure, which is formally expressed as G = (V, E, P), where G, V, E, and P
represent the whole data, node collection, edge collection, and property collec-
tion, respectively. In this model, nodes represent entities or objects, and edges
represent the relationships or connections between those entities. Each node and
edge have properties associated with them. The graph is especially useful for rep-
resenting and querying highly interconnected data, where relationships between
entities are as important as the entities themselves. Nevertheless, alternative
methods can also be employed to represent structured data.

On the other hand, unstructured data representation requires organizing and
capturing semantic information that lacks a predefined data model. AI offers
various approaches to achieve this, enabling the transformation of unstructured
data into a meaningful and machine-readable format. For example, these data
can be converted into vectors by AI models. Generally, the higher the dimension
of the vector, the more information it can represent.

Data Manipulation. The key operations supported by MMDBench for mul-
timodal data are summarized in Table 1. The structured graph data supports
several typical operations, such as selection, join, aggregation, pattern matching,
and advanced operations like finding the shortest path. Additionally, multimodal
data can be treated as unstructured properties from which semantic information
can be extracted and used as a filter condition for hybrid query. Moreover, these
unstructured properties facilitate the exploration of latent relationships between
nodes, which is called relationship inference. For instance, when we want to find
topics of a post, we not only search for existing relationships but also extract
semantic information from multimodal data to determine whether the post has
a specific topic or not. Similarity matching in unstructured data is also a crucial
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operation. Generally, similarity algorithms are applied to vectors of unstructured
data, including Cosine Distance, Euclidean Distance, Manhattan Distance, and
others.

4 Data Generator

4.1 Constructing Data

MMDBench combines structured data with unstructured data to build mul-
timodal datasets. For structured data, MMDBench utilizes public real-world
datasets and some benchmark data generator tools. However, unstructured data
is derived from realistic datasets. All the sources of the datasets are summarized
in Table 2.

Table 2. Datasets of MMDBench

Data Name Multimodal Data Type Data Source

Social Network Structured Graph LDBC [6], News Category Dataset [11]

Person Faces Image LFW [9], IMDB-WIKI [13]

Comments Short Text Tweet Dataset [8]

Posts Long Text News Category Dataset

We employ the LDBC data generator to build linked data, which is one of
the most popular data generators in the social network benchmark, and import
this data into the property graph. The data generator has the capability to
provide images and text, but the image file is an artificial filename rather than
an existing URL or path. Moreover, the absence of sentiment tags in Messages
makes it challenging to perform hybrid queries and validate the accuracy of the
query results. To address these issues, we simplify the LDBC schema and replace
its dictionary with some common unstructured data found in social platforms
to align with our objectives. For instance, we incorporate face image files and
sentiment texts, which are derived from publicly available datasets, including
LFW, IMDB-WIKI, Tweet, and News Category.

As illustrated in Fig. 3, each Person node in the LDBC dataset is associated
with a unique face image from either LFW or IMDB-WIKI. Each comment node
contains a text and a corresponding sentiment label from the Tweet dataset.
Additionally, each Post node contains a long news abstract text and a topic
category from the News Category dataset. Each topic information extracted
from the News Category dataset is treated as a node, facilitating relationship
inference based on unstructured data. Specifically, when querying whether there
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is a relationship between two nodes, we not only search for existing relationships
in the graph but also implicitly infer potential relationships between nodes by
extracting semantic information from unstructured data.

4.2 Scaling Data from Different Modalities

MMDBench database is designed to be scalable with a specified scale factor.
To accommodate different modalities of data, various expansion methods are
employed. This section will provide a detailed explanation of the scaling-up
methods.

Unstructured Data. When extending unstructured data, a process known
as data augmentation in the field of Artificial Intelligence is employed. Several
methods are used for image data enhancement, including geometric transfor-
mations, color space enhancement, kernel filters, mixed images, random era-
sure, feature space enhancement, generative adversarial networks, neural style
transfer, and meta-learning [14]. To produce high-quality pictures, pre-trained
models are a rational approach. However, generating large image datasets not
only requires excellent hardware but also takes a significant amount of time,
which will be addressed in our future work. Nonetheless, as for the public image
dataset collected, it boasts a substantial scale, allowing us to employ the method
of sampling from large-scale samples to scale up the image dataset.

Fig. 3. The Multimodal Social Network Schema
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For text data scaling up, as we did not find a text dataset of sufficient scale,
we developed our data generator. EDA [17], a simple but powerful data aug-
mentation method, consists of four important operations: synonym replacement,
random insertion, random swap, and random deletion. We employ EDA in our
data generator to achieve text data scaling up. The scale of expansion is limited
by the scale of the original dataset. In the real world, text on social networks
is often forwarded and rewritten, resulting in some similar data. This data aug-
mentation method can partially simulate the generation of a substantial volume
of data from emergency events, aligning with the characteristics of real-world
data.

Structured Property Graph Data. MMDBench utilizes the extension
method provided by LDBC’s original data generator, enabling the generation of
a social network of up to 36 million people, which sufficiently meets the require-
ments of MMDBench.

5 Workload

We have implemented our workload in the social network scenario, which is one
of the most popular scenarios nowadays, covering a vast majority of typical oper-
ations. By default, our structured data representation is based on the property
graph model. However, users have the flexibility to implement the interfaces pro-
vided by our framework to utilize other data models if needed. The tasks are
divided into two parts: complex read and short read.

The complex read tasks involve multiple operations for querying multimodal
data in a hybrid manner, including unstructured attribute filtering, relationship
inference based on multimodal data, and more. On the other hand, the short
read queries focus on the ability to process unstructured data using artificial
intelligence and several simple structured data operations to fulfill typical query
requirements. Each task involves data from at least two modalities, ensuring a
comprehensive evaluation of the system’s capabilities. A concise summary of the
tasks can be found in Table 3.
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Table 3. Tasks in MMDBench

Task Operation Description

complex read T1 Structured and
unstructured
property
filtering

Given a starting person with an ID, the task is to
find a friend within a 3-hop network who has
specific facial features and first names. The
objective is to return information about the
friend’s workplaces, residential cities, and study
places.

T2 Multiple
unstructured
property
filtering

Given two individuals with their facial photos, the
objective is to identify direct friendship
relationships between them. If such a relationship
exists, the task is to retrieve the ten most recent
positive comments made by that friend.

T3 Hybrid query
with join

Search for a friend with a facial photo and
geolocation information. When provided with a
person’s ID and a city’s ID, the task is to return a
friend of this person who resides in the specified
city and resembles the given facial photo.

T4 Hybrid query
with
aggregation

Given a person with an ID, the objective is to
count the number of comments with a specific
sentiment that are liked by the person’s friends.

T5 Hybrid query
with Subgraph
Matching

Given a person with a facial photo, the task is to
query recent negative messages created by their
friends or friends of friends.

T6 Relationship
inference

To find the topics of posts made by a given person
with the ID, we can use both explicit and implicit
relationships. Explicit relationships refer to direct
connections and associations, such as topics
explicitly assigned to the posts. Implicit
relationships, on the other hand, involve analyzing
patterns and context to identify related themes.

T7 Hybrid query
with
unweighted
shortest path

Given a person with an ID and a person with a
facial photo, the aim is to find and return the
shortest path connecting them.

short read T8 Face
recognition and
pattern
matching

Given a person’s facial photo, the task is to
retrieve their first name, last name, birthday, IP
address, browser, and city of residence.

T9 Face
recognition and
pattern
matching

Given a person with a facial photo, the objective is
to retrieve information about friends, including
their ID, first name, last name, and the date they
became friends

T10 Sentiment
analysis

Given a comment identified by its ID, the task is
to determine its sentiment

T11 Sentiment
analysis and
pattern
matching

Given a person with id, the task is to retrieve the
sentiment distribution of the last 10 messages they
have sent
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5.1 Framework of Benchmark Program

The most ideal situation would be to use a standardized query language to
express tasks. However, currently, there is no unified and widely accepted multi-
modal data query language. To address this issue and improve the generality of
benchmark programs, we have developed a framework to assist various databases
in integrating with MMDBench. Specifically, we break down all the query tasks
into individual atomic operations, and users can customize the implementation
of these atomic operations and data models to use MMDBench. The framework
consists of models and atomic operators:

– Model: Node, Relationship, and PathTriple represent components of the
property model.

– Read: nodeAt(), nodes(), and relationships() are used for reading data.

We also offer to delete and update interfaces in MMDBench. Additionally, an
AI service is provided for databases that do not have integrated AI capabilities
to access MMDBench. Users can utilize our default AI operators, which may
demonstrate moderate performance. If users aim for higher scores, they need
to embed more powerful AI operators. We provide different AI capabilities for
different types of data:

– Text: The ability of sentiment analysis and topic extraction is provided.
– Image: The ability of image information extraction is supported.

5.2 Multimodal Data Schema in Social Network

The multimodal social network schema of MMDBench is illustrated in Fig. 3.
The structured data model comprises social network entities, including persons,
topics, geographical locations, and organizations. Unstructured data is embedded
within these nodes as unstructured properties, with each person having a facial
image, each comment containing a short text, and each post containing a long
news text. The social network graph is scalable, and while the unstructured
data can also be expanded, its scale is limited by the cardinality of the public
dataset. For example, the Person node contains 11,000 records, the Comment
node contains 2,581,736 records, and the Post node contains 1,237,554 records
when the scale factor is one (SF1).

5.3 Hybrid Query in Social Network

Hybrid query refers to the need to process multiple modalities of data simulta-
neously within a single system [16]. To demonstrate the technical challenges, we
employ task one and task six as illustrative examples. Task one involves querying
information about a person’s friends, and the query process is depicted in Fig. 4.
Traditionally, when querying friend nodes, methods rely on filtering based on the
structured attributes of individuals. However, hybrid query harnesses the power
of AI to extract information from unstructured data, enabling filtering of nodes
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Fig. 4. Process of Hybrid Query in Task 1

based on their unstructured properties. Task 1 significantly tests the database’s
ability to correctly prioritize filtering conditions since processing unstructured
data incurs much higher costs compared to structured data. By initially filtering
firstName, the query process will be accelerated due to the extreme reduction
of AI’s search space. More complex tasks will process more multimodal data in
one task, not only face photos. Task six, depicted in Fig. 5, demonstrates how to
deduce relationships between nodes using unstructured data. Firstly, semantic
information is extracted from news by AI operators to help uncover concealed
topic types. Although the topic types inferred by AI operators might not pre-
cisely match the topic types in the schema, users can establish mapping rela-
tionships between them. Subsequently, the second sub-query conducts a direct
search for hasTopic relationships that may exist within the graph. Finally, the
results from both queries are combined through a union operation. This task
will test the ability to find all possible results using an AI-enhanced approach.

Fig. 5. Process of Hybrid Query in Task 6



98 A. Mao et al.

6 Evaluation

To evaluate the effectiveness of MMDBench, a polyglot persistence system is
developed to implement all tasks. The execution time of tasks is one of the impor-
tant metrics for evaluating query performance. In the evaluation, we mainly focus
on the end-to-end query time. The multimodal dataset is scaled up with the data
generator to evaluate the scalability of the database systems.

6.1 Polyglot Persistence System for Evaluation

A Polyglot Persistence System refers to systems that employ multiple systems to
achieve storage and query of multimodal data. In our benchmark, the polyglot
persistence system provides storage ability for three types of data: structured
data, images, and text. Graph data is stored in neo4j, unstructured data is
stored in the file system, and AI capabilities are facilitated through the AI Web
service.

To enable simultaneous access to data from multiple systems, a coordinating
client is created on top of the subsystems. The client is responsible for collecting
intermediate results from these subsystems and processing them to obtain the
next intermediate result or the final result.

6.2 Data Generation

Experiment Setting. Our experiments are conducted on a high-performance
computing cluster with 104 Intel(R) Xeon(R) Gold 6230R CPUs running at
2.10 GHz. The system has 256 GB of RAM, 4 TB of available disk space, and
operated on CentOS Linux 7 (Core). The network bandwidth is 1000 Mb/s. The
first five columns of Table 4 show the number of objects included in the dataset
at different scales, and the last two columns show the time required for dataset
generation and import.

Table 4. Characteristics of Datasets.

SF Number Import
Time(ms)

Generator
Time(ms)Person Post Comment Likes Has Topic

1 10,295 1,121,226 1,739,438 1,870,268 672,735 18,329 197,052

3 25,066 2,873,419 5,343,582 6,244,522 1,724,051 37,155 264,788

5 31,505 3,665,392 7,041,356 8,468,619 2,199,235 39,920 331,963

The data generation time consists of three stages: the time taken for gen-
erating structured data, unstructured data, and data integration. Furthermore,
the dataset import time also includes the time required for index creation.
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6.3 Baseline Evaluation

Figure 6 shows the execution time of all tasks on Polyglot Persistence System.
Each bar represents the execution time of a task and is divided into two different
colors to distinguish the time consumption of different modal data.

Fig. 6. Processing Time for Structured and Unstructured Data in Tasks

It is evident that the performance of structured data queries is significantly
higher than that of unstructured data queries in most tasks because structured
data is easier to index and filter while processing unstructured data may demand
more computational resources and time. Task 5 is an exception, as it requires
the execution of a highly complex subgraph matching operation.

As expected, utilizing the filtering criteria of structured data effectively
reduces the search space of unstructured data, significantly reducing the query
time. This has been evidenced by the results of Task 1 and Task 9. Task 1 involves
querying 1 to 3 friend relationships, while Task 9 involves a much smaller number
of friends. However, Task 1 smartly applies the filtering based on the structured
attribute “firstName”, which eliminates a substantial portion of the data. This
relieves the burden on AI information extraction and greatly accelerates the
entire query process.

6.4 Latency of Polyglot Persistence

In an ideal multimodal database, all storage engines and services are localized.
Within the hybrid storage system discussed in this paper, latency primarily
arises from interactions with AI services. If unstructured data is stored in an
external object storage system, accessing this data also introduces significant
network transmission latency, and frequent calls to external services incur addi-
tional overhead. Bulk submission of requests and deployment of AI services on
the nodes where the data is stored were used to eliminate latency as much as
possible(The scale of data transferred is out of our control). Figure 7 illustrates



100 A. Mao et al.

Fig. 7. Latency in Task 4, 7, 8, and 9

the execution times for tasks 4, 7, 8, and 9 after optimizing latency. It becomes
evident that when transmitting substantial data volumes, the overhead from net-
work transmission and external service calls far surpasses computational costs.
Optimizing this aspect of latency can substantially enhance query acceleration.
The Table 5 presents the performance improvements for all tasks after eliminat-
ing latency. In tasks 4,7,8,9, latency accounts for more than 90% of the execution
time, and there is a lot of room for optimization of unstructured property filter-
ing operation.

6.5 Scaling Data Evaluation

Figure 8 illustrates the performance of tasks on different dataset sizes. It is evi-
dent that as the dataset size increases, all task execution time exhibits a linear
growth trend. Contrasting tasks 1 and 9, the advantage of prioritizing the exe-
cution of structured data filtering conditions becomes more pronounced as the
dataset size increases. The elapsed time of task 2 and task 5 increases faster than
the other tasks because the two tasks need to process more unstructured data
as the size factor increases. The processing time for unstructured data accounts
for the majority of the total runtime. Tasks 1 and 6 involve a small amount
of unstructured data; thus, in comparison with other tasks, the overall runtime
does not experience significant changes as the size factor increases.

6.6 Summary of Evaluation

Through the experiments above, several notable observations made in the eval-
uation are summarized below.

Table 5. Improvement after Eliminating Latency

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

59% 53% 12% 93% 79% 30% 94% 98% 95% 7% 10%

Improvement Rate = (original time− improved time)/original time
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Fig. 8. Elapse time at Different Scales.

– In the Hybrid query of structured and unstructured data, executing filtering
conditions on structured attributes first can effectively help accelerate the
query process.

– A hybrid storage system is not an actual data management system, so com-
munication between multiple systems and services can be optimized. Espe-
cially when dealing with large data volumes and frequent communication, the
performance improvements after optimization are pretty significant.

– The query time of unstructured data is much higher than that of structured
data. As the scale of data continues to increase, the more tasks touch unstruc-
tured data, the more obvious their elapse time increases.

7 Conclusion

The study presents a benchmarking program for multimodal databases in exe-
cuting hybrid queries, aimed at assessing system performance when handling
diverse data modalities, including structured data, and unstructured data like
images and text. We propose a generator capable of producing multimodal data
with different scales. To further simulate real-world demands, a multimodal
social network workload is introduced to MMDBench, and some experiments
are designed to demonstrate the effectiveness of the workload. We have also
developed a framework that splits query into atomic operations to facilitate the
integration of various types of databases into the benchmarking program. In the
future, we plan to utilize AIGC to enable the generation of larger-scale datasets.
Additionally, we intend to conduct experiments using real databases to obtain
more precise performance evaluation reports.
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Abstract. Capturing cross-stack profiling of communication on HPC
systems at fine granularity is critical for gaining insights into the
detailed performance trade-offs and interplay among various components
of HPC ecosystem. To enable this, one needs to be able to collect, store,
and retrieve system-wide data at high fidelity. As modern HPC sys-
tems expand, ensuring high-fidelity, real-time communication profiling
becomes more challenging, especially with the growing number of users
employing profiling tools to monitor their workloads. We take on this
challenge in this paper and identify the key metrics of performance that
makes a database amenable to these needs. We then design benchmarks
to measure and understand the performance of multiple, popular, open-
source databases. Through rigorous experimental analysis, we demon-
strate the performance and scalability trends of the selected databases
to perform different types of fundamental storage and retrieval operations
under various conditions. Through this work, we are able to achieve sub-
second complex data querying serving up to 64 users and demonstrate
a “9×” improvement in insertion latency through parallel data insertion,
achieving a latency of 55 ms and 50% less disk space for inserting 200,000
rows of profiling data collected from a potential system that is “4×” the
size of the state-of-the-art 19th-ranked Frontera supercomputing system
at TACC with 8,368 nodes.

Keywords: HPC · Storage · Database · Profiling · Communication

1 Introduction and Motivation

Advancements in High Performance Computing (HPC) have transformed our
ability to handle intricate phenomena and extensive datasets. As demand grows,
larger HPC systems, including exascale systems with thousands of nodes and
links, are emerging. In such systems, efficient communication is critical to overall
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performance. Efficient data movement between nodes on the communication
fabric is key for optimizing end-to-end solutions.

Communication profiling in HPC systems comes from hardware counters
and communication libraries like the Message Passing Interface (MPI). Hard-
ware counters offer metrics on performance, such as link utilization and different
types of errors, while MPI profiling provides insights on software communication
patterns and resource usage.

Overall, profiling at both the hardware and software levels is critical for
in-depth analysing and achieving optimal performance on HPC systems and
understanding the translation of communication library primitives to the hard-
ware level communication. Several tools, such as TAU [6], Nvidia Nsight [8],
XDMoD [11], OSU INAM [2], and Prometheus [1], periodically collect these
counters, offering both low-level hardware performance as well as high-level view
of communication patterns. The data schema for both MPI and InfiniBand coun-
ters in a HPC profiling tool is consistent, reflecting the standard InfiniBand hard-
ware counters, errors, and MPI process data. For MPI processes, performance
metrics include inter-/intra-node traffic characteristics, CPU and memory usage,
one-sided communication traffic, and a breakdown of traffic in terms of collective
or point-to-point operations.

The lack of real-time profiling, storing, and retrieving capabilities in HPC
profiling tools typically results in their use for postmortem analysis, often lead-
ing to resource wastage. Considering the high power consumption of large-scale
HPC systems, late detection of failures can be costly and impact system-level
performance. Moreover, if a large-scale job causes issues, it can negatively impact
system-level performance including other jobs. Therefore, a low-overhead, fine-
grained profiling approach is needed for real-time identification and resolution of
issues in production jobs to minimize resource wastage and ensure stable system
performance.

1.1 Problem Statement

As HPC systems become larger, such as the Frontera [13] cluster with 8,368
compute nodes, 22,819 links, and 448,448 cores, and the state-of-the-art Frontier
supercomputer [9] with 9,400 compute nodes and 8,730,112 cores, they introduce
new challenges in ensuring real-time and scalable full system-level profiling. Due
to the immense volume of fine-grained profiling data and the growth of HPC
systems, achieving real-time, high-fidelity data collection, storage, and access
for HPC is increasingly demanding and challenging.

State-of-the-art tools like INAM [7] leverages an efficient profiling methodol-
ogy by running on single node within the cluster and then collecting and stor-
ing system-level metrics remotely at sub-second granularity for InfiniBand port
counters/errors and MPI metrics for clusters of around 2,000 nodes [2]. How-
ever, upon in-depth analysis of the latest version of INAM on OSC cluster [10],
we noticed some performance bottlenecks. Upon measuring the breakdown of
system-wide InfiniBand port and error counters or the OSC cluster with 3,404
links and 1,544 nodes, we observe that the latency of the metric collection is
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significantly smaller compared to metric insertion into the database, requiring
only 0.005 s for collection while taking 0.45 s for the insertion. This makes the
overall performance of the HPC data processing to be bound by the database
insertion performance. Despite our efforts to optimize MySQL (default option)
for large data volumes, such as increasing cache size and database buffer pool
size, performance limitations persist. This has prompted us to tackle the chal-
lenge of large-scale profiling data storage and retrieval, which helps the objective
of developing more high-fidelity profiling tools that can provide fine-grained data
with low overhead for exascale systems.

Fig. 1. High-level overview HPC profiling tool interaction with users and HPC layers
- The database performance plays a vital role for tool’s performance

Storing and accessing vast HPC communication profiling data from large
systems requires thorough understanding and evaluation, as it forms a perfor-
mance bottleneck in profiling capabilities for large-scale HPC systems, as shown
in Fig. 1. Moreover, The nature of the data and the queries executed from var-
ious users, especially complex queries involving data filtration or aggregation,
significantly impact database performance. For instance, a user might query to
identify the MPI process ID within their own large-scale job that transmits the
most data between two given timestamps.

To the best of our understanding, there’s no current literature that assesses
the performance of databases for HPC data. Given that database performance
is influenced by the data’s nature, this study is pivotal in determining the opti-
mal database for HPC needs, considering factors like low-overhead requirement,
performance, parallelism, and scalability. By designing various benchmarks to
evaluate each database, our primary objective is to evaluate them holistically,
not to probe their internal performance. We seek to shed light on the most suit-
able database choices for HPC profiling data, emphasizing the trade-offs that
can enhance the performance of HPC profiling tools.

Database Selection: To effectively manage the fine-grained HPC commu-
nication profiling data from systems like Frontera and Frontier, we assessed
open-source databases such as MySQL, InfluxDB [5], and ClickHouse [3]. This
paper’s goal is to evaluate the concurrent insertion and querying capabilities of
these databases for extensive HPC communication data, using both single and
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multi-process methods. Each database represents a unique data storage strategy:
MySQL (relational), InfluxDB (time-series), and ClickHouse (columnar). This
diverse selection facilitates a thorough analysis across varied data management
paradigms. These databases, being widely adopted, makes it easier to integrate
them into database administration tools like DBeaver [4].

We initially assessed Cassandra [14], a NoSQL database, for our HPC data
but found it under performing, particularly in read queries, due to its key-value
structure. Such databases view values as opaque, hindering internal filtering or
processing. Consequently, entire values are returned, leading to inefficient data
filtering and handling, especially given the vast HPC data sizes. Updates neces-
sitate overwriting entire values, even for minor changes. Despite the advantages
of NoSQL databases, our research deemed them ill-suited for HPC profiling data
storage and querying.

Dominant Data Schemas in HPC Profiling: Profiling tools typically collect
a variety of schemas to analyze HPC communication and store them in tables.
Upon measuring the size of the in-production gathered profiling tables during a
week period wint 20 s collection interval in MySQL for the OSC cluster with 1,544
nodes, we observe that for the most the commonly collected schema include MPI,
IB port counters, and IB port errors with other tables only consist of less than
1 GB in size. These schemas account for the largest amount of data collected by
profiling tools since they are collected at each timestamp. Conversely, in other
schemas, such as job information, links, and nodes, the tool updates existing
rows and have a smaller impact on overall profiling tool performance due to
smaller size and higher interval of collection.

The speed and efficiency of inserting and querying IB port counter, IB port
errors, and MPI metrics are critical factors that significantly impact the overall
performance of profiling tools to achieve higher granularity. To better clarify the
problem and challenges we ask the following questions and seek to address them
throughout the paper.

1. Is there a performance benefit between single and multiple writers when stor-
ing fixed volume of HPC data in databases?

2. Does batching the insertions help having faster insertion time? if so, what is
the optimal batch size?

3. How do concurrent users querying data impact the performance across
databases? How does it change when reading from multiple tables?

4. How does concurrent insertions into different tables influence the tool’s stor-
age performance across databases?

5. How does simultaneous read and write to different tables influence the tool’s
storage performance across databases? how does it vary by database?

1.2 Contributions

This study provides a systematic evaluation of three popular databases - MySQL,
InfluxDB, and ClickHouse - for storing fine-grained HPC communication profil-
ing data. To the best of our knowledge, there is no prior scientific literature that
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has evaluated these databases for this particular data. By analyzing the strengths
and weaknesses of each database system, this study provides a deep understand-
ing of database operation performance under various conditions, particularly for
HPC profiling data schema. To summarize, the key contributions of this
paper are as follows:

1. We evaluate and demonstrate the impact of parallelism for database insertion
2. We identify the impact of batched inserts on insertion performance while

having users reading data across different databases.
3. We demonstrate how scaling the number of rows with optimized insertion

batch size impacts the overall performance.
4. Through rigorous experiments, we evaluate the impact of scaling concur-

rent users reading data and increasing parallel insertions into different tables
across the databases.

5. We examine the worst-case scenario with 64 concurrent users accessing pro-
filing data and scaling parallel insertions up to 64 processes across multiple
tables in various databases, exploring how this varies by database option.

6. Lastly, we integrated MySQL, InfluxDB, and ClickHouse with best-practices
found as part of this study into an HPC monitoring tool, achieving a 30x
speed-up in system-wide port counter/error collection.

2 Methodology for Realistic Benchmarking of Large-Scale
HPC Profiling Data

This section outlines the methodology employed to develop benchmarks that
simulate the insertion and querying of large communication profiling data. The
primary objective of these benchmarks is to create worst-case scenarios that
any HPC profiling tool might confront. To achieve this, we carefully crafted
benchmarks that allow multiple insertions to overlap with one another, with the
ability to write to different tables containing data, while concurrently query-
ing the database. Additionally, we sought to synchronize the parallel querying
of real-world queries across multiple users and overlap it with data insertion
to evaluate the database performance when multiple users are using the tool
simultaneously. Furthermore, we aimed to stress test the database by incorpo-
rating tens of millions of rows for each table. To ensure reliable performance and
consistency, all of the benchmarks were designed in C++.

2.1 Data Schema and Table Design

We used a consistent data schema across all three database options - MySQL,
InfluxDB, and ClickHouse - to maintain consistency and enable meaningful com-
parisons of their performance. The data schema included 3 tables that stored
profiling data of InfiniBand (IB) port counters, IB port errors, and MPI profil-
ing information per process. The schema for each table is shown in Tables 1, 2a,
and 2b. For all the tables, we applied best practices like creating a secondary
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Table 1. Fields and data types used for MPI profiling data

Field Name Data Type Field Name Data Type Field Name Data Type
GUID uint_64 Virtual Memory Size uint_32 CPU User Time int_32
Host Name String Peak Virtual Memory Size uint_32 CPU System Time int_32
Process Rank int_16 Resident Set Size uint_32 CPU Idle Time int_32
Local ID (LID) int_16 Peak Resident Set Size uint_32 CPU ID int_32
Job ID int_16 I/O Read Bytes uint_64 CPU Low Priority Time int_32
Added_on DateTime I/O Write Bytes uint_64 CPU I/O Wait Time int_32
Bytes Sent uint_64 Vbuf Allocated uint_16 CPU IRQ Time int_32
Bytes Received uint_64 Vbuf Used uint_16 CPU Soft IRQ Time int_32
Packets Sent uint_64 UD Vbuf Allocated uint_16 CPU Steal Time int_32
Packets Received uint_64 UD Vbuf Used uint_16 CPU Quest Time int_32
Collective Bytes Sent uint_64 SMP Bytes Received uint_64 Lustre Read Times uint_32
Collective Bytes Rcvd uint_64 SMP Bytes Sent uint_64 Lustre Read Min Time uint_32
RMA Bytes Sent uint_64 SMP Eager MaxSize Used uint_32 Lustre Read Max Time uint_32
Collective Packets Sent uint_64 SMP Rendezvous Buff MS Used uint_32 Lustre Read Total Time uint_32
Collective Packets Rcvd uint_64 SMP Eager Total Buffer Size uint_32 Lustre Write Times uint_32
RMA Packets Sent uint_64 SMP Rendezvous Total Buffer Size uint_32 Lustre Write Min Time uint_32

SMP Eager Buffer Used uint_32 Lustre Write Max Time uint_32
SMP Rendezvous Buffer Used uint_32 Lustre Write Total Time uint_32

index on the “added_on” field for all databases to allow for efficient storage and
querying of time-based data. The table creation also included creating an index
on frequently queried columns like “GUID” and “port” for IB port counter/er-
rors and “jobID”, “process_rank”, and “GUID” to optimize read performance.
Moreover, the schema design ensured that the same type of data was inserted
into all three databases to facilitate accurate comparisons of their performance.
By utilizing a consistent data schema across all three databases, we were able
to conduct a comprehensive evaluation of their performance and identify their
respective strengths and weaknesses.

Table 2. InfiniBand port schemas

(a) InfiniBand port counters schema
Field Name Data Type

GUID uint_64
port uint_32

transmittedData uint_64
receivedData uint_64

transmittedPackets uint_64
receivedPackets uint_64

unicastXmitPackets uint_64
unicastRcvdPackets uint_64

multicastXmitPackets uint_64
multicastRcvdPackets uint_64

addedOn DateTime

(b) InfiniBand port errors schema
Field Name Data Type

GUID uint_64
port uint_32

SymbolErrors uint_64
LinkRecovers uint_64
LinkDowned uint_64
RcvErrors uint_64

RcvRemotePhysErrors uint_64
RcvSwitchRelayErrors uint_64

XmitDiscards uint_64
XmitConstraintErrors uint_64
RcvConstraintErrors uint_64
LinkIntegrityErrors uint_64
BufferOverrunErrors uint_64

VL15Dropped uint_64
addedOn DateTime
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2.2 Data Querying Methodology

We developed our read benchmarks based on real queries used by profiling tools,
such as obtaining all link errors and counters to update link utilization of a
cluster, utilizing data from the previous 5min. We also included queries that
aggregate values of a table, filter multiple conditions through large volumes
of high cardinality data, and find max/min values for a custom duration of
time. The reader thread randomly selects one of these real-world queries to
execute. Using the pthreads library in C++, we implemented this benchmark,
simulating a realistic workload and evaluating database performance under these
conditions. We synchronized our threads using barriers to ensure that all threads
completed their setup before querying the database simultaneously. Each reader
in our benchmark recorded the time taken to execute its query, providing us
with the ability to measure the database’s response time under various levels of
concurrency.

2.3 Data Insertion Methodology

We utilized the pthreads library in C++ to design insertion benchmarks,
allowing multiple writers to concurrently write uniformly random data to the
database. Our implementation includes a barrier to ensure that all writers estab-
lish a database connection before executing insertion. This barrier spans all
threads, including other writers to different tables and the reader processes,
before querying the database starts. Each writer in our benchmark records the
time taken to insert its data. With pthreads and synchronized barriers, we cre-
ated realistic workloads and worst-case scenarios for insertion, enabling us to
evaluate database performance under extreme conditions.

3 Performance Evaluation Methodology

We conducted a series of experiments to evaluate database performance for HPC
profiling data, testing various parameters such as the number of rows, concur-
rent threads, write batch size, mode of operation, and the number and names
of tables. We used three different tables (MPI, IB port counters, and IB port
errors) as discussed in Sect. 1.1 and three databases (InfluxDB, MySQL, and
ClickHouse), varying the number of concurrent reads, writes, and read and write
from 1 to 64. The MPI process profiling data, IB counters, and IB errors tables
take up significant space as they are updated every query time interval by adding
new large-scale data.

We carried out six sets of experiments, evaluating optimal configurations for
each table and database combination. For each database and table combination,
we assessed the performance of a fixed number of row insertions, different write
batch sizes evaluation, concurrent multi-process reads or/and writes, the impact
of multi-process reads and/or writes to multiple tables, and finally the table
storage size. Our goal was to determine the most effective configurations for
handling large-scale data and optimizing database performance.
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3.1 Evaluation Considerations

The purpose of this study is to provide a better understanding of the performance
interplay between write batch size, multi-threading, and multi-table data access
for HPC profiling data with a scale of exascale HPC systems. We assessed the
performance of inserting 50,000 rows of IB port counters and errors per second
using our benchmarks, chosen as it’s twice the links and nodes of systems like
Frontera with 8,368 nodes and 22,819 links.

In the evaluation of read queries, we utilized real-world HPC profiling queries
to collect metrics from various tables. All queries monitor HPC system failures,
send alerts to admins or users, and assess job performance at InfiniBand and
MPI levels using aggregation and time/node/jobid filters. To evaluate worst-case
performance scenarios from the tool’s user perspective, we took the maximum
latency among all readers if the read query involves reading from more than a
single table (such as port counters and errors) with multiple readers scenarios.
This approach emulates the behavior of loading a page and reading data from
various tables. By simulating this real-world scenario, our evaluation provides a
practical assessment of the performance of database options.

In the multi-table multi-process read/write evaluation, we stopped scaling the
experiment if the latency of writing profiling data exceeded 90 s, as this is not a
desirable database performance to deploy for the tool due to low fidelity profiling.
Similarly, if the latency of both reading and writing exceeded 120 s, we also
stopped the experiment from scaling as it is clear that the performance would be
worse. This was done to ensure that the database performance remained within
acceptable limits. Our results provide insights into the optimal configurations for
handling large-scale data and optimizing database performance in HPC systems.

4 Database Performance Evaluation

4.1 Experimental Setup

We conduct our evaluation experiments on a single node of an HPC cluster with
an Intel 28-core Broadwell CPU running at 2.40GHz, a 35 MB L3 cache, and
125 GB of memory, including 18 GB of buffer memory and 3.7 GB of swap
memory. We followed [12] instructions to optimize MySQL and InfluxDB. To
ensure robustness and accuracy, we performed each experiment for a minimum
of 20 iterations. To support concurrent read/write operations across three tables,
we increased the maximum concurrent connections to 200 for all databases. The
following terminologies are defined for the evaluation section:

Databases: CH (ClickHouse), MS (MySQL), FLX (InfluxDB)
Operations: R (Read query), W (Insert query)
Tables: PC (IB Port Counters), PE (IB Port Errors), MPI (MPI process info)
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4.2 Impact of Parallelism on Data Insertion

Fig. 2. Impact of scaling number of
concurrent writes on the latency of
inserting 200K rows for each PE and
PC tables

This study addresses question #1 in
Sect. 1.1 by investigating the performance
variations between using multiple writers
as opposed to a single writer for the
insertion of communication profiling data
into databases. The experiment is designed
around a fixed dataset of 200,000 rows for
PE and PC data, which is evenly distributed
across writer threads ranging from 1 to 16
per table. To simulate a realistic scenario, 16
concurrent readers are added for each table.

The results of the experiment, as
depicted in Fig. 2, indicate a substantial per-
formance improvement when utilizing multiple writers. Specifically, employing
16 writers led to a speed-up factor of 9× for ClickHouse, 5× for MySQL, and
3× for InfluxDB. This enhancement was notable in ClickHouse, which exhibited
a latency of only 55 ms.

Key Findings: These results show that the use of multiple writers can enhance
the efficiency of inserting communication profiling data into databases.

4.3 Impact of Batching Rows on Data Insertion Performance

This experiment is designed to address question #2 in Sect. 1.1, investigating the
impact of batched inserts on different table write performances across various
databases and assessing the potential impact of concurrent read queries on this
performance. The batch size is systematically varied from 200 to 30,000 rows
for each MPI, PE, and PC table, to insert a total of 50,000 rows per table. The
duration required to insert the complete dataset into the databases is measured
for a single writer process, with the results presented in Figs. 3a, 3b, 3c. The
findings suggest that an increase in batch size generally leads to a decrease in
data insertion latency across the databases. However, an exception is observed
in MySQL, which displays diminished performance for PE and MPI tables when
the batch size exceeds 1,000 rows.

To further assess the influence of batch size, the experiment was replicated
with the inclusion of a single reader process, as illustrated in Figs. 3d, 3e, 3f. The
findings indicate that increasing the batch size continues to enhance performance
for ClickHouse and InfluxDB. However, for MySQL, surpassing a batch size of
1,000 results in a decline in write performance. Although there is a slight increase
in insertion latency when including a reader thread (by approximately 5%), the
overall performance remains largely unaffected.

Key Findings: The experiment suggests that batched inserts can improve table
write performance across various databases, with concurrent read queries having
only a minor impact on this performance. Based on the experimental results, a
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Fig. 3. Latency box plot: Impact of varying batch sizes (200–30,000 rows) on write
performance in MySQL, ClickHouse, and InfluxDB for MPI, PE, and PC tables, in
both single writer and concurrent reader-writer scenarios

batch size of 25,000 for ClickHouse, 1,000 for MySQL, and 30,000 for InfluxDB is
recommended to optimize the performance of the data insertion. We used these
batched sizes for the rest of the experiments in the paper.

4.4 Evaluation of Scaling Users Querying Data

Addressing question #3 in Sect. 1.1, this experiment delves into the impact of
concurrent read queries on the overall performance of tools used for commu-
nication profiling data analysis across various database options. In a scenario
where tool users are extracting data from single or multiple tables, the choice of
the database becomes crucial to support the scaling of concurrent users reading
data, which includes tasks such as aggregating values, filtering multiple fields,
and accessing historical data. This scenario could be analogous to loading the
jobs page of a tool where both MPI and IB level counters are read.

To evaluate the impact of different indexing methods used by each database,
an experiment is conducted on a database loaded with 5 million rows of random
values for each table. To guarantee a rigorous and worst-case scenario evaluation,
we used a comprehensive read query that encompassed aggregation, filtering,
timestamp searching, and max/min finding for all concurrent threads reading
from the same table. A similar read query is applied to all tables. The maximum
time among all threads for the read tests is measured to assess the worst-case
performance of the database across single and multiple tables on large data.
In other words, the operation is deemed complete once all the reads from the
front end are finished. Figures 4 and 7a illustrate the impact of scaling both read
operations and the number of tables read concurrently.
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Fig. 4. Latency box plot: Read-only performance scaling of MySQL, ClickHouse, and
InfluxDB with increasing concurrent readers on PE, PC, MPI, MPI+PC, MPI+PE,
and PC+PE tables, each thread reading 50K rows

Key Findings: Both MySQL and InfluxDB perform suboptimally when a large
number of users are querying the database simultaneously. Some tests were cur-
tailed as the total time exceeded the timing threshold of 120 s, as mentioned in
Sect. 3.1. ClickHouse shows promising results for queries from a large number
of users and even across all tables. We observe that for 64 users it takes a few
seconds to read the data from all the tables. This experiment highlights how
concurrent read queries from various users affect communication profiling data
analysis tools’ performance without concurrent insertions and emphasizes the
need for an appropriate database in such situations.

4.5 Evaluation of Scaling Insertion Processes

Building on the previous section and addressing questions #4, this experiment
evaluates the impact of concurrent writes when inserting 50,000 rows of non-
zero random data into MPI, PE, and PC tables across different databases. The
objective is to comprehend the implications of scaling up a tool’s database to a
larger cluster while preserving the same database threading configuration.

Figures 5a, 5b, and 5c illustrate the performance impact of scaling the number
of writer threads for a single table. Figures 5d, 5e, 5f, and 7b further evaluate
the same scenario but with scaling insertion to multiple tables.
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Fig. 5. Latency box plot: Write-only performance scaling of MySQL, ClickHouse, and
InfluxDB with increasing concurrent writers on PE, PC, MPI, MPI+PC, MPI+PE,
and PC+PE tables, each writer inserting 50K rows

Key Findings: We observe that InfluxDB performs the worst among all three
database options, while ClickHouse achieves sub-second insertion for 64 writers
for PE and PC tables but takes longer for the MPI table due to its larger
number of columns and containing data. We observe more latency variation
when writing to more than one table at the same time. When inserting to all
tables with 64 users, the performance is impacted by MPI insertions. Overall,
this experiment provides valuable insights into the impact of concurrent writes
on the performance of tools used for gathering communication profiling data
storage.

4.6 Scaling Simultaneous Insertion and Querying Processes

Regarding questions #5, we combine the last two experiments to explore the
impact of concurrent multi-process read and write operations across our database
options. We test the performance of combinations for three tables - MPI, PE,
and PC - under a worst-case scenario where all threads of each table are simul-
taneously reading and inserting the same volume of data. We scale the number
of simultaneous readers and writers, and we monitor the insertion latency for
50,000 rows per thread to each table while concurrently querying. This experi-
ment includes the stress test shown in Fig. 1 where multiple users are leveraging
the profiling tool at the same time of insertion across all tables.



116 P. Kousha et al.

Fig. 6. Latency box plot: Scaling performance comparison of database options: Increas-
ing number of concurrent readers and writers for PE, PC, MPI, MPI+PC, MPI+PE,
and PC+PE tables, Each thread handling 50K rows

Fig. 7. Latency box plots: Analyzing the impact of scaling the number of insertions
or queries for 50k rows across PE, MPI, and PC tables in MySQL, ClickHouse, and
InfluxDB databases

Our results, presented in Figs. 6 and 7c, show that ClickHouse outperforms
all other database options. It demonstrates the ability to scale up to 64 users,
inserting 50,000 data points with sub-second granularity. We observe that Click-
house simultaneously enables 32 threads writing and reading to all the tables
and achieves a latency of 2.3 s. As mentioned in Sect. 3.1, some experiments for
InfluxDB and MySQL with 64 threads R/W for each table were not carried out
due to poor performance, and the maximum value among all threads were used
for read operations.
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Key Findings: ClickHouse appears more suitable for exascale HPC profiling
with sub-second granularity and concurrent read operations promoting support
for more simultaneous users.

5 HPC Tool Integration and Evaluation

5.1 In-Production Performance Evaluation of Database Options

We have incorporated and deployed three database options into INAM, utilizing
it on the OSC cluster to conduct high-fidelity profiling stress tests and validate
our findings. The tests used a 1-second interval for profiling the InfiniBand net-
work, a 5-second interval for profiling both MPI and jobs metrics with an 80%
cluster load, and a background deletion of data older than 1 h. Consequently,
this evaluation demonstrates a real-world deployment of INAM with varying
database options. We also performed detailed timing measurements for each
component.

Fig. 8. Performance evaluation: assess-
ing stability in PE+PC data collec-
tion and insertion across the entire
OSC cluster - latency analysis of port
inquiry sweep for 2,400 samples, using
8 threads at one-second query intervals

Fig. 9. Improved latency of system-
wide PE and PC data collection and
insertion using ClickHouse for our OSC
cluster - using 8 threads, 1 s profiling
intervals across 1,544 nodes - 30x times
enhancement

Figure 8 presents a comparison of the total latency involved in gathering and
storing PC and PE data from the network across various databases. Each point
is reflecting the total latency across all threads for insertion and collection. Eight
threads were employed for data insertion, and this experiment was repeated for
2,400 samples. Notably, ClickHouse consistently exhibited superior performance
stability compared to the other databases. Figure 9 depicts the latency break-
down of each sweep when employing ClickHouse on OSC cluster. Compared to
initial observation in Sect. 1, we observed a 30-fold improvement in data inser-
tion speed from 0.45 s to 0.015 s. This optimization allowed for the collection and
insertion of a complete OSC network sweep of counters and errors in a median
time of just 15 ms.
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5.2 Evaluation of Disk Space Usage for Each Table

We evaluated the disk usage of ClickHouse versus MySQL after having 26 Million
rows of data in MPI, PE, and PC tables. We observed that ClickHouse uses
50% less disk space than MySQL due to its column-oriented storage structure,
which eliminates redundant data storage. This makes ClickHouse a more storage-
efficient option for large-scale data processing. The InfluxDB database was not
evaluated due to the overall poor performance.

6 Conclusion and Future Work

The task of real-time storing and retrieving high-fidelity communication profil-
ing data for large-scale HPC systems is challenging. It necessitates a database
infrastructure that can efficiently manage extensive data volumes while facili-
tating intricate yet scalable user queries. Our research uniquely delves into the
evaluation of HPC profiling data, a domain that remains underrepresented in
the literature due to the inherent dependency of performance on the data.

We benchmarked MySQL, InfluxDB, and ClickHouse databases, each rep-
resenting distinct data management paradigms, using standard benchmarks to
gauge their performance and scalability. Our findings underscore the benefits of
using multiple writers for enhanced data insertion latency and the advantages of
batched inserts. Specifically, ClickHouse stood out, showcasing a 9x improvement
in parallel insertion times compared to an optimized MySQL setup. It achieved a
2.3-second latency for inserting and reading 1.6 million rows of HPC data across
multiple tables, even with 32 concurrent users executing complex queries. More-
over, for a system quadruple the size of the Frontera supercomputer at TACC,
ClickHouse recorded a 55ms latency for profiling system-wide data insertion.

Further, we integrated the database options into INAM and perform evalu-
ation on real HPC system, detailed in Sect. 2.1. On the OSC cluster, our tests
with ClickHouse showed sub-second latencies for system-wide port counter/er-
ror collections, a 30x improvement in network monitoring, and halved disk space
usage. This work offers practical insights for practitioners selecting databases for
HPC data, emphasizing strategies seldom discussed in literature, as highlighted
in Sects. 4.2 (benefits of multiple writers) and 4.3 (optimized batch sizes for
insertion), and validating our findings with real HPC workloads.

As a part of future work, we plan on releasing INAM with ClickHouse support
and collaborating with HPC administrators to deploy the enhanced monitoring
tool to larger-scale clusters.
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Abstract. During the early stages of CPU design, benchmarks can only
run on simulators to evaluate CPU performance. However, most big data
component benchmarks are unable to finish running on simulators at an
acceptable time cost, as simulators are slower 100X–1000X times than
physical platform. Moreover, big data benchmarks usually need the sup-
port of complex software stacks, which is hard to be ported on the simu-
lators. Proxy benchmarks have the same micro-architectural characteris-
tics as real benchmarks and do not require long running time or complex
software stacks. Therefore, proxy benchmarks can replace real bench-
marks to run on simulators.

The biggest challenge of proxy benchmark generation is how to
guarantee that the proxy benchmarks have exactly the same micro-
architectural metrics as real benchmarks when the number of micro-
architectural metrics is very large. To deal with this challenge, we propose
a linear combination-based proxy benchmark generation methodology
that transforms this problem into solving a system of linear equations.
We also design the corresponding algorithms to ensure the system of lin-
ear equations is astringency.

We generate fifteen proxy benchmarks and evaluate their running time
and accuracy in comparison to the corresponding real benchmarks for
MySQL and RockDB. On the typical Intel Xeon platform, the aver-
age running time is 1.62 s, and the average accuracy of every micro-
architectural metric is over 92%, while the longest running time of real
benchmarks is nearly 4 h. We also conduct two case studies that demon-
strate that our proxy benchmarks are consistent with real benchmarks
both before and after prefetch or Hyper-Threading is turned on.

Keywords: Micro-architectural metrics · Proxy benchmark · Linear
combination

1 Introduction

In recent years, big data systems, including traditional relational databases, non-
relational databases, and distributed data management systems, have been mak-
ing an increasingly significant contribution to the development of economy [1–4].
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The CPU requires more advanced designs to enhance performance, while bench-
marks are important tools for evaluating CPU performance. Compared to tradi-
tional benchmarks like SPECCPU [5] and PARSEC [6], big data benchmarks like
CloudSuite [7] and BigDataBench [8–10] can provide a more accurate evaluation
of the CPU performance in processing big data tasks.

During the early stages of CPU design, the validity and effectiveness of many
designs have to be verified on simulators due to the heavy cost of designing and
implementing a CPU system. However, big data benchmarks can not run on
simulators because of prohibitively heavy time costs and the lack of supporting
complex software stacks on the CPU simulators.

Proxy benchmarks are workloads used to replace real benchmarks for evalu-
ating CPU performance. Compared to real big data benchmarks, proxy bench-
marks have a short running time and don’t need to port complex software stacks
on simulators. Moreover, they have the same micro-architectural metrics as real
big data benchmarks, which means they can represent real benchmarks’ micro-
architectural characteristics. Han et al. propose Cloudmix [11] to construct proxy
benchmarks for cloud systems, but these proxy benchmarks don’t have similar
metrics in cache behavior, branch prediction, and instruction mix. Panda et al.
propose PerfProx [12] methodology to construct proxy benchmarks for database
applications, but these proxy benchmarks don’t align real benchmarks’ micro-
architectural metrics directly, which means there are gaps with real benchmarks
in terms of micro-architectural metrics. Gao et al. propose a data motif-based
proxy benchmark generation methodology [13,14], but this methodology requires
the source codes of real benchmarks, which are sometimes not available.

The biggest challenge for constructing proxy benchmarks is how to guaran-
tee the proxy benchmarks have exactly the same micro-architectural metrics as
real benchmarks when the number of micro-architectural metrics is very large.
Traditionally, CPI, branch misprediction rate, cache miss rate and instruction
ratio are the metrics receiving most attention. Previous work primarily focused
on small-scale metrics, which means they can just align part of above metrics
and will meet great difficulties when aligned metrics increase. Because there are
correlations between the metrics, they can mutually influence each other, making
it difficult to align them simultaneously. We propose a linear combination-based
proxy benchmark generation methodology to deal with the challenge. In this
paper, we use big data benchmarks as samples to illustrate the validity of our
methodology. This methodology can be applied for generating any other proxy
benchmarks as long as their micro-architectural metrics can be measured.

Our contributions are three-fold as follows:

• We propose a linear combination-based proxy benchmarks generation
methodology that transforms the problem of constructing a proxy bench-
mark into solving a system of linear equations by a non-negative least square
method. This methodology can easily be expanded by just adding some equa-
tions into the system to deal with large-scale metrics.
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• We generate fifteen proxy benchmarks for real big data benchmarks. The
evaluation results demonstrate that the average accuracy of each micro-
architectural metric is over 92% while the average running time is 1.62 s.

• We use the fifteen proxy benchmarks to conduct two case studies, which
demonstrate that our proxy benchmarks are consistent with real benchmarks
both before and after prefetch or Hyper-Threading is turned on.

The rest of this paper is organized as follows. Section 2 provides the proxy
benchmark generation methodology. Section 3 conducts evaluations for proxy
benchmarks. Section 4 presents two case studies for micro-architectural configu-
ration settings. Section 5 discusses the related work. Section 6 draws conclusions.

2 Proxy Benchmark Generation Methodology

2.1 Problem Description

Proxy benchmarks constructed must have the same micro-architectural metrics
as real benchmarks, while the metrics are listed in Table 1. The metrics can be
divided into five categories, including processor performance, branch prediction,
cache behavior, TLB behavior, and instruction mix. Perf [15,16], a hardware
event counter, is used by us to collect these metrics. Because there are strong
correlations between these metrics and their number is high, they can mutually
influence each other, making it difficult to align them simultaneously. Except
for the requirement of micro-architectural metrics, proxy benchmarks must have
short running time and don’t need complex software stacks.

Table 1. Micro-architectural Metrics

Category Metric Name Description

Processor Performance CPI cycles per instruction

Branch Prediction Branch Miss Branch misprediction rate

Cache Behavior L1 DCache Miss L1 data cache miss rate
L1 ICache Miss L1 instruction cache miss rate
L2 Cache Miss L2 cache miss rate
L3 Cache Miss L3 cache miss rate

TLB Behavior DTLB Miss data TLB miss rate
ITLB Miss instruction TLB miss rate

Instruction Mix Instruction ratios Ratios of load, store, branch, floating point,
integer and vector instructions

We propose a linear combination-based proxy benchmark generation method-
ology illustrated in Fig. 1. Firstly, we measure the micro-architectural metrics of
each real big data benchmark. These metrics will serve as the target metrics for
our proxy benchmarks. Next, we select appropriate program fragments—basic
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Fig. 1. Proxy Benchmark Generation Methodology.

blocks from the basic block set based on the target metrics. Finally, we combine
these selected basic blocks linearly to construct proxy benchmarks. To reduce
the gap between the real benchmarks and the proxy benchmarks, we adjust the
execution times of each basic block in multiple rounds of iteration. This process
ensures that the proxy benchmark closely resembles the real benchmark in terms
of micro-architectural metrics.

2.2 Basic Block

We define a basic block as a program fragment consisting of a specific series
of assembly instructions, while their structures can be divided into interior and
exterior. In this paper, we use x86 assembly instructions to build basic blocks.
The exterior structure is a loop, which can control the execution times of the
basic block by changing the number of iterations. The interior structure is com-
posed of a series of specific instructions, which determines the micro-architectural
metrics of the basic block. Figure 2 presents an example of a basic block, in
which the interior comprises several add instructions, and the exterior structure
controls it to execute 300,000 times. Based on the differences in the interior
instruction series, we have constructed a total of four distinct types of basic
blocks.

Access Memory Basic Block. This kind of basic block primarily focuses on
accessing memory at a fixed distance. The fixed distance between two adjacent
memory accesses is denoted as STRIDE. An increase in STRIDE can result in a
decrease in spatial locality, leading to higher miss rates in L1 DCache and DTLB.
Furthermore, the increased miss rates in L1 DCache can potentially impact the
miss rates of L2 Cache and L3 Cache. Therefore, by adjusting the STRIDE value,
we can construct a set of access memory basic blocks with various miss rates in
L1 DCache, L2 Cache, L3 Cache, and DTLB.

Access Function Basic Block. This kind of basic block focuses on accessing
functions at a fixed distance. These functions all just have one return instruction
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movl    $3000000, %r13d

.L0_B:

addl    $0, %eax

addl    $0, %ebx

addl    $0, %ecx

addl    $0, %edx

...

subl    $1, %r13d

je .L0_E

jmp .L0_B

.L0_E:

1

2

3

4

5

6

7

8

9

10

11

Fig. 2. An Example of Basic Block.

and are arranged sequentially in memory. The fixed distance between two adja-
cent function accesses is denoted as STRIDE. A larger STRIDE value decreases
the temporal locality, resulting in increased miss rates in L1 ICache and ITLB.
The increased miss rate in L1 ICache can potentially impact the miss rates of L2
Cache and L3 Cache. Therefore, by adjusting the STRIDE value, we can con-
struct a set of access function basic blocks with various miss rates in L1 ICache,
L2 Cache, L3 Cache, and ITLB.

Branch Prediction Basic Block. This kind of basic block utilizes a random
number and a threshold value for branch prediction. It will generate a random
number R between 0 and 1024 and compares R with a pre-set THRESHOLD. If
R is bigger than THRESHOLD, a branch jump will happen; otherwise, it will
not. As THRESHOLD approaches 512 (half of 1024), the branch jump becomes
more random, making branch prediction more difficult and increasing the branch
misprediction rate. By adjusting THRESHOLD, we can create a set of branch
prediction basic blocks with a wide distribution of branch misprediction rates.

Arithmetic Instruction Basic Block. The interiors of these basic blocks pri-
marily consist of various arithmetic instructions. These basic blocks are designed
to show the differences in execution speeds among different arithmetic instruc-
tions. Specifically, add and sub instructions are typically faster, mul instructions
are slower, and div instructions are the slowest. By designing a set of basic
arithmetic instruction blocks with different combinations and sequences of these
instructions, we can create basic blocks with various Cycles Per Instruction (CPI)
values.

2.3 Linear Combination Method

We generate proxy benchmarks by linearly combining basic blocks. The linear
combination involves both connection and scaling, with their definitions stated
as Definition 1 and Definition 2.

Definition 1. Connection refers to the act of linking two program fragments
in a specific order. If we denote the higher-order program fragment as P1 and
another P2, we will represent the connected program fragment as P1 + P2.
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Definition 2. Scaling refers to altering the execution times of a basic block. If
a basic block P is scaled by k times to create a modified basic block P

′
, we will

use k · P to represent P
′
.

The basic blocks do not require any input data. The execution logic of basic
blocks is fixed and does not depend on input data. Therefore, these basic blocks
can be combined linearly without considering input data.

During the execution of every program, various hardware events will occur on
the microprocessor, including the misses and accesses of Cache at all levels, the
misses and accesses of DTLB and ITLB, the branch predictions and the branch
mispredictions, etc. If we use f(P ) to represent the number of times a hardware
event f occurs during the execution of program P , then Eq. 1 and Eq. 2 will hold
true under ideal conditions.

f(P1 + P2) = f(P1) + f(P2) (1)

f(k · P ) = k · f(P ) (2)

Therefore, as Fig. 3 describes, when two basic blocks are connected together,
the occurrence times of each hardware event will equal the original sum, and
when a basic block is scaled by 2 times, the occurrence times of each hardware
event will double.

scale

Instructions: 15000

L1-DCache misses: 140

L1-DCache accesses: 1200

Instructions: 10000

L1-DCache misses: 100

L1-DCache accesses: 1000

Instructions: 5000

L1-DCache misses: 40

L1-DCache accesses: 200

Instructions: 20000

L1-DCache misses: 200

L1-DCache accesses: 2000

connection

Fig. 3. Explanation of Linear Combination.

We run all basic blocks N0(N0 = 107) times and use Perf to measure the
occurrence times of all hardware events. For a proxy benchmark, we construct it
with basic blocks P1, P2, .., Pm and denote the execution times of the k-th basic
block as Nk. During the execution of the proxy benchmark, for a hardware event

f , it will occur
∑m

j=1 f(Pj) ·
Nj

N0
times. Additionally, every micro-architectural

metric can be calculated as the quotient of two hardware events. For example,
the miss rate of L1 DCache can be calculated through dividing the L1 DCache
misses by the L1 DCache accesses. Similarly, CPI can be calculated through
dividing the total cycles by the total number of instructions. That means we
can predict our proxy benchmark’s micro-architectural metrics if we know the
execution times of each basic block.
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In order to make the proxy benchmark’s micro-architectural metrics closely
align those of the real benchmark and also ensure that the proxy benchmark’s
running time stays less than specified limit, we need to determine appropriate
values for N1, ..., Nm that satisfy the constraints of Eq. 3. Within Eq. 3, the first
equation represents multiple terms. In this equation, metrici refers to the i-th
target micro-architectural metric, which can be calculated as the quotient of f i

A

and f i
B . If we hope proxy and real benchmarks align more micro-architectural

metrics, we just need to add more equations into Eq. 3, which is very simple.
Just by adding equations, our method can deal with the problem that the micro-
architectural metric set is large.

∑m
j=1 f i

A(Pj) ·
Nj

N0

∑m
j=1 f i

B(Pj) ·
Nj

N0

= metrici, i = 1, 2, ..., q

m∑

j=1

instructions(Pj) ·
Nj

N0
= ins1

(3)

The last equation in Eq. 3 is used to limit the total number of instructions ins1
in the proxy benchmark. Equations 3 can be easily transformed into a system
of linear equations. Although sometimes this system of linear equations doesn’t
have a unique solution, we can always find the best solution by a non-negative
least square method. After that, we can construct a proxy benchmark that meets
micro-architectural metrics and time limit requirements in theory.

2.4 Algorithm Flow

In the process of constructing a proxy benchmark, many basic blocks are redun-
dant. With the number of basic blocks increasing, the mutual influences between
them become more complex. Therefore, it’s necessary to select a subset of basic
blocks before formally constructing a proxy benchmark. For a proxy benchmark,
we initially consider using all basic blocks to construct and solve Eq. 3. As a
result, some of the basic blocks will have zero execution times, while others will
not. We will select the latter basic blocks.

The linear combination method described in Sect. 2.3 allows us to theoret-
ically construct a proxy benchmark that meets the micro-architectural metrics
and time limit requirements. However, in practice, the proxy benchmark may
not meet the metric requirements when it actually runs. This can be attributed
to several factors, including the mutual influences between the basic blocks, the
error of measuring tools, the instability of the system environment, etc.

To solve the above problem, we conduct multiple rounds of iteration on the
proxy benchmark. During each round, we run the proxy benchmark, measure
micro-architectural metrics, and increase the execution times of each basic block
based on the measurement results. The algorithm used for this process is pro-
vided in Algorithm 1. In Eq. 4, f i

A and f i
B represent the occurrence times of hard-

ware events of the previous round’s proxy benchmark, while f i
A(Pj) and f i

B(Pj)
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remain the same meaning as Eq. 3. Additionally, we utilize ΔNk to denote the
increase in execution times of the k-th basic block in the present round. Δins
represents the total increase of instructions in this round, and the rest of vari-
ables remain the same meaning as Eq. 3. Equation 4 can be easily transformed
into a linear system, and we can also find its best solution by the non-negative
least square method and ensure the linear equation is astringent.

Algorithm 1. Align
Require: Picked basic block subset B, target metrics, the number of instructions of

the first round’s proxy benchmark ins1, iteration rounds n
Ensure: The proxy benchmark PB

(N1, N2, ..., Np) ← solve Equations 3
PB ← construct a proxy benchmark according to (N1, N2, ..., Np)
run PB and measure its hardware events’ occurrence times
for epoch ← 2 to n do

Δins ← instructions × 0.2 // instructions is the number of instructions of the
last round’s proxy benchmark

(ΔN1, ΔN2, ..., ΔNp) ← solve Equations 4
(N1, N2, ..., Np) ← (N1 + ΔN1, N2 + ΔN2, ..., Np + ΔNp)
PB ← construct the proxy benchmark according to (N1, N2, ..., Np)
run PB and measure its hardware events’ occurrence times

end for
return PB

f i
A +

∑m
j=1 f i

A(Pj) ·
ΔNj

N0

f i
B +

∑m
j=1 f i

B(Pj) ·
ΔNj

N0

= metrici, i = 1, 2, 3..., q

m∑

j=1

instructions(Pj) ·
ΔNk

N0
= Δins

(4)

3 Evaluation

In this section, we evaluate the effectiveness of our proxy benchmark generation
methodology. Many database systems are equipped with stress testing tools,
such as db_bench [17] in RocksDB, SysBench [18], and MySQLslap in MySQL.
We use these tools to obtain 15 real benchmarks as listed in Table 2. Details of
db_bench and SysBench can be found in [17] and [18]. There are two items in
MySQLslap benchmarks, normal and partition. Their main performance are both
inserting random data into table. The difference is that partition use horizontal
partition table and normal does not. The names of these benchmarks are too
long so we use letters and numbers to denote them in the rest of our paper
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(e.g., fillrandom is denoted as D1). By using our methodology, we generate 15
proxy benchmarks. Finally, we measure the accuracy of their micro-architectural
metrics and their running time.

Table 2. Real Benchmarks

Benchmark Tool Workloads

db_bench fillrandom(D1), compact(D2), readrandom(D3)
SysBench oltp_delete(S1), oltp_insert(S2), oltp_point_select(S3),

oltp_read_only(S4), oltp_read_write(S5), oltp_write_only(S6),
oltp_update_non_index(S7), oltp_update_index(S8),
select_random_points(S9), select_random_ranges(S10)

MySQLslap normal(M1), partition(M2)

3.1 Experiment Setups

We use a Linux server to conduct our experiments. This server is equipped with
two Intel Xeon E5645 processors, each having six physical cores. The operation
system is CentOS 6.10 with the Linux kernel version 3.11.10. The server has a
total memory of 32GB. The total bandwidth is 72 bps, while the data bandwidth
is 64 bps. We use GCC 5.4.0 to compile our proxy benchmarks, and all GCC
configurations are set to default.

3.2 Accuracy

Equation 5 is used to compute the accuracy for each metric in Table 1. MetricR
represents the metric value of the real benchmark, and MetricP represents the
metric value of the proxy benchmark. The overall accuracy for a category of
metrics is represented by the lowest accuracy among them.

Accuracy(MetricR,MetricP ) = 1− |MetricR − MetricP
MetricR

| (5)

To construct the proxy benchmark for each real benchmark, we follow the
method described in Sect. 2.3, which involves a 10-round iteration. In the first
round, we create a proxy benchmark containing 0.5 billion instructions. In each
subsequent round, the number of instructions is increased by 20% to correct any
metric errors. After 10 rounds of iteration, we obtain the proxy benchmark we
require. Figure 4 shows the process of constructing the proxy benchmark of a
real benchmark (M1). Each curve represents the change of one metric in every
round. In the 10th round, the accuracy of every metric is over 95%.

Processor Performance Accuracy. Figure 5 displays the processor perfor-
mance accuracy of our proxy benchmarks compared to real benchmarks. The
lowest accuracy is 92.6%, while the average accuracy is 98.4%. These results
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Fig. 4. A Sample of Constructing M1 Proxy Benchmark.

prove that our proxy benchmarks closely resemble the corresponding real bench-
marks in terms of processor performance.

Branch Prediction. Figure 5 shows the branch prediction accuracy of our
proxy benchmarks. The minimal accuracy is 92.7% belonging to D3 real bench-
mark. The average accuracy is 97.3%.

Cache Behavior. Our proxy benchmarks’ cache behavior accuracy can be
observed from Fig. 5. The lowest accuracy is 85.9%, and the average accuracy is
92.7%. It’s worth noting that more than half of the proxy benchmarks exhibit
an accuracy over 90%.

TLB Behavior. According to Fig. 5, the minimal accuracy observed in TLB
behavior is 92.5%, and the average accuracy is 96.5%. It is important to note
that the majority of the proxy benchmarks demonstrate an accuracy of over
95%.

Instruction Mix. In terms of instruction mix, according to Fig. 5, the minimal
accuracy observed is 90.6%, and the average accuracy is 97.0%. Most of them
have a higher instruction mix accuracy than 95%. Our proxy benchmarks have
similar instruction structures to corresponding real benchmarks.

Fig. 5. Accuracy of All Proxy Benchmarks.
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From the perspectives of metrics, we can conclude that our proxy benchmarks
exhibit similar characteristics to the corresponding real benchmarks.

3.3 Running Time

We measure the running time of fifteen proxy benchmarks, and the results are
displayed in Fig. 6. It can be observed that the running time of each db_bench
proxy benchmark is below 1 s, and the running time of each proxy benchmark is
below 3 s. The average running time of these proxy benchmarks is just 1.62 s.

Fig. 6. Running Time of Proxy benchmarks.

3.4 Summary

The average accuracy of every micro-architectural metric between the proxy
benchmark and the real benchmark is over 92%, which proves that our proxy
benchmarks have almost the same micro-architectural characteristics as real
benchmarks. Moreover, the average running time of the proxy benchmarks is
just 1.62 s. Therefore, our proxy benchmark methodology is valid and effective
for the micro-architectural metrics.

4 Case Studies

In this section, we conduct two use case studies to evaluate the consistency
between real and proxy benchmarks in terms of micro-architectural metrics
across different configurations. We will evaluate them from the following per-
spectives: 1) can proxy and real benchmarks keep consistent when prefetch
is enabled? 2) can proxy and real benchmarks keep consistent when Hyper-
Threading is enabled?

To perform these evaluations, we will modify the configurations of our
machine. We will rerun both our real benchmarks and proxy benchmarks and
measure their respectively micro-architectural metrics. The correlation coeffi-
cient will be calculated using Eq. 6, while the average error will be calculated
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using Eq. 7. Here, x represents the micro-architectural metric of the real bench-
marks, while y represents the metric of corresponding proxy benchmarks.

ρ(x, y) =

√∑n
i=1(xi − x)(yi − y)

√∑n
i=1(xi − x)2

∑n
i=1(yi − y)2

(6)

error(x, y) =

∑n
i=1 |

yi − xi

xi
|

n
(7)

4.1 Prefetch Strategy Setting

Prefetch is a strategy employed by the CPU to fetch data from memory into the
cache in advance. The decision to use prefetch can impact the cache behavior
and, ultimately, the processor performance. We will focus on cache behavior
and processor performance in this part. Figure 7 and Fig. 8 present the micro-
architectural metrics of real and proxy benchmarks when prefetch enabled.

Figure 7a presents the CPI of real benchmarks and corresponding proxy
benchmarks. We observe that most of them exhibit similar CPI. Although the
largest error can achieve 36%, the average error remains acceptable, just 7.5%.
Moreover, the real benchmarks and proxy benchmarks display a high correlation
(ρ= 0.980). These results illustrate that the proxy benchmarks can retain the
processor performance characteristic of the real benchmarks, even when prefetch
is enabled.

Fig. 7. CPI, Branch Miss, DTLB Miss, ITLB Miss When Prefetch is enabled.

Figure 8a, Fig. 8b, Fig. 8c and Fig. 8d present the cache behavior of real and
proxy benchmarks. The average errors are respectively 4.8%, 7.0%, 10.8%, 43.4%,
and the correlation coefficients are respectively 0.986, 0.993, 0.820, 0.846. We
can find that L1 DCache and ICache Miss both have small errors and strong
correlations. The average errors of L2 and L3 Cache Miss are bigger, but they
still keep correlation at a high level. We can conclude that our proxy benchmarks
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can retain the cache behavior characteristic of real benchmarks. For Branch Miss,
DTLB Miss, and ITLB Miss, their average errors are respectively 5.26%, 8.5%,
14.4%, and their correlation coefficients are respectively 0.983, 0.984, 0.999.

Fig. 8. Miss of L1 DCache, L1 ICache, L2 Cache, L3 Cache When Prefetch is enabled.

4.2 Hyper-Threading Technology

Hyper-Threading (HT) is Intel’s parallel computation technology. HT enhances
the parallel computation performance of a CPU by offering two logical threads
on one core. Figure 9 and Fig. 10 present the metrics of real benchmarks and
proxy benchmarks when running with HT enabled on the server.

Figure 9a compares the CPI between real benchmarks and proxy benchmarks.
A strong correlation (ρ= 0.876) is observed between the CPI of real and proxy
benchmarks. However, there are significant gaps in some cases, such as S10, which
has an error of 31.4%. It can be observed that the CPI is quite close for the first
three real benchmarks and proxy benchmarks but not for the others. This can be
explained by the fact that only the first three real benchmarks are single-thread
programs, while all proxy benchmarks are single-thread programs. Therefore, our
proxy benchmarks can retain single-thread real benchmarks’ properties better.
In addition to CPI, as shown in Fig. 9b, similar patterns can be observed in the
results of Branch Miss. Branch Miss between the first three real benchmarks and
proxy benchmarks are quite close. This may be due to the impact of frequent
thread switches on branch prediction.
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Fig. 9. CPI, Branch Miss, DTLB Miss, ITLB Miss When HT is enabled.

Figure 10a, Fig. 10b, Fig. 9a and Fig. 9b prove proxy benchmarks retain real
benchmarks’ properties well in L1 DCache, L1 ICache, DTLB and ITLB. The
correlation coefficients are respectively 0.950, 0.982, 0.921, and 0.982. The aver-
age errors are respectively 10.2%, 7.4%, 21.8%, and 13.2%. The results of L2
Cache and L3 Cache are worse, while the average errors are 16.2% and 25.5%,
and the correlation coefficients are 0.800 and 0.991.

Fig. 10. Miss of L1 DCache, L1 ICache, L2 Cache, L3 Cache When HT is enabled.

When HT is enabled, the correlation coefficients of most micro-architectural
metrics keep at a high level, which demonstrates that our proxy benchmarks can
keep consistent with real benchmarks. For CPI and Branch Miss, the decrease in
correlation can be attributed to our methodology’s shortcoming that the proxy
benchmark can’t retain the real benchmark’s multi-thread characteristic well.

4.3 Summary

When prefetch or HT is enabled, most micro-architectural metrics’ correlation
coefficients are high. Therefore, the micro-architectural metrics of real and proxy
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benchmarks can keep consistent before and after prefetch or HT is enabled.
This implies that our proxy benchmark methodology could be used for micro-
architectural design evaluations.

5 Related Work

Many big data benchmarks have been proposed to evaluate big data system per-
formance. Such as BigBench [19], TPC-DS [20], BigDataBench [8–10], Cloud-
Suite [7], and YCSB [21]. However, it’s difficult for these benchmarks to run on
simulators because of their complex software stacks and long running time.

Reducing data size is an effective way to reduce running time for workloads.
Keeton et al. successfully reduce running time by replacing complex queries with
simple ones, thus reducing data size [22]. Shao et al. achieve similar goals by
modifying queries, reducing the number of concurrent clients, and overall data
size for DSS and OLTP workloads [23]. Barroso et al. and Ertvelde et al. opt
for using partial datasets instead of the entire dataset [24,25], which also proved
to be a feasible method for reducing running time. Although these methods
effectively reduce running time, they still depend on complex software stacks.

Extracting workload segments is another popular way. [26–28] sample the
instruction stream and fuse the sampled segments into new programs. Kernel
benchmarks, consisting of a set of kernels extracted from real application [29],
such as [30], are widely used in high-performance computing. SimPoint [31]
method uses BBV [32] to select some basic blocks to represent the overall pro-
gram. However, when these methods are applied in big data field, they must need
the support of complex software stacks. For example, applying SimPoint method
on a MySQL benchmark must depend on its storage engine(e.g., InnoDB).

The last way is to construct proxy benchmarks [11–14]. This method involves
using small program segments to construct proxy benchmarks, which can then
be used to replace the real benchmarks while can both reduce running time and
get rid of complex software stacks.

6 Conclusion

In this paper, based on simple program fragments called basic blocks, we propose
a novel proxy benchmark generation methodology. This methodology involves
linearly combining basic blocks and adjusting their execution times through
iteration to mimic real benchmarks. Our case studies also demonstrate that our
proxy benchmarks are consistent with real benchmarks before and after prefetch
or Hyper-Threading is turned on.
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to extract and judge the result. Finally, it defines multi-dimensional met-
rics. Our experiments on twelve state-of-the-art LLMs show the effec-
tiveness of our benchmark. AGIBench is publicly available from https://
www.benchcouncil.org/agibench.

Keywords: LLMs · Benchmark · Intelligence

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
S. Hunold et al. (Eds.): Bench 2023, LNCS 14521, pp. 137–152, 2024.
https://doi.org/10.1007/978-981-97-0316-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0316-6_9&domain=pdf
http://orcid.org/0000-0003-2521-4825
http://orcid.org/0000-0002-3911-9389
http://orcid.org/0009-0006-6997-1448
http://orcid.org/0000-0002-3728-6837
https://www.benchcouncil.org/agibench
https://www.benchcouncil.org/agibench
https://doi.org/10.1007/978-981-97-0316-6_9


138 F. Tang et al.

1 Introduction

Intelligence is an abstract concept and has no unified definition yet [8]. Research
about human intelligence has been conducted for decades and formed a series of
theories, e.g., triarchic theory of intelligence [13], fluid and crystallized intelli-
gence [2], theory of multiple intelligences [5], etc., while having no unified stan-
dard about how to evaluate human intelligence. In this condition, the difficul-
ties aggravate evaluating artificial intelligence (AI), which has shown powerful
abilities to solve problems or questions and reflects the tremendous potential
to approach human intelligence, especially the emerging large language models
(LLMs) like ChatGPT. Different from the previous AI applications that mainly
target a single task or a specific domain, LLMs anticipate achieving general intel-
ligence. Hence, the previous benchmarking methodologies that focus on specific
tasks or application domains are not applicable anymore. A new benchmarking
methodology is a necessity but no easy feat.

On the one hand, how to construct a benchmark with diverse, typical, and
difficulty-differentiated input questions is challenging. Similar to human intelli-
gence, the intelligence of LLMs has no unified benchmarking standard since the
input questions or problems to be solved are massive and interlaced. First, the
input questions or problems may not only involve multiple ability branches like
understanding and reasoning but also involve numerous knowledge categories
with varying levels of difficulties like mathematics and geography. Second, the
input questions or problems are multimodal with a combination of text and
images, for example, geometry problems in mathematics, talking about pictures
in linguistics, etc.

On the other hand, how to evaluate the benchmarking results and choose
comprehensive and important metrics is challenging. From the perspective of
analyzing the results, the response formats of LLMs are diverse. For example,
the response may (1) answer the choice from four choices marked A, B, C, and D,
with an explanation and analysis of the above four choices one by one; (2) only
answer the choice without an explanation; (3) answer the choice with a partial
explanation. In addition, the orders of choices and explanations vary, and the
text words are discrepant. Even though a human being can distinguish the result
easily, however, it is extremely hard for a computer program. From the perspec-
tive of the evaluation metrics, the performance of LLMs is multidimensional and
not merely average accuracy. For example, the LLMs may be adept in specific
ability branches, knowledge categories, or difficulty levels; the response results
may change during multiple runs, etc.

Many efforts have been proposed to benchmark the LLMs [7,9,12,18–20];
however, they fail to solve the above challenges. First, almost all adopt one
or more open-source datasets with a collection of blended text questions at a
per-dataset or per-ability branch granularity. However, these blended questions
may cover different knowledge categories and different difficulty levels. We may
hardly distinguish the performance on each ability branch, knowledge, or dif-
ficulty level, except for a total score on a dataset. Furthermore, even some of
those benchmarks [20] provide different difficulty levels; however, these difficulty
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levels are applied to a per-dataset granularity, which means the overall difficulty
of the entire question dataset while not a specific question. Second, to solve
the challenges of analyzing the response results, most of them [7,9,20] adopt
prompt engineering like few-shot and chain-of-thought (CoT) to increase the
accuracy or normalize the response format. However, our experiments and the
related work show that no matter few-shot or CoT would introduce unpredictable
performance impacts. Our experiments especially show that with few-shot, the
accuracy variance achieves 5% when using different random seeds. C-Eval [7]
shows that with CoT, the accuracy increases on some models (e.g., ChatGLM-
6B, +3%) while decreases on other models (e.g., Chinese-LLaMA-13B, -11.9%).
Some of the efforts [18] adopt a zero-shot approach to avoid the unpredictable
impact, however, they have to analyze the response result manually, which results
in unacceptable evaluation costs. Third, most of those efforts only report aver-
age accuracy and lack a comprehensive and multidimensional evaluation. While
HELM [9] incorporates multiple metrics, it omits human-referenced evaluation
and does not include a multimodal dataset.

Table 1. Observations and Implications for LLMs using AGIBench.

Observations Implications

Multi-granularity: (1) ChatGLM v2-6B outperforms
ChatGLM-130B even with less parameters; (2) LLMs reflect good
common sense (e.g., GPT-4 outperforms humans by 15.84%) and
understanding ability (e.g., GPT-4 is comparable with humans)
while poor reasoning ability (e.g., GPT-4 underperforms humans by
25.94%). (3) GPT-4 has the highest performance on most ability
branches and knowledge categories.

(1) Architecture improvement
and high-quality training data
are more pivotal than large
model size; (2) Reasoning ability
is a direction of optimization

Multimodal: (1) The image understanding and reasoning abilities
are poor for the four LLMs that support open image access. (2) For
LLMs that have no image processing ability, a majority of the
responses cannot admit the limitation and output hallucinational
and nonsense responses.

(1) The multimodal abilities
need optimizations

Human-referenced Difficulty: (1) Humans perform better than
LLMs on simple questions (i.e., Level 1 to 3) while worse on difficult
questions (i.e., Level 4 and 5). (2) The accuracy of GPT-4 is higher
than humans for common sense, comparable for understanding, and
worse for reasoning.

(1) The solving abilities of simple
questions and reasoning need
optimizations

Multi-dimensional metrics: (1) The worst-case accuracy of LLMs
is significantly below the corresponding average one, which means
the model does not always give a correct answer during three times
evaluations, indicating a poor reliability of LLMs. (2) The best-case
accuracy of LLMs is much higher than the other cases, which means
the model has a high probability to give a correct answer during
three evaluations. (3) The majority voting accuracy is similar to the
average one, which means most of the time, the model can give a
correct answer.

(1) The reliability of LLMs needs
optimization

This paper proposes AGIBench—a multi-granularity, multimodal, human-
referenced, and auto-scoring benchmarking methodology and benchmark for
LLMs. Instead of a collection of blended questions, AGIBench focuses on fun-
damental ability branches and adopts a four-tuple <ability branch, knowledge,
difficulty, modal> to label the attributes of each question. In total, AGIBench
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provides 927 questions, covering three kinds of ability branches, i.e., common
sense, reasoning, and understanding, covering 20 knowledge categories and 68
knowledge subclasses. First, it supports multi-granularity benchmarking, e.g.,
per-question, per-ability branch, per-knowledge, per-difficulty level, per-dataset,
and per-modal granularities. Second, it contains multimodal input, including var-
ious contexts like text-only, image-only, text with images, text with tables, and a
combination of text, images, and tables. Third, it classifies all the questions into
five degrees of difficulty according to the average accuracy rate of abundant edu-
cated humans (human-referenced). Fourth, it adopts zero-shot learning to avoid
additional unpredictability and provides an auto-scoring method to extract and
judge the result. Finally, it defines multi-dimensional metrics, including accuracy
under the average, worst, best, and majority voting cases, and repeatability. Our
experiments on twelve state-of-the-art LLMs show the effectiveness of our bench-
mark. Table 1 presents the main observations and implications of LLMs using
AGIBench.

2 Related Work

Many efforts have been proposed to evaluate traditional natural language pro-
cessing (NLP) algorithms and LLMs. GLUE [15] and SuperGLUE [14] are bench-
marks for traditional NLP tasks, primarily evaluating understanding capabilities.
However, the questions are limited in scope and mainly focus on sentence clas-
sification, which cannot comprehensively reflect the complexities of human lan-
guage [11]. Thus, these benchmarks cannot meet the need for evaluating LLMs.

For evaluating LLMs, from the perspective of the question dataset, most of
the related work uses closed-ended questions since the answer is definitive with-
out subjectivity. BIG-Bench [12] and HELM [9] use a combination of multiple
datasets like MATH [6] and GSM8K [3]. On the one hand, such an approach may
incur question redundancy and result in limited coverage. On the other hand,
they only support the benchmarking at the per-dataset or per-ability branch
granularity and thus cannot reveal the abilities from different perspectives. For
example, they only output a score on a specific dataset with blended questions
that involve different difficulty levels. Hence, we can hardly know the ability for
a specific knowledge category or a specific difficulty level. ScienceQA [11] col-
lects questions from elementary and high school science curricula. However, these
questions are too easy for humans. AGI-Eval [20], C-Eval [7], and GAOKAO [18]
focus on the LLMs benchmarking using the Chinese language. They utilize exams
like national civil service and college entrance exams as question datasets. How-
ever, these benchmarks only use average accuracy as the evaluation metric, which
is overly simplistic. Several efforts attempt to use open-ended questions for LLMs
benchmarking. Chandrasekaran et al. [1] collect a series of open-ended and multi-
modal questions to evaluate GPT-4; however, evaluating and scoring the results
is extremely hard. In addition, the evaluation results are hard to reproduce,
considering the subjectivity of different persons.
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From the perspective of evaluation and scoring method, a majority of the
existing efforts adopt prompt engineering for evaluation, such as few-shot learn-
ing [16] and Chain-of-Thought (CoT) [17]. Although these methods have been
proven to have the potential to standardize the format of the response result
or increase model accuracy, however, C-Eval [7] and our experiments show that
they may not always be effective and would introduce unpredictable performance
impacts. In this condition, we cannot evaluate the abilities of LLMs accurately
since the response results may be impacted by prompt engineering. Additionally,
using these methods requires case-by-case tuning, which exacerbates the bench-
marking costs and cannot assure the fairness of benchmarking. MT-Bench [19]
explores the use of GPT-4 as an approach to judge the correctness of the response
results of LLMs and compare it with human judgment. They find that the deci-
sions from GPT-4 and humans have an 80% similarity. However, MT-Bench only
selects 80 questions and thus has limited representativeness. Additionally, using
GPT-4 directly for scoring would incur huge labor costs since we still need to
check the judgment for every question.

3 The Design and Implementation

This section illustrates the design and implementation of AGIBench. Section 3.1
describes the benchmarking methodology. Section 3.2 presents an AGIBench
overview.

3.1 Methodology

To evaluate the different question-solving abilities of LLMs and their degrees of
intelligence, we adopt a multi-granularity, multimodal, human-referenced, and
auto-scoring benchmarking methodology, covering the question dataset construc-
tion, evaluation methodology, and evaluation metrics.

First, to support multi-granularity benchmarking instead of only per-dataset
or per-ability branch benchmarking adopted in the related work, we use a four-
tuple <ability branch, knowledge, difficulty, modal> to label the attributes of
each question. The ability branch focuses on the most fundamental and essential
abilities like understanding. Knowledge includes a broad spectrum of knowledge
categories within each ability branch, e.g., passage reading within understanding
ability. Difficulty indicates a question’s difficulty level, i.e., Levels 1 to 5, from
easy to difficult. Modal indicates the modal of a question like text or image.

Second, to construct a representative and typical question dataset, we aim to
cover many questions with diverse and varied attributes. Specifically, we choose
the three most fundamental ability branches: common sense, understanding, and
reasoning. We single out twenty comprehensive and representative knowledge
categories for these three ability branches in total. Knowledge for common sense
covers six categories: humanities, technology, law, geography, politics, and econ-
omy; Knowledge for understanding includes passage reading, sentence grammar,
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fill-in-the-blank, and long text reading; Knowledge for reasoning includes graph-
ical reasoning, definition judgment, comprehensive materials, tabular materials,
textual materials, graphical materials, analogical reasoning, logical judgment,
mathematical calculation, and numerical reasoning. For the difficulty attribute
of each question, we adopt a human-referenced methodology based on big data
statistics, which uses the accuracy rate answered by millions of well-educated
humans to label the question’s difficulty level. For example, Level 1 is the easi-
est one with an 80% to 100% accuracy rate, which means 80% to 100% of millions
of humans can give a correct answer. Level 2 has a 60% to 80% accuracy rate.
Level 3 has a 40% to 60% accuracy rate. Level 4 has a 20% to 40% accuracy
rate. Level 5 is the most difficult and has a 0% to 20% accuracy rate. We cover
multimodal input that encompasses various contexts, including text-only, text
with tables, text with images, image-only, and a combination of text, images,
and tables.

Third, to cope with the diversity of the response format and avoid the unpre-
dictable performance impacts of prompt engineering, we do not use prompt engi-
neering and attempt to find a series of regex patterns to extract the answers and
perform judgment.

Fourth, we define multi-dimensional metrics for LLMs benchmarking: accu-
racy under different cases and repeatability.

3.2 AGIBench Design and Implementation

We design and implement the AGIBench based on the methodology, including
the question dataset construction, evaluation and scoring, and metrics.

Question Dataset. AGIBench selects questions related to human life, espe-
cially for the Chinese. We mainly choose the questions from national civil service
examinations since they satisfy the diversity and fundamentality requirements.
We use a four-tuple <ability branch, knowledge, difficulty, modal> to label the
attributes of each question. The ability branch covers common sense, under-
standing, and reasoning abilities. The knowledge contains 20 categories and 68
subclasses covering humanities, physics, chemistry, economics, law, politics, cul-
ture, geography, history, engineering, mathematics, etc. Table 2 shows the ability
branch and knowledge attributes of the AGIBench dataset. Regarding difficulty,
our dataset uses human accuracy as the reference, and the accuracy is based on
the highly educated human. We carefully select the difficulty of questions and
classify five levels from Levels 1 to Level 5. A higher number means a more chal-
lenging degree. From Level 1 to Level 5, the responding human accuracy is [80%,
100%], [60%, 80%), [40%, 60%), [20%, 40%), and [0%, 20%). Figure 1 shows the
distribution of difficulty levels of AGIBench. As for the modal, we include mul-
timodal input covering various contexts, i.e., text-only, image-only, text with
images, text with tables, and a combination of text, images, and tables. The
corresponding number of questions for these contexts are 863, 5, 38, 10, and 11,
respectively. In total, we provide 927 questions. Note that the image is processed
as a URL in the questions. Additionally, the text dataset contains plain text,
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Table 2. Ability Branch and Knowledge Attributes of Question Dataset in AGIBench.

Ability Branch Knowledge Knowledge Subclass (Percentage)

Common Sense Economics Economics (1.08%)

Geography Environmental (0.76%), National and Social Conditions
(1.08%), Natural (1.08%)

Humanities Chinese History (1.08%), Cultural (1.08%), Literary
(1.08%), World History (1.08%)

Law Administrative Law (1.08%), Civil Law (1.08%),
Commercial and Economic Law (1.08%), Constitutional
Law (1.08%), Criminal Law (0.97%), Jurisprudence
(1.08%), Procedural Law (2.16%)

Politics Politics (1.08%)

Technology Biology Fundamentals (1.08%), Chemistry Fundamentals
(1.08%), Everyday Knowledge (1.08%), Physics
Fundamentals (1.08%), Technology Theories and
Achievements (1.08%)

Reasoning Analogical Reasoning Grammatical Relations (0.86%), Logical Relations (5.07%),
Semantic Relations (3.02%)

Comprehensive Materials Comprehensive Materials (1.08%)

Definition Judgment Multiple Definitions (1.08%), Single Definition (1.08%)

Graphic Materials Graphic Materials (1.08%)

Graphic Reasoning Attribute Principles (0.86%), Pattern Principles (1.83%),
Positional Principles (1.94%), Quantity Principles (1.4%),
Spatial Reconstruction (0.22%), Special Principles (0.86%)

Logical Judgment Combinations and Arrangements (1.08%), Daily
Conclusions (1.08%), Reason Explanations (0.97%),
Strengthened Types (1.08%), Translation Reasoning
(1.08%), True-False Reasoning (0.97%), Weakened Types
(1.08%)

Mathematical Calculation Core Methods (5.18%), Economic Profit and
Comprehensive Planning (2.91%), Engineering (1.08%),
Inclusion-Exclusion Principle (12.51%), Journey (1.08%),
Permutation, Combination, and Probability (2.16%),
Solution Problems (0.97%)

Numerical Reasoning Basic Sequences (0.76%), Exponential Sequences (0.97%),
Fractional Sequences (1.08%), Mechanical Split Sequences
(1.94%), Multi-level Sequences (1.08%), Multiple Sequences
(0.54%), Recursive Sequences (1.08%)

Tabular Materials Tabular Materials (1.08%)

Textual Materials Textual Materials (1.08%)

Understanding Fill-in-the-blank Content Word Fill-in-the-blank (1.08%), Idiom
Fill-in-the-blank (1.08%), Mixed Fill-in-the-blank (1.08%)

Long Text Reading Long Text Reading (1.08%)

Passage Reading Central Understanding (1.62%), Detail Judgment (1.08%),
Sentence Understanding (1.08%), Title Insertion (1.08%)

Sentence Grammar Flawed and Ambiguous (1.08%), Following Sentence Choice
(1.08%), Sentence Fill-in-the-blank (1.08%), Sentence
Ordering (1.08%)

complex mathematical formulas, and table data. We adopt the latex format for
mathematical formulas, and for table data, we use the markdown format.

We further consider the length of questions. Figure 2 shows the length dis-
tribution of questions, and our dataset covers a broad spectrum. The size of
most questions is more significant than 100 while many others are less than
ten words [10]. Our dataset contains several long-length questions whose length
exceeds 1000, which also shows the difficulty and variety of our dataset.



144 F. Tang et al.

Fig. 1. The Distribution of Five Difficulty Levels. Using the accuracy rate answered
by millions of well-educated humans as references.

Fig. 2. The Length Distribution of the Question Dataset in AGIBench.

Evaluation and Scoring. To avoid the impact of prompt engineering and
meanwhile essentially reduce labor costs, we adopt an auto-scoring methodology
that combines a heuristic regular expression searching algorithm (HRE for short)
and GPT-4. On the one hand, we use an HRE algorithm to search the regex
patterns, as shown in Algorithm 1. We repeat N iterations and randomly select
M responses from the total responses during each iteration. For the M responses
of each iteration, we set a threshold “minimum_limit”, indicating the minimum
number of occurrences that a response format can be added as a new regex
pattern. After that, we obtain a set that contains frequently occurring regex
patterns. Our evaluation statistics in Sect. 4.2 verify the effectiveness of the HRE
algorithm. Among hundreds of thousands of responses from LLMs, about 67% of
the response results can be adequately extracted using HRE. On the other hand,
in terms of the remaining small fraction that cannot be extracted by HRE, we use
GPT-4 to extract the results. Note that we do not use GPT-4 directly because
its accuracy cannot achieve 100%, and we still need to verify the judgments
artificially. By adopting HRE, we reduce about seventy percent labor costs.

Metrics. We collect many metrics to evaluate LLMs comprehensively, not
merely average accuracy, which is the only metric for most related work. We
widely include the average accuracy, the worst-case accuracy, the best-case accu-
racy, the majority voting accuracy, and the repeatability to indicate the perfor-
mance of LLMs under different cases. We detail these metrics as follows. Note
that we evaluate each LLM using a question three times to ensure the fairness
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Algorithm 1. Heuristic regular expression searching (HRE)
1: pattern_sets ← []
2: for i ← 1 to N do
3: sampled_responses ← sample(total_responses, M)
4: while max_number_of_common_patterns(sampled_responses) > mini-

mum_limit do
5: temp_pattern ← propose_pattern(sampled_responses)
6: patched_to_pattern_sets ← False
7: for pattern ∈ pattern_sets do
8: if can_patch(pattern, temp_pattern) then
9: pattern ← patch(pattern, temp_pattern)

10: patched_to_pattern_sets ← True
11: break
12: end if
13: end for
14: if not patched_to_pattern_sets then
15: pattern_sets.append(temp_pattern)
16: end if
17: sampled_responses ← sampled_responses − match(sampled_responses,

temp_pattern)
18: end while
19: end for

and the reliability of benchmarking. For each time, if the answer is correct, the
score is 1, otherwise 0.

(1) Average accuracy. For the three times’ evaluations on an LLM using the
same question, we use the average score as the score of the LLM for that
question. Then we calculate the average score for all questions as the final
average accuracy.

(2) The worst-case accuracy. Different from the average accuracy, if all three
times’ evaluations give the correct answer, the score is 1, otherwise 0. Then
the average value on all questions is reported as the final worst-case accuracy.

(3) The best-case accuracy. More relaxed compared to the worst-case one, if
greater than or equal to one answer gives the correct answer, the score is 1,
otherwise 0.

(4) The majority voting accuracy. If at least two answers are correct, the score
is 1, otherwise 0.

(5) Repeatability. The similarity of the responses during three different runs. A
high similarity indicates good repeatability.

4 Evaluation

This section presents the evaluation, including the evaluation methodology
(Sect. 4.1), experiment setup Sect. 4.2, and evaluation results Sect. 4.3.
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4.1 Evaluation Methodology

LLMs Overview. We choose representative LLMs with different underlying
technology, differentiated model sizes, and state-of-the-art performance. We also
consider additional training data, architectures, target purposes, and whether
open-sourced. Specifically, we choose 12 models from OpenAI, Anthropic, Meta,
Tsinghua, Baidu, Alibaba, and iFlytek, including GPT-3.5, ChatGPT, and GPT-
4 from OpenAI, Claude from Anthropic, LLaMA-13B and Vicuna-13B (LLaMA
based) from Meta, ChatGLM-6B, ChatGLM v2-6B, and ChatGLM-13B from
Tsinghua, Ernie from Baidu, Qianwen from Alibaba, and Spark from iFlytek.
The model size ranges from 6 billion to 175 billion. The detailed information is
listed in Table. 3.

Table 3. The Overview of Evaluated LLMs.

Model Model Size Training Data Composition Temperature Developer Open Source Access

ChatGLM-6B 6 billion Chinese and English 0.5/1 Tsinghua Yes Local
ChatGLM v2-6B 6 billion Chinese and English 0.5/1 Tsinghua YES Local
ChatGLM-130B 130 billion Chinese and English Not support Tsinghua No Web
GPT-3.5 175 billion Primarily English 1.0/2 OpenAI No API
ChatGPT 175 billion Primarily English 1.0/2 OpenAI No API
GPT-4 Unknown Primarily English 1.0/2 OpenAI No API
Claude Unknown Primarily English Not support Anthropic No Web
LLaMA-13B 13 billion Primarily English 0.5/1 Meta Yes Local
Vicuna-13B 13 billion Primarily English 0.5/1 UC Berkeley et al Yes Local
Ernie 175 billion Chinese and English Not support Baidu No Web
Qianwen Unknown Chinese and English Not support Alibaba No Web
Spark Unknown Chinese and English Not support iFlytek No Web

Evaluation Method. We do not use prompt engineering like few-shot learning
and chain-of-thought (CoT) to avoid unpredicted impacts, verified by related
work [7]. They find the CoT performs better on some models (e.g., ChatGLM-6B,
+3%) and worse on others (e.g., Chinese-LLaMA-13B, -11.9%). We also conduct
an experiment to evaluate the impact of few-shot learning. On ChatGLM v2-6B,
we randomly select several question-and-answer pairs as examples to evaluate
the impact. Then we use different random seeds and run them three times for
each seed. Table. 4 shows the result. The bold text shows the best results (about
37.54%), and the underlined text shows the worst results (about 32.69%). The
accuracy gap using different random seeds is large, achieving about 5%.

Table 4. Few-shot experiment on ChatGLM v2-6B using different random seeds and
run three times for each seed. Bold text represents the best results, and underlined test
represents the worst results.

Seed Run #1 Run #2 Run #3

0 37.54% 37.54% 37.32%
1 33.44% 33.33% 34.52%

2 32.15% 34.84% 32.69%

3 35.28% 35.49% 34.41%

4 33.23% 33.01% 33.33%
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4.2 Experiment Setup

We locally deploy ChatGLM-6B and ChatGLM v2-6B on a single NVIDIA V100
GPU and deploy LLaMA-13B and Vicuna-13B on four NVIDIA 1080 Ti GPUs.
For close-sourced models that provide API access, we perform evaluations using
their APIs, including GPT-3.5, ChatGPT, and GPT-4. For other close-sourced
models that do not offer API access but provide web-based products, we per-
form evaluations by simulating user input in the browser, including Claude,
ChatGLM-130B, Ernie, Qianwen, and Spark. To ensure fairness, we set the tem-
perature parameter as half of the maximum value of the model for all twelve
models, except for the web-based products, which do not provide the interface
to set the temperature parameter.

Fig. 3. Regex Patterns Identified by HRE Algorithm.

For the response extraction and judgment, we use the HRE algorithm illus-
trated in Algorithm 1 and GPT-4 to avoid the unpredictable performance
impacts of prompt engineering. We set N as 10, M as 100, and minimum_limit
as 2, which means repeating 10 iterations and randomly selecting 100 responses
during each iteration. If a response format occurs at least two times, we will add
this pattern. We collect 100,116 responses from LLMs, and the regex patterns
identified by the HRE algorithm are shown in Fig. 3. These patterns support
extracting and judging 67% answers of the total responses, demonstrating the
effectiveness of our algorithm. The remaining 33% responses that have no unified
regex pattern are processed by GPT-4, and the judgments are manually checked.
We use the chain-of-thought (CoT) prompt shown in Fig. 4 to fix the judgment
output of GPT-4 when extracting the answers. Note that this prompt is used to
judge the correctness of the remaining responses without impacting the model
evaluation process.
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Fig. 4. The Prompt Used to Extract and Judge Answers.

4.3 Evaluation Results

We report the evaluation results including multi-granularity, multimodal, and
human-referenced difficulty level, and response repeatability benchmarking. Fur-
ther, using comprehensive metrics, we evaluate the accuracy of LLMs under
different cases.

Multi-granularity Benchmarking. Table 5 shows the multi-granularity
benchmarking results at a per-dataset, per-ability branch, and per-knowledge
granularities. Note that the “Human” column indicates human accuracy as a
reference. The average accuracy on the whole dataset is 60.91%. GPT-4 outper-
forms others largely on many ability branches and knowledge categories. Most
LLMs have better understanding abilities than common sense and reasoning
abilities, and the reasoning ability performs the worst. Compared to the human
accuracy, GPT-4 outperforms humans by 15.84% for the common sense branch
and has similar accuracy to humans (73.16% vs. 74.82%) for the understanding
branch, while performing worse than humans for the reasoning branch with a
gap of 25.94%.

Table 5. Multi-granularity Benchmarking Results.

Ability Knowledge ChatGLM ChatGLM v2-6B ChatGLM-130B GPT-3.5 ChatGPT GPT-4 Claude LLaMA-13B Vicuna-13B Ernie Qianwen Spark Human

Common Sense Avg 32.15% 46.30% 36.99% 34.88% 40.28% 65.84% 36.47% 23.25% 23.97% 31.28% 17.23% 19.65% 50.00%
Humanities 31.67% 41.67% 28.06% 19.17% 36.94% 56.11% 34.44% 18.33% 18.89% 25.56% 17.22% 9.72% 48.54%
Technology 33.78% 47.11% 46.00% 36.89% 48.00% 75.78% 36.22% 28.44% 26.22% 35.56% 22.22% 37.78% 51.10%
Law 29.25% 44.16% 31.50% 35.30% 33.61% 57.81% 33.47% 22.22% 25.74% 30.52% 13.50% 8.72% 49.00%
Geography 36.63% 52.67% 44.03% 32.10% 43.21% 79.42% 34.98% 21.40% 20.99% 31.28% 23.87% 35.39% 49.43%
Politics 26.67% 65.56% 41.11% 82.22% 54.44% 68.89% 56.67% 22.22% 18.89% 35.56% 6.67% 14.44% 60.70%
Economics 42.22% 41.11% 47.78% 44.44% 45.56% 78.89% 53.33% 31.11% 32.22% 34.44% 14.44% 17.78% 49.10%

Reasoning Avg 27.95% 29.29% 29.29% 25.82% 32.95% 36.03% 27.87% 18.85% 21.75% 24.91% 23.91% 30.75% 61.97%
Graphic Reasoning 26.60% 24.41% 21.89% 12.96% 21.21% 9.43% 27.27% 21.21% 18.35% 20.37% 20.37% 20.20% 71.76%
Definition Judgment 32.22% 34.44% 57.78% 40.56% 63.33% 72.22% 36.11% 31.11% 24.44% 33.89% 20.00% 41.11% 76.20%
Analogical Reasoning 26.10% 31.86% 37.88% 12.72% 38.02% 29.72% 22.09% 12.32% 17.67% 25.84% 14.59% 34.94% 67.08%
Logical Judgment 34.48% 38.89% 44.12% 37.58% 45.92% 61.27% 42.65% 21.90% 32.03% 35.46% 31.21% 38.07% 70.73%
Mathematical Calculation 27.04% 26.99% 24.77% 28.61% 30.00% 36.11% 25.42% 20.28% 20.32% 25.28% 27.27% 34.81% 49.53%
Numerical Reasoning 22.22% 25.93% 27.05% 26.57% 32.37% 34.62% 28.34% 15.46% 23.03% 17.71% 21.74% 24.15% 67.08%
Text Analysis 38.89% 52.22% 0.00% 36.67% 38.89% 34.44% 22.22% 11.11% 21.11% 28.89% 18.89% 0.00% 72.10%
Table Analysis 53.33% 25.56% 22.22% 25.56% 17.78% 46.67% 23.33% 21.11% 27.78% 6.67% 30.00% 12.22% 76.36%
Graphic Analysis 20.00% 22.22% 20.00% 20.00% 13.33% 16.67% 20.00% 13.33% 14.44% 27.78% 30.00% 10.00% 78.50%
Comprehensive Analysis 32.22% 31.11% 18.89% 33.33% 23.33% 37.78% 36.67% 12.22% 30.00% 10.00% 10.00% 13.33% 59.00%

Understanding Avg 44.53% 57.42% 46.22% 44.89% 62.58% 73.16% 42.84% 26.40% 33.78% 39.82% 22.04% 40.27% 74.82%
Passage Reading 51.11% 68.40% 60.25% 55.80% 73.83% 79.51% 48.40% 29.88% 43.70% 43.70% 24.44% 51.85% 74.66%
Sentence Grammar 41.94% 45.56% 43.33% 35.00% 56.67% 66.11% 38.33% 26.39% 28.33% 40.28% 22.78% 41.39% 74.43%
Fill-in-the-blank 34.44% 51.48% 42.22% 33.33% 44.44% 67.41% 41.85% 25.93% 27.04% 39.63% 24.81% 32.22% 78.38%
Long Text Reading 55.56% 73.33% 6.67% 70.00% 90.00% 90.00% 38.89% 12.22% 31.11% 21.11% 0.00% 7.78% 66.40%
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Multimodal Benchmarking. We mainly perform the multimodal benchmark-
ing on Ernie, ChatGLM-130B, Qianwen, and Spark models, since they provide
Internet connectivity and can access images. For the other eight models that do
not provide Internet connectivity including GPT-3.5, ChatGPT, GPT-4, Claude,
LLaMA-13B, Vicuna-13B, ChatGLM-6B, and ChatGLM v2-6B, we also input
the image URL to them.

For the eight models that have no image processing ability, the ideal response
is to admit they have no such ability and cannot comprehend images. However,
our evaluations find that only slight responses of GPT-3.5, ChatGPT, and GPT-
4 can admit the image processing limitations. The other models just generate
hallucinational and nonsense responses.

For the four models that have image processing ability, through comprehen-
sive multimodal benchmarking, we discover that none of the evaluated LLMs
accurately comprehend image content. When facing a multimodal question that
contains both text and image, their responses are either text or text with images.
However, we find that the output response has a low correlation with the input
image. Even though Ernie has a certain probability to accurately comprehend the
conventional images like ImageNet [4], however, the accuracy decreases largely
(nearly zero) when facing geometric images.

Difficulty Benchmarking Using Human-Referenced Accuracy. We eval-
uate the ability to solve questions with different difficulty levels, using human
accuracy as references, as shown in Fig. 5. Note that Level 1 to Level 5 is from
simple to complex, with the easiest Level 1 and the most difficult Level 5. The
human label indicates the human accuracy on that level, and humans can achieve
89.92%, 69.20%, 51.11%, 32.64%, and 14.98% average accuracy from Level 1 to
5, respectively.

Fig. 5. The Average Accuracy on Five Difficulty Levels. Level 1 is the easiest, and
Level 5 is the most difficult. The human label means the human accuracy on that level.

From Level 1 to 4, GPT-4 performs best among all twelve LLMs. For Level
5, Claude performs the best. Another exciting and counterintuitive phenomenon
is that humans usually perform better than LLMs for simple difficulty levels like
Levels 1 to 3. In contrast, humans perform worse than some LLMs for challenging
levels like Levels 4 and 5. For example, GPT-4 has a higher average accuracy than
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Fig. 6. Sensibility to Prompts and Response Repeatability of LLMs.

humans on Level 4. On Level 5, many LLMs have similar or even higher average
accuracy than humans, including ChaGLM, Claude, Ernie, ChatGPT, GPT-4,
GPT-3.5, Vicuna-13b, and ChatGLM-130b. The gap between the human and the
best LLM on each level is 31.67%, 16.68%, 6.09%, -5.23%, -14.51%, respectively.

Response Repeatability. We further evaluate the repeatability of the
responses. For each question, we ask LLMs using three different prompt types
each of which repeats three times. The three prompt types are (i) only question
without any prompt; add (ii) “The answer is:” and (iii) “The answer and the rea-
son are:” at the end of the question, respectively. Figure 6 shows the results. We
classify the responses into three categories: (1) all three answers are the same,
like choosing A three times, (2) one answer is different, like A, A, and B for
three answers. And (3) all three answers are entirely different, like A, B, and C
for three answers. Note that the (1) category means the best repeatability while
(3) means the worst repeatability. We find that Spark and Ernie have the best
response repeatability, while LLaMA-13B is the worst.

The Average, Worst-Case, Best-Case, Majority Voting Accuracy. Fig-
ure 7 presents the accuracy results under the average, worst, best, and majority
voting cases. We also use three kinds of prompt types, which use the same prompt
setting with the above response repeatability evaluation. We find the following
observations. (1) GPT-4 achieves the highest accuracy under four cases. (2)
ChatGLM v2-6B performs better than ChatGLM-130B, which means the model
architecture and the quality of training data are more important than merely
increasing the model size. (3) The worst-case accuracy of LLMs is significantly
below the corresponding average one, which means the model does not always
give a correct answer during three times evaluation, indicating a poor reliability
of LLMs. (4) The best-case accuracy of LLMs is much higher than the other
cases, which means the model has a high probability to give a correct answer
during three times evaluations. (5) The majority voting accuracy is similar to
the average one, which means most of the time, the model can give a correct
answer.
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Fig. 7. The Average, Worst-case, Best-case, Majority Voting Accuracy of LLMs.

5 Conclusion

This paper provides a multi-granularity, multimodal, human-referenced, and
auto-scoring benchmark for evaluating large language models—AGIBench,
including a question dataset, auto-scoring evaluation, and comprehensive met-
rics. Through labeling each question with four attributes, including ability
branch, knowledge, difficulty, modal, AGIBench supporting multi-granularity
benchmarking at per-dataset, per-ability branch, per-knowledge, per-difficulty
level, per-modal, and per-question granularities. We use the accuracy rate
answered by millions of well-educated humans to label each question’s difficulty
level and include text and image modals. Instead of only using average accuracy
as a metric, we define multi-dimensional metrics to evaluate the LLMs compre-
hensively. Our experiments on twelve LLMs show the effectiveness of AGIBench.
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Abstract. Understanding the characteristics of workloads is essential
to improving the management of a High Performance Computing (HPC)
cluster. However, due to the restrictions of privacy and confidentiality,
real HPC workloads are rarely open for studying. Generating synthetic
workloads that mimic real workloads can facilitate related research, such
as cluster planning and scheduling. Thus automated HPC workload gen-
eration has long been an active research topic. In this paper, we intro-
duce a workload modeling approach that combines statistical modeling
and autoregressive analysis. The model we built can generate complex,
realistic HPC workloads with features that clearly describe the schedul-
ing process, including job arrival time and other job attributes that affect
scheduling such as job run time and job requested resources. Job arrivals
in HPC clusters are generally represented by stochastic processes. In
our proposed approach, job arrivals will be generated by a statistical
model that consists of multiple Poisson processes with constraints pro-
vided by Gamma distribution. Then, we perform autoregressive analysis
on the changing trends of job attributes to extract sequence information
from historical workload trends that reflect user habits and scheduling
habits in the cluster. Our approach generates job attributes based on the
extracted sequence information for each job in the generated job arrival
sequence. We evaluate the performance of the proposed approach using
multiple metrics as well as a real-world use case. Experiments on real
workloads from four supercomputing centers validate the effectiveness of
the proposed method.

Keywords: Workload generation · Workload characterization ·
Cluster scheduling · Statistical modeling · Autoregressive analysis

1 Introduction

Understanding the characteristics of workloads is essential to promoting the
management of an HPC cluster. These known workload characteristics enable
better services that have data dependence on workload status, such as cluster
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planning and scheduling [4,34]. However, real HPC workloads are rarely open
for studying because of the restrictions of privacy and confidentiality. Due to the
lack of publicly available real HPC workloads, synthetic workloads are widely
used in HPC research. For example, with synthetic workloads, portable I/O
analysis of commercially sensitive HPC applications can be conducted [11]. The
evaluation of scheduling algorithms also relies on the large number of synthetic
workloads available [24,30]. In particular, learning-based schedulers can be more
fully trained on a large number of available synthetic workloads [12,13]. There-
fore, automated HPC workload generation has long been an active research topic
among HPC providers and researchers [4,23].

To accurately synthesize HPC workloads, characterizing workload patterns
is essential. Some of these characteristics are intuitive and straightforward, such
as the natural fluctuations in workloads throughout the week. Weekday work-
loads tend to be heavier than weekend workloads. Besides, there are implicit
characteristics, such as workload fluctuations due to user habits [9]. Therefore,
it is crucial to construct a detailed model and incorporate a broad set of factors
to facilitate the extraction of all workload characteristics. With a comprehensive
understanding of these workload characteristics, synthetic workloads can then
be generated reasonably.

The classic approach to workload generation is statistical modeling [8,25,35].
Statistical modeling is a type of modeling method based on the regression of a
large number of independent data to obtain the statistical distribution of the
objective. For example, Poisson regression is a conventional method to simulate
job arrivals [4]. It assumes that a large number of randomly arriving jobs usually
follow a Poisson distribution. Then based on the time-dependent features, the
regression model will fit a Poisson distribution for the job arrivals in each time
interval. Other job attributes such as job run time are also typically generated
by statistical modeling. The distribution of job run time is usually obtained by
the empirical counting of the run time of all jobs in a period [8].

However, relying solely on statistical modeling frequently falls short of accu-
rate workload generation. The primary focus of statistical modeling is on the dis-
tribution of workloads, neglecting potential correlations between various work-
load sequences. In this paper, we combine statistical modeling and autoregressive
analysis for automatic HPC workload generation. At first, the job arrivals are
obtained by modeling and simulation. Then other job attributes are further gen-
erated for the generated job arrival sequence.

In our workload generation approach, a statistical model combining Poisson
regression and Poisson-Gamma regression is used to generate job arrivals. The
commonly used Poisson regression works well in clusters with large amounts of
job arrivals [9]. But in clusters with sparse workloads, the Poisson distribution
assumption of job arrival distribution is difficult to be satisfied. Overdisper-
sion of job arrivals occurs in these cases [32], which we deal with by introduc-
ing a Poisson-Gamma distribution. The hybrid model of Poisson regression and
Poisson-Gamma regression can handle more job arrival distributions than Pois-
son regression alone.
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Other job attributes, such as job requested resource and job run time, are
generated by the autoregressive model in our approach. These job attributes
are organized as time series in the historical job arrival sequences. In our app-
roach, we perform attentive sequential generation for these job attributes based
on autoregressive analysis of serial autocorrelation. Compared with statistical
modeling, our model can better reproduce the data correlation in the series [4].
Based on the seasonal scheduling behavior derived from historical workloads,
coupled with simulated job sequences provided by the job arrival model, job
attributes of each job can be reasonably generated in our approach.

We evaluate the proposed workload generation approach on real HPC work-
load traces from four different real-world supercomputing centers. Our results
show that our model can reveal the characteristics of real workload accurately.
The synthetic workload generated by the proposed model reproduces scheduling
information in the real workloads. In the evaluation, we use multiple metrics to
measure the effectiveness of existing methods as baselines and show the superi-
ority of our model.

The main contributions of this study are summarized as follows:

– We simulate job arrivals based on statistical modeling combining Poisson
regression and Poisson-Gamma regression, with which more diverse arrival
situations can be accurately represented.

– We conduct an autoregressive analysis to better model serialized workload
information so that we can perform attentive sequential generation for job
attributes realistically. So that the job attributes can be realistically generated
for the simulated job sequence.

– We evaluate the proposed method on real workload traces from four super-
computing centers. All evaluations demonstrate the superiority of using our
model to generate synthetic workloads.

Table 1. Specifications of workload traces from four platforms.

#nodes #cores/node #jobs Time span

Platform A 450 24/28 288K 364 days
Platform B 100 64 248K 364 days
Platform C 416 12 264K 364 days
Platform D 114 28 23K 364 days

2 Preliminary

We conduct our experiments on real traces from four different supercomputing
centers. They are Supercomputing Center of University of Science and Technol-
ogy of China [3], Center for High Performance Computing in Shanghai Jiao Tong
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University [1], Shanghai Supercomputing Center [2], and Gansu Supercomputing
Center respectively, and are subsequently referred to as platforms A, B, C, and
D. The workload trace data from platform A is a typical dataset to conduct our
experiments, and the inspiration for building our workload generation model is
mainly based on our exploration of it. The workload trace data from the other
three platforms are used as supplementary datasets in our evaluation experi-
ments to verify the generalization of our approach. The specifications of traces
from these four platforms are shown in Table 1. Among them, the traces of the
first three platforms have similar specifications, while the data size of platform
D is smaller.

These workload traces are recorded in the Standard Workload Format (SWF)
proposed by David Talby and refined through discussions by Dror Feitelson,
James Patton Jones, and others [6]. For each job, we mainly pay attention to
its user ID, submit time, run time, and requested resources. A complete job
sequence plus these job attributes can describe a complete scheduling process.
For evaluation of workload generation, the last 10 weeks of each trace will be
used as a test window, while all the data will be used to train the workload
generation model.

The above platforms used for evaluation experiments mainly carry scientific
computing workloads for researchers in various fields [1–3]. They are dominated
by these tightly coupled MPI jobs. Common scientific computing software, such
as VASP (Vienna Ab initio Simulation Package) [18] and Gaussian [10], often
submits a large-scale parallel computing job to the cluster. For reasons such
as adaptation or price, users’ main choice for computing resources is the CPU
rather than other acceleration devices such as GPU. The computing power of
the computing nodes of the above platforms is indeed mainly provided by the
CPU. So in this paper, job requested resources refer to the number of requested
computing nodes, most of which are computing nodes with multiple CPU cores.
Moreover, as the computing model expands, the run time of scientific computing
tasks will increase beyond linear corresponding increases [19]. Therefore, the
run times of jobs in these workloads vary greatly, with the longest scientific
computing jobs running for weeks and the shortest test jobs running for just
seconds.

3 Modeling Methodology

The workload generation model proposed in this paper consists of two major
components, the job arrival model and the job attribute model. The overview of
the modeling framework is shown in Fig. 1.

First, the arrival of jobs within each hour will be described by stochastic
processes. The job arrival model employs two regression tasks to model job
arrivals. Then, for each generated job with unknown attributes, the job attribute
model autoregressively generates job attributes that conform to user habits at
the user granularity, including requested resources, run time, job queue, etc.
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Fig. 1. Overview of modeling framework.

3.1 Job Arrival Model

The job arrival model employs two regression tasks, Poisson regression and
Poisson-Gamma regression to model the stochastic process of job arrivals. We
treat job arrivals at one-hour intervals within the trace range as random arrivals.
The feature vector of each interval is determined by the following three features:

– HoD: One-hot code, to indicate this interval belongs to which hour of the
day. Its dimension is 24.

– DoW : One-hot code, to indicate this interval belongs to which day of the
week. Its dimension is 7.

– WoY : One-hot code, to indicate this interval belongs to which week of the
year. Its dimension is 52.

HoD and DoW determine the feature vector of this interval in the regression
task. They describe the temporal characteristics of job arrivals on day and week
scales, respectively. WoY does not participate in the regression task. We use it
to calculate a trend correction term for job arrivals that changes with the No.
of weeks to make the regression model more generalizable. WoY is also used as
the basis for us to assign user IDs to jobs within a week.

Poisson Model. Poisson regression is widely used in the simulation of job
arrivals [4,13,16]. The probability distribution of a single Poisson distribution
is: f(y = k;λi) = λi

k

k! e−λi , k = 0, 1, . . . , and Poisson process assumes that in
interval i, it contains yi events arrive randomly. For interval i, we use feature
vector xi to describe its temporal features. HoD and DoW determine a 168×168
one-hot code feature matrix X. For any feature vector, it can be matched to a
row in the feature matrix. Then, the distribution parameters can be expressed
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as λ = eX β , where X is the feature matrix composed of independent feature
vectors, and β is the parameter matrix that needs to be regressed. The log-
likelihood function of Poisson regression can be calculated by:

l(β) =
n∑

i=1

(yixiβ − exi β ), (1)

where n represents that there are n observations in the training set, and yi is
the number of event arrivals when the corresponding feature vector is xi . The
partial derivative of the negative log-likelihood function in the direction of β is
used as Loss for training, and the β parameter can be optimized by minimizing
the negative log-likelihood estimation.

Poisson-Gamma Model. In real data, due to problems such as overdispersion
and zero-inflation [32], the naive Poisson process is difficult to fully describe the
arrivals in the real world. For such data, Its probability distribution can be
better represented by a negative binomial distribution, or a Poisson-Gamma
mixture distribution: f(y = k; r, p) = Γ (k+r)

Γ (k+1)Γ (r)p
r(1 − p)k, k = 0, 1, . . . . For the

overdispersed part, negative binomial regression can be chosen instead of naive
Poisson regression, by replacing the parameters as follows: αi = 1

r , μi = 1−p
αp .

Then the log-likelihood function of negative binomial regression can be calculated
by:

l(α,μ) =
n∑

i=1

{yiln
αxiμxi

1 + αxiμxi
+ lnΓ (yi +

1
αxi

)

− 1
αxi

ln(1 + αxiμxi) − lnΓ (yi + 1) − lnΓ (
1

αxi
)}.

(2)

Hybrid Model. The above two regression models will be trained to convergence
taking into account zero inflation of the data. At this point, we have two different
models describing job arrivals during each one-hour interval. The Poisson model
is more suitable for describing data with sufficient statistics and less interference.
The Poisson-Gamma model can describe overdispersed data more accurately. We
fuse these two models into a unified hybrid model based on Bayesian generalized
additive models [21].

This hybrid model serves as our final job arrival model to simulate job arrivals
within each one-hour interval. These job arrivals will be modified based on the
correction of the weekly job arrival trend according to the interval’s WoY . Then
a sequence of jobs with just arrival time is generated, J = {j1, j2, j3, · · · }. Also
based on WoY , we count the proportion of job arrivals for each user every
week and randomly assign user IDs to all jobs within a week according to the
generalized Bernoulli processes, which is based on the multinomial distribution
of job arrivals over the user set. Let the user set be U = {u1, u2, u3, · · · }, and
the entire job sequence J can be divided into multiple subsequences based on
user IDs: Ju1 = {ju1

1 , ju1
2 , ju1

3 , · · · },Ju2 = {ju2
1 , ju2

2 , ju2
3 , · · · }, · · · .
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3.2 Job Attribute Model

The function of the job attribute model is to generate reasonable job attributes
for each job in the simulated job arrival sequence {j1, j2, j3, · · · }. Then we
describe the attribute embedding, the autoregressive analysis process, and the
attentive sequential workload generation in our job attribute model.

Attribute Embedding. The job attributes recorded in HPC cluster trace
include many items, such as requested resources, run time, job queue, job sta-
tus, etc. The job attributes that are the targets of our modeling generation can
be specific to the following two items: (1) Job Requested Resource, indicates the
number of computing resources requested by this job, for example, 5 Computing
node cores; (2) Job Run Time, indicates the time that this job occupies com-
puting resources while running; Based on these two items, the job scheduling
process within an HPC cluster can be clearly constructed. Other miscellaneous
items that have a minor impact on the scheduling process are not our modeling
generation targets due to the inconsistency in trace record attribute types across
platforms. But all items will contribute features to our attribute embedding, let
the number of items be k. In order to facilitate attribute generation, we quantize
the job attributes, in which the values of these items will be mapped to k discrete
sets by clustering. In this way, the job attributes can be uniquely represented
by one-hot codes ∈ R

k×D, where D is the dimension of discrete sets. We encode
these items together into an embedding vector to represent the attributes of the
job:

A(j) = Embed[R(j), T (j), O(j)], (3)

where R(j), T (j), and O(j) respectively represent the requested resources, run
time, and other miscellaneous items of job j. A(j) ∈ R

d is an embedding vector
representing the attributes of job j. From this, job attributes can be generated
based on a multinomial distribution over k discrete sets. Our job attribute model
is built based on autoregressive analysis.

Autoregressive Analysis. For a user’s sequence of jobs sorted by arrival time,
job attributes are autocorrelated over time scales [4]. This temporal correla-
tion contains the user’s habit of submitting jobs in the cluster. We autore-
gressively analyze this temporal correlation between jobs to obtain the possi-
ble job attribute distribution. Assume a specific user u, we need to generate
job attributes {A(ju

1 ), A(ju
2 ), · · · } for each job in u’s simulated job sequence

{ju
1 , ju

2 , · · · }. The basis of this generation process is an autoregressive analysis
on u’s historical job attribute sequence, {A(ju

h1), A(ju
h2), A(ju

h3), · · · }.
Generally, for the attribute generation of user u’s i-th job, we have to extract

information from the previous part of the historical sequence to obtain its
attribute distribution:
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M(ju
i ) = softmax[extrac{A(ju

h(i−n)), · · · , A(ju
h(i−2)), A(ju

h(i−1))}], (4)

where M(ju
i ) represents the multinomial distribution of attribute values of user

u’s i-th job. In the following section, we will introduce how the approach proposed
in this paper autoregressively extracts historical sequence information to perform
workload generation.

Attentive Sequential Generation. The proposed approach mainly uses the
attention layer to extract historical sequence information. Compared with RNNs
(Recurrent neural networks) and statistical time series models such as ARIMA
(Autoregressive Integrated Moving Average Model), Transformer networks based
on the attention mechanism are superior in extracting long-term dependencies
in sequence information [31]. The attention mechanism can be defined as:

Attention(Q,K,V ) = softmax(
QKT

√
d

)V , (5)

where Q represents the queries, K the keys and V the values. The attention
block calculates a weighted sum of all values, where the weight between query
i and value j relates to the interaction between query i and key j. The scale
factor

√
d is to avoid overly large values of the inner product. In our method,

the attention layer is used to extract historical sequence information:

Au
i = {A(ju

h(i−n)), · · · , A(ju
h(i−2)), A(ju

h(i−1))},

Eu
i = Attention(Au

i W Q,Au
i W K ,Au

i W V ),
(6)

where W Q,W K ,W V ∈ R
d×d is the linear projection matrices. The intermedi-

ate representation Eu
i is then transformed through the feed-forward layer and

softmax layer, and finally the multinomial distribution M(ju
i ) of the attributes of

job ju
i is obtained. M(ju

i ) ∈ R
k×D is the probability distribution of job attributes

based on the user’s long-term habits obtained by autoregressively analyzing the
user u’s historical job sequence. A(ju

h(i)) ∈ R
k×D before embedding is the one-

hot code of the job attributes actually submitted by the user in this order, which
reflects the short-term considerations of user u. Generally, we randomly generate
job attributes for all jobs in the simulated job sequence according to the proba-
bility distribution [M(ju

i ) + A(ju
h(i))]/2. At this point, the workload generation

that mimics the cluster scheduling behavior but is not restricted to historical
workload patterns is completed.

4 Evaluation

In this section, we evaluate whether synthetic workloads can mimic the schedul-
ing behavior exhibited by real workloads from multiple perspectives. We first
evaluate the generated job arrivals and then evaluate the overall workload gen-
eration results. Also, we evaluate our workload generation model on a use case.
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Fig. 2. Evaluation of job arrival models with metric Mean.

4.1 Evaluation of Job Arrival Generation

We evaluate our job arrival generation model by comparing its outputs with
the outputs of Poisson regression model as the baseline. We use the following
evaluation metrics:

– Mean, is the average number of job arrivals in each feature interval.
– Devi, is the regression deviance that is twice the difference between the max-

imum achievable log-likelihood and the log-likelihood of the fitted model:
Devi = 2[l(y) − l(α,μ)].

As described in Sect. 3.1, the feature vector of each interval in the job arrival
model, which is a 168-dimensional one-hot code (7 days a week, multiplied by
24 h a day), represents the one-hour interval in one hour of the day of the week.
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We evaluate job arrival generation results over time intervals represented by all
168 different one-hot feature vectors. The evaluation will compare whether the
distribution of simulated job arrivals at each feature interval can approach the
distribution of real job arrivals from the above metrics.

For the metric, Mean, it is intended to judge whether the arrival model
can generate a reasonable number of job arrivals. The evaluation results for
this metric are shown in Fig. 2. It can be seen that our model and the Poisson
regression model both can generate a reasonable number of job arrivals in each
feature interval. In each feature interval, the average number of generated job
arrivals is very close to the statistical results in the real trace.

Fig. 3. Evaluation of job arrival models with metric Devi.

The metric, Devi, is intended to judge whether the regressions in arrival mod-
els converge well or not. The distribution obtained by Poisson regression will be
approximated for calculation of deviance as a negative binomial distribution of
μ = λ and α = 10−5. The evaluation results for this metric are shown in Fig. 3.
Taking platform A as an example, it can be seen that naive Poisson regression
is difficult to converge on the trace of platform A, while our model converges
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perfectly. This result shows that although the Poisson regression model can gen-
erate a reasonable number of job arrivals, it cannot restore the overdispersion
in the original data distribution. Notably, the periodic variation of deviance in
Poisson regression is strongly correlated with the periodic variation of the mean
of job arrivals in all features. The periodic variation in the mean of job arrivals
is due to the change in the amount of user job submissions caused by the alter-
nation of day and night. Similar periodic variation in regression deviance of job
arrivals indicates that there is a strong positive correlation between the degree
of overdispersion of job arrivals and the number of job arrivals in the evaluated
HPC cluster.

4.2 Evaluation of Workload Generation

We evaluate our overall workload generation results by comparing them with
the results of existing methods as baselines:

– Multinomial: This type of method directly generates workloads based on
the multinomial distribution of user job attributes based on statistics on all
historical traces. Many classic HPC workload modeling methods are of this
type [8,25,35].

– RepeatFlav: This method generates duplicate job attributes for all user jobs
in a period based on the most frequently occurring user job attributes in this
period. It was used as the main baseline in the work of Bergsma et al. [4].

– Bergsma: The work of Bergsma et al. serves as our main baseline [4]. Their
method can represent the state-of-the-art deep learning-based workload gen-
eration methods. They used LSTM combined with survival prediction as the
backbone network to conduct autoregressive analysis of historical sequence
information and gradually job attribute distribution step by step.

We use the following evaluation metrics:

– Coverage Accuracy, indicates how accurately the distribution used for job
attribute generation covers the real job attributes. For a job, if the probability
of generating real job attribute values in its generation distribution exceeds
80%, then this step of generation is counted as an accurate generation.

– Cosine Similarity, represents the cosine similarity between synthetic work-
load sequences and real workload sequences, Cosine Similarity(W , Ŵ ) =
W · Ŵ /(||W || ||Ŵ ||)

These two metrics measure the correlation between model output and real work-
loads from different perspectives.

Table 2 shows the metrics comparison on all platform traces of job requested
resource sequence generated by our model and baselines. It can be seen that
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Table 2. Evaluation of job requested resource generation.

Platform A
Coverage Accuracy Cosine Similarity

Multinomial 67.15% 0.5018
RepeatFlav 72.17% 0.5183
Bergsma 80.28% 0.6672
Our model 82.93% 0.7042
Platform B

Coverage Accuracy Cosine Similarity

Multinomial 77.93% 0.6512
RepeatFlav 80.82% 0.6791
Bergsma 88.21% 0.7117
Our model 89.14% 0.7291
Platform C

Coverage Accuracy Cosine Similarity

Multinomial 69.41% 0.5293
RepeatFlav 78.96% 0.6174
Bergsma 83.22% 0.6713
Our model 83.58% 0.7132
Platform D

Coverage Accuracy Cosine Similarity

Multinomial 77.37% 0.6884
RepeatFlav 79.51% 0.7375
Bergsma 85.16% 0.7927
Our model 90.84% 0.9015

our model has higher coverage accuracy and can better reflect the job requested
resource correlation in real workloads, compared to all baselines. In all platforms
on the dataset, the variation of job requested resources is not large, so even
Multinomial model can effectively generate the job requested resource for all
jobs.

Table 3 is the metrics comparison on all platform traces of job run time
generated by our model and baselines. Unlike the evaluation of the job requested
resource model, the performance of Multinomial model and RepeatFlav model
are poor, due to the variation of run time being too large in all platform traces.
In contrast, Bergsma model and our model achieve much better results on the
generation of job run time. Compared with the Bergsma model, our job running
time generation method also has advantages in both metrics.
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Table 3. Evaluation of job run time generation.

Platform A
Coverage Accuracy Cosine Similarity

Multinomial 27.31% 0.2018
RepeatFlav 37.26% 0.1475
Bergsma 51.40% 0.6034
Our model 57.32% 0.6437
Platform B

Coverage Accuracy Cosine Similarity

Multinomial 34.76% 0.2910
RepeatFlav 45.81% 0.3049
Bergsma 60.84% 0.6826
Our model 60.43% 0.6728
Platform C

Coverage Accuracy Cosine Similarity

Multinomial 33.19% 0.2941
RepeatFlav 44.29% 0.3121
Bergsma 59.11% 0.6186
Our model 59.41% 0.6472
Platform D

Coverage Accuracy Cosine Similarity

Multinomial 43.72% 0.3219
RepeatFlav 50.14% 0.4112
Bergsma 69.11% 0.7236
Our model 69.17% 0.7311

4.3 Use Case of Workload Generation

We evaluate our workload generation model on a real-world use case: cluster
planning [4]. Cluster planning is when the workload in the cluster is over-
loaded/underloaded, we need to plan the appropriate number of nodes to
add/reduce. For this problem, synthetic workloads are necessary to more fully
simulate and verify whether the cluster is load balanced after adding or reducing
the corresponding number of nodes. Figure 4 shows our evaluation results on the
trace of platform A of whether the synthetic workloads reflect cluster load levels.
In this experiment, we assume that the cluster has no limit on the number of
computing resources, and then count the number of computing node cores occu-
pied by the workloads in each time period to represent the cluster load level.
It can be seen that our synthetic workloads can well reflect the real load level,
where we treat the attribute distribution of each job as a discretization of the
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Gaussian distribution to calculate the 90% confidence interval of the synthetic
load level. Our synthetic workloads can be generated in large numbers based
on random patterns while simulating real load levels, making cluster planning
simulations more sufficient and credible.

Fig. 4. Evaluation of whether the synthetic workloads reflect cluster load levels.

5 Related Work

5.1 Workload Modeling in HPC

Workload modeling has long been an active topic in the HPC community. Many
existing works [8,25,35] were devoted to using statistical multinomial distribu-
tion to fit the workload modeling of supercomputing systems, which is a classic
HPC modeling method. Rodrigo et al. further characterized the workloads in
their HPC systems based on the system life cycle and evolution trends [29] and
proposed a modeling method for heterogeneous workloads based on this por-
trayal [28]. Our approach is inspired by these existing state-of-the-art methods
and further proposes a more comprehensive workload modeling for workload
generation.

5.2 Workload Modeling in Cloud Computing

For cloud computing, although the main workload service types are different,
their workload scheduling forms are similar to those in classic supercomputing
systems. The mainstream method of workload modeling in cloud computing is to
describe workloads’ changing stochastic processes. Calheiros et al. introduced a
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workload prediction model based on ARIMA [5]. Gao et al. conducted a detailed
study on the prediction of cloud resource allocation [15]. Cortez et al. constructed
a time series model of the complete workload trend from the historical charac-
teristics of virtual resource workload sequences [9]. Bergsma et al. established
workload modeling also based on historical sequence characteristics, which can
effectively generate complex and realistic workloads [4]. Our approach also draws
from stochastic considerations and generation techniques in modeling workloads
in cloud computing.

5.3 Resource Management in HPC

Workload modeling is beneficial for managing resources to improve utilization
of HPC clusters. Many resource management services are based on workload
profiling. The foundation of performance modeling and optimization of existing
scheduling systems such as Slurm is workload modeling [26,34]. Cluster planning
also relies on workload models for more adequate simulation [4]. Workload mod-
eling and generation is more widely used in the evaluation of scheduling algo-
rithms [24,30], ranging from classic schedulers [17], heuristic-based schedulers
[7,20,22], prediction-based schedulers [14], deep reinforcement learning-based
schedulers [12,13,27,33,36,37]. Motivated by these existing works, we plan to
design a novel cluster scheduler based on our workload modeling in future work.

6 Conclusion

In this paper, we proposed a method to model the workload in HPC clusters and
generate synthetic workloads for HPC clusters. We combined statistical model-
ing and autoregressive analysis in our model to better characterize the workload
scheduling behavior exhibited by real workloads. Using the proposed model,
we can generate a synthetic workload at any time involved in modeling, which
can reflect the most consistent workload distribution based on accurate histor-
ical characteristics extraction of real workloads. The proposed method greatly
improved the quality of automatically generated workloads and made the work-
load generation model more reliable for resource management services, such as
cluster planning and scheduling.

In the future, we plan to further evaluate how the synthetic workload reflects
real scheduling behavior and determine whether it can play a role in data aug-
mentation. On this basis, we will design a more efficient data-driven learning-
based cluster scheduler that can be further enhanced with synthetic workloads
for training.
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Abstract. With the proliferation of cloud computing, cloud service
providers offer users a variety of choices in terms of pricing and comput-
ing performance. A critical factor impacting computing performance is
main memory, often evaluated using bandwidth and access latency met-
rics. For two evaluations with the same workload while under different
system configurations, it is hard to determine which system delivers bet-
ter memory performance for the particular workload if neither evaluation
data achieves higher bandwidth and lower latency simultaneously. This
dilemma is further exacerbated under different memory access patterns.
We recognize that state-of-the-art memory performance metrics cannot
well address the dilemma. To address this challenge, we define a holistic
memory performance metric, named Hmem, which is calculated from a
fusion of bandwidth and latency metrics across different access patterns.
To reflect the overall performance of a given workload, we calculate the
correlation between our proposed metric and the workload’s throughput.
Experimental results show that Hmem exhibits an average improvement
of 70% on correlation coefficients compared to state-of-the-art memory
performance metrics. A large cloud service provider has adopted Hmem
to improve the efficiency of their memory performance evaluation and
cloud server selection.

Keywords: Memory metric · Memory performance evaluation ·
Comprehensive evaluation · Cloud computing

1 Introduction

As cloud computing proliferates, many cloud service providers offer consumers a
range of pricing and performance choices [1]. Memory directly impacts the speed
at which computers can process data because it is a critical component of a com-
puter. Evaluating main memory performance is essential to understanding and
comparing overall computer performance. Typically, main memory performance
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is evaluated using bandwidth and access latency (abbreviated as latency) met-
rics. However, holistic main memory performance evaluation and selection, which
jointly evaluates bandwidth and latency metrics, are often faced with comparing
conflicts between bandwidth and latency. For example, one computer system
may have better bandwidth but worse latency. If neither metric achieves both
higher bandwidth and lower latency, it is difficult to determine which system
has better memory performance for the same workload.

Modern memory benchmarks [2,3] support the generation of a variety of
test scenarios that are incorporated from memory access patterns, including
read/write ratios, spatial-temporal locations, load intensity, etc. Different work-
loads have unique memory access patterns, and it is an important part of per-
formance evaluation to assess how well a memory system performs under these
varying conditions. For example, memory latency under different patterns would
be affected by the hardware prefetching design of different systems. The variation
in metric results under different test scenarios further exacerbates the dilemma
of comparing conflicts, as no rational overall comparative conclusions can be
drawn. The dilemma challenges us to apply bandwidth and latency metrics in
cloud server selection, as conflicting comparison results cause us to be ineffective
in reflecting the workload performance. Therefore, a critical research question
is:

RQ: How can we calculate a holistic metric that fuses bandwidth and latency
to better represent the overall performance of main memory across multiple test
scenarios?

Some work focuses on which average methods are more appropriate to aggre-
gate a single metric of a set of benchmark results [4,5] but holistic memory
performance cannot be reflected by only one metric. Access per cycle (APC)
derived from CPU evaluation metric instructions per cycle (IPC) is adopted to
evaluate overall memory performance, while typically in a simulation environ-
ment [6]. In order to evaluate memory performance in a real-world environment,
memory-level parallelism (MLP) and power metrics are identified as state-of-
the-art holistic memory performance metrics. MLP metric [7] represents the
level of concurrency within the computer system, calculated from the product of
memory bandwidth and latency. Power metric [8] proposed to comprehensively
evaluate system performance with throughput and latency metrics, calculated
by dividing throughput and latency. MLP and Power metrics help to resolve the
comparing conflicts in memory bandwidth and latency. However, we find that
they are not effective in practice for evaluating overall memory performance,
mainly due to their unclear physical meaning and insufficient reflection of the
workload’s performance.

To address these challenges, we propose the Hmem metric to represent holis-
tic memory performance, defined as the average relative performance improve-
ment of bandwidth and latency. It can also be applied to different test scenarios
for a more comprehensive evaluation. We also conduct a comparative analysis
of state-of-the-art of holistic memory performance metrics, including MLP and
Power metrics. To validate the physical meaning of metrics, we use dimensional
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analysis to verify whether these metrics have clear physical meaning. Compared
to other metrics, Power metric’s unclear physical meaning may mislead evalua-
tion conclusions. To reflect the overall performance of a given workload, we com-
pute the correlation between our proposed metric and the workload’s through-
put, which is equivalent to the SPECspeed and SPECrate metrics of the SPEC
CPU 2017 benchmark suites. We perform two non-parametric correlation tests:
spearman rank correlation coefficient and the kendall rank correlation coeffi-
cient. The correlation coefficients of the statistical variables show that Hmem
has spearman rank correlation coefficient of 0.85 and kendall rank correlation
coefficient of 0.75, which shows an average improvement of 70% compared to
other holistic metrics. This indicates that Hmem is a more appropriate metric
for measuring overall memory performance. Our contributions are as follows:

– We reveal the comparing conflicts between bandwidth and latency metrics in
overall memory performance evaluation. We illustrate the ineffectiveness of
bandwidth and latency metrics in reflecting the overall performance of a given
workload. We also present the cloud server selection framework to illustrate
the application scenario of holistic memory performance metrics.

– We define the Hmem metric to represent holistic memory performance, com-
prehensively evaluating main memory performance through a meaningful
fusion of bandwidth and latency metrics, which can also be applied in different
test scenarios for a more comprehensive evaluation.

– We recognize and compare state-of-the-art holistic memory performance met-
rics with Hmem. Through dimensional analysis, we verify that the Power
metric has an unclear physical meaning, which may mislead evaluation con-
clusions. To reflect the overall performance of a given workload, we calculate
the correlation between our proposed metric and the workload’s throughput.
Experimental results indicated that Hmem has around 70% improvement in
the correlation coefficient compared to other holistic metrics. It confirms that
Hmem is more appropriate than state-of-the-art metrics for measuring overall
memory performance.

– Hmem has been adopted in the cloud server evaluation platform of a large
cloud service provider to help engineers effectively address the challenge of
conflicting memory metrics.1 The Hmem metric is automatically calculated
on each execution of the evaluation pipeline, which is conducted hundreds of
times daily. We also summarize three points of industrial experience in cloud
server selection from the perspective of comprehensive memory performance
evaluation.

2 Related Work

2.1 Cloud Memory Performance Evaluation

Memory performance evaluation is vital for cloud providers and consumers to
make comparisons [2]. To meet performance requirements, cloud providers have
1 https://jihulab.com/solecnu/hmem.

https://jihulab.com/solecnu/hmem
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a wide range of DRAM options to choose from, including new additions to exist-
ing interfaces and architectures (DDR3, DDR4, DDR5) [9,10]. The performance
impact of these memory systems on the overall computer system necessitates
rigorous benchmarking for evaluation and comparison. Traditional memory met-
rics such as average miss penalty (AMP), miss rate (MR) [11], and memory-level
parallelism (MLP) [7] provide insight into specific performance characteristics.
Some metrics commonly evaluate comprehensive computer performance, includ-
ing IPC, FLOPS, and BOPS. [11–13] However, they do not reflect the overall
memory performance of the system. Multiple metrics’ comprehensive evaluation
can help us understand a system and make more informed decisions, especially
in multi-vendor and complex cloud-based environments. Roofline model fuses
the FLOPS and bandwidth to calculate operation intensity metric to guide us
to conduct bottleneck analysis [14]. WSMeter metric aggregates IPC metrics to
make comprehensive performance evaluation of data center [15]. Some MCDM
methods help to make decisions for cloud services based on quality of service cri-
teria [16]. These well-known methods include TOPSIS [17], SAW [18], AHP [19],
VIKOR [20] , etc. We have yet to discuss these methods in this work because
these methods are not suitable for memory performance evaluation. For example,
TOPSIS and VIKOR are subject to rank reversal due to positive and negative
ideal solutions changes. AHP also has the potential for inconsistency in the pair-
wise comparison.

2.2 Memory Performance Benchmarking

Modern memory benchmarks support the generation of various test scenar-
ios incorporated from memory access patterns. Several commonly used mem-
ory microbenchmarks include Stream [21], Stream2 [22], Lmbench3 [23], Intel’s
Memory Latency Checker (MLC) [3], pChase [24],and X-Mem [2]. Benchmarks
enable the assessment of loaded latency under various memory access patterns
by concurrent control parameters, such as read-write ratios and spatial-temporal
localities, etc. For example, the spatial locality characteristics of memory behav-
ior are depicted through random and sequential access patterns. The injection
delay value controls the system’s stress level. Other potential pattern parameters
encompass working set size, CPU and NUMA node affinity, stride size of load
traffic-generating threads, etc. Loaded latency indicates the average total main
memory latency under different bandwidth utilization. By concurrently measur-
ing bandwidth and latency, the Bandwidth-Latency curve can be constructed to
represent the memory system’s comprehensive performance across various load
intensities. Occasionally, the curve comprises three distinct stages: constant, lin-
ear, and exponential [25]. To compare performance, we often average summarized
metrics within a single dimension of metric [4,5]. However, these methods fall
short when handling a comprehensive bandwidth and latency comparison, pri-
marily due to their comparing conflicts. In this paper, we propose Hmem, which
evaluates main memory performance holistically through a meaningful fusion of
bandwidth and latency metrics across different test scenarios to provide a more
comprehensive representation of memory performance.
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2.3 Dimensional Analysis

An appropriate holistic performance metric should be interpretable and physi-
cally meaningful to represent some of the system’s performance characteristics.
Dimensional analysis is a method to analyze and evaluate the general laws of
physical quantities based on their unit and dimensions [26]. Dimensional anal-
ysis streamlines information by elucidating the relationships between various
physical quantities in the metrics. In any equation that precisely depicts the
laws of physical phenomena, the term’s units on both sides must be the same.
Dimensional analysis is widely applicable in various fields, such as mathemat-
ics, finance, engineering, etc. In computing and telecommunications, the most
commonly used unit of information is a bit used to measure the capacities of
other systems and channels. Other metrics derived from bit, including Byte, KB,
MB, etc. In tackling complex problems involving multiple variables, eliminating
redundant information and differentiating relationships among diverse physical
quantities become beneficial and essential.

3 Cloud Server Selection Framework

We present and illustrate the application scenario of comprehensive memory
performance evaluation through the cloud server selection framework in Fig. 1.
The detailed framework is described as follows:

Fig. 1. Cloud server selection framework

– Requirement Analysis and Identification. Cloud consumer access to
cloud resources is network-based. Choosing an appropriate server deployment
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location based on the user’s needs can maximize service quality protection
and reduce performance problems related to geography. By analyzing the
requirements, we can comprehend the user’s needs for various resource types
and performance requirements. We can choose the alternative list of cloud
servers for evaluation based on the specific requirements.

– Cloud Server Performance Evaluation. Benchmarks can be categorized
into microbenchmarks and macrobenchmark according to their program scale.
Microbenchmarks consist of specific functions or code snippets that can be
used for preliminary and efficient system performance evaluation. Typically,
microbenchmark programs reflect specific system performance aspects requir-
ing short execution time. Macrobenchmarks are programs that are extracted
from real workloads, including application and service workloads, unlike
microbenchmarks. Executing macrobenchmarks takes more time and is more
expensive than microbenchmarks.

– Other Assessments and Decision-making. Based on the performance
metrics of the performance evaluation, we can further evaluate the cost, secu-
rity, and so on. Ultimately, we synthesize multiple factors to make cloud server
selections.

In performance benchmarking, holistic memory performance metrics support
us in drawing preliminary cloud servers’ performance comparison conclusions.
Holistic memory evaluation metrics can help users measure memory performance
in cloud server selection.

4 Motivating Example

We present an example of a conflicting comparison of memory performance
benchmark results from four mainstream cloud servers under different test sce-
narios, frequently compared by cloud consumers. These four servers’ hardware
and software configurations are listed in Table 1.

Table 1. Hardware and software configuration.

Computer A B C D

Processor AMD EPYC 7K62 Ampere Altra KunPeng920 Intel Platinum 8255C

Number of Cores 8 8 8 8

Core Frequency 2.6GHz/3.3GHz 2.8GHz/3.0GHz 2.6GHz/3.0GHz 2.50 Hz/3.1GHz

Memory Capacity 2× 16GB 2× 16GB 2× 16GB 2× 16GB

Memory Frequency DDR4-2933MHz DDR4-3200MHz DDR4-2933MHz DDR4-2933MHz

Kernel 4.18.0 4.18.0 4.18.0 4.18.0

Compiler GCC 8.5.0 GCC 8.5.0 GCC 8.5.0 GCC 8.5.0

Glibc 2.28 Glibc 2.28 Glibc 2.28 Glibc 2.28
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We utilize the memory performance benchmark [2] to measure the band-
width and latency metrics. The comparison results for these four computers are
shown in Table 2. These test scenarios consist of different memory access patterns
described in detail in Sect. 6.1. For each scenario, it is apparent that computer B
delivers the best performance in terms of bandwidth, while computer D excels in
latency across most scenarios. However, we cannot definitively conclude which
computers perform best when attempting to draw a comprehensive comparison
conclusion from the ranks in each scenario or on average.

Table 2. Comparing conflicts of bandwidth and latency metrics on four computers,
BW indicates bandwidth, LAT indicates latency.

Metric Rank Test Scenarios Rank Result

1 2 3 Avg

BW 1 B B B B ?

2 D D A C

3 C A C A

4 A C D ... D

LAT 1 D D D D

2 B B A B

3 C C B C

4 A A C ... A

Best Computers ? ? ? ?

If we evaluate memory performance only by a single metric (bandwidth or
latency), there is a high probability that we will make a wrong evaluation result.
For example, to reflect the overall performance of a given workload, we perform
two non-parametric correlation tests between the results of different computers
on the workload performance and memory metrics to validate this phenomenon
in Table 3, including spearman rank correlation coefficient (SROCC) and kendall
rank correlation coefficient (KROCC).

The correlation coefficients for both metrics do not show strong correlations
(absolute value of correlation coefficients equal or greater than 0.8) on average,
indicating that if we were to compare these computers based solely on a single
metric (either bandwidth or latency), we would likely produce incorrect ranking
results with a high probability because workload performance is affected by both
bandwidth and latency. Comprehensive and time-consuming benchmark suites
can evaluate overall system performance but do not directly reflect memory per-
formance. Therefore, this paper aims to answer our proposed research question
(RQ).
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Table 3. Spearman’s rank correlation coefficient (SROCC) and Kendall’s rank corre-
lation coefficient (KROCC) of bandwidth (BW) and latency (LAT) metrics in different
workloads.

Benchmark SROCC KROCC

BW LAT BW LAT

503.bwaves r 0.20 –0.60 0.00 –0.33

519.lbm r 0.40 –0.80 0.33 –0.67

549.fotonik3d r 0.20 –0.60 0.00 –0.33

554.roms r 0.20 –0.60 0.00 –0.33

603.bwaves s 0.20 –0.60 0.00 –0.33

619.lbm s 0.40 –0.80 0.33 –0.67

649.fotonik3d s 0.20 –0.60 0.00 –0.33

654.roms s 0.20 –0.60 0.00 –0.33

Average 0.25 –0.65 0.08 –0.42

5 Holistic Memory Performance Metric

5.1 MLP Metric

Little’s Law [27] is a well-known theory of queuing theory because of its theo-
retical and practical significance. Little’s Law states that the average number of
jobs in a stable queuing system (L) is equal to the product of the average arrival
rate of jobs (λ) and the average waiting time of a job in the system (W ). The
form is shown in Eq. (1).

L = λ W (1)

In previous research, Little’s Law has been utilized for performance eval-
uation. Bailey et al. [28] discussed it and related the equation with high-
performance computing. Mehta et al. [29] leverage Little’s Law to calculate the
MLP metric of an application. The observed MLP metric of an application could
be compared with the peak theoretical MLP metric computed from hardware
parameters, providing valuable insights for performance optimizations and anal-
yses related to program parallelism.

MLP = Bandwidth × Latency (2)

According to Little’s Law, the average number of bytes transmitted between
memory and the processor equates to the product of memory bandwidth and
latency, reflecting the level of concurrency within the computer system. This
relationship is depicted in Eq. (2). When performing a comprehensive evaluation,
we can use the bandwidth and latency metrics from each test scenario to calculate
the MLP metric and further aggregate the MLP metric from each test scenario.



Hmem: A Holistic Memory Performance Metric for Cloud Computing 179

5.2 Power Metric

Jain et al. [8] proposed to use the Power metric to comprehensively evaluate
different network architectures with throughput and response time metrics. The
Power metric, as delineated in Eq. (3), represents the ratio of throughput to
response time.

Powernet =
Throughput

Response T ime
(3)

The throughput and response time of two distinct network architectures, A
and B, were measured. Although network A has higher throughput, its response
time is longer than network B. Upon employing the Power metric for comparison,
it became evident that network A surpassed network B in overall performance.
However, the original study merely introduced the Power metric without employ-
ing tangible experimental results to corroborate the validity of this metric.

Powermem =
Bandwidth

Latency
(4)

Analogously, it is feasible to extrapolate the application of the Power metric
to facilitate a holistic evaluation of memory performance, utilizing both band-
width and latency metrics. This approach is depicted in Eq. (4). For a com-
prehensive evaluation, we can use each test scenario’s bandwidth and latency
metrics to calculate the Power metric and aggregate each test scenario’s Power
metric as a reference for overall memory performance. It should be noted that
the power metric does not refer to energy divided by time, and it does not cor-
rectly solve the RQ problem, e.g. DDR4 has lower power consumption as well
as higher transfer performance compared to DDR3 [30].

5.3 Hmem Metric

To address the RQ we proposed, a holistic memory performance metric should
fuse bandwidth and latency and be representable to represent the overall per-
formance of the main memory. We propose the holistic memory performance
metric, Hmem, defined in Eq. (5). The metric is derived from the average ratio
of the relative improvement in performance for both bandwidth and latency.
A predefined baseline machine is utilized as a reference machine, allowing the
calculation of the performance improvement ratio relative to other computers.
The relative weights of bandwidth and latency are equally assigned as 0.5 in
this paper representing the portion of each metric contribution to Hmem. The
weights are determined based on their importance to Hmem, and we assume
that bandwidth and latency are equally important. Generally, the summary of
relative weights of metrics should add up to one. The relative weights of different
test scenarios also follow the principle.

Hmem = (Bandwidthratio
w1 × Latencyratio

w2)
1

w1+w2 (5)
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Algorithm 1. Pseudo Code of Hmem based Evaluation Process
Input: Computer List I; Test Scenarios List J ; Bandwidth Weight wb; Latency

Weight wl; Bandwidth metrics for computer i in test scenario j: Bandwidthij ;
Latency metrics for computer i in test scenario j: Latencyij ; Reference Machine
Bandwidth in test scenario j: Bandwidth Refj ; Reference Machine Latency in test
scenario j: Latency Refj .

Output: Computers’ memory performance Rank.
1: Create Hmem Matrix HM [I][J ] and Hmem List HL[I];
2: for i in I do
3: for j in J do
4: convert Bandwidthij and Latencyij unit;
5: Bandwidth Ratioij ← Bandwidthij / Bandwidth Refj ;
6: Latency Ratioij ← Latency Refj / Latencyij ;

7: Hmemij ← (Bandwidth Ratio
wb
ij ∗ Latency Ratio

wl
ij )

1
wb+wl ;

8: assign Hmemij to HM [i][j];
9: end for

10: assign HM [i][0...J ] summarize results to HL[i];
11: end for
12: Rank the computers’ based on HL[I];
13: Return the rank of computers’ memory performance;

Notably, the bandwidth ratio is computed by taking the system’s memory
bandwidth under test (SUT) and dividing it by the bandwidth of the reference
machine, as detailed in Eq. (6). In contrast, calculating the latency ratio involves
dividing the latency of the reference machine by the latency on the SUT, as
outlined in Eq. (7).

Latencyratio =
LatencyREF

LatencySUT

(6)

Bandwidthratio =
BandwidthSUT

BandwidthREF
(7)

The weights attributed to the metrics can be modulated in accordance with
the specific evaluation prerequisites. The pseudo code of the Hmem based evalu-
ation process is outlined in Algorithm 1. We advocate using the geometric mean
to aggregate ratio metrics, primarily due to its consistent rankings, irrespective
of the machine chosen for normalization [31,32]. Despite the vast discussions
surrounding ratio-like metrics in prior research [33], this consistency is vital for
evaluating and ranking cloud servers.

6 Evaluation

6.1 Experimental Setup

We utilize the X-Mem [2] to measure the memory performance of different
(instruction set architecture) ISAs cloud servers. We employ the test scheme of
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loaded latency in MLC. We employ seven threads generating load and one thread
measuring latency, concurrently collecting metrics. The load-generating threads
employ forward-read sequential access patterns with chunk sizes of 32 and 64
bits. The delay value for memory access in nops within the load threads incre-
mentally increases from 0 to 1024, allowing for continuous observation of memory
performance under varying pressure. The latency measurement thread utilizes
a random read pointer-chasing access pattern. Each load thread is assigned a
working set size of one hundred MB within its memory region. The total mem-
ory utilized eight hundred MB, with no data sharing occurring between threads.

We selected four mainstream servers covering x86-64 and AArch64 ISAs.
These servers are virtualized from physical servers and are often evaluated and
compared for memory performance. These four servers’ hardware and software
configurations are detailed in Table 1. The reference machine is the standard S1
cloud server, the intel E5-2680v4 chips with DDR3, and other hardware and
software configurations equal to these four mainstream servers. The reference
machine was selected as old generation machines in cloud servers, which refers
to the SPEC CPU 2017 reference machine selection standard. We use some
workloads that rely heavily on main memory performance in the SPEC CPU
2017 benchmark suites [34] to evaluate the holistic metric, including bwaves, lbm,
fotonik3d, and roms [6,35]. For SPECrate workloads, the performance ratio must
be multiplied by the number of copies. We chose eight concurrent copies to run
each benchmark, testing the workload throughput of the system. For SPECspeed
workloads, we selected eight threads to run one copy of each benchmark in a
suite, testing the time required to complete a workload. The number of threads
and copies equals the number of processor numbers, ensuring full utilization of
system performance. Benchmarks were compiled using GCC 8.5 with no flags
and employed the reference workload as the input size.

6.2 Physical Meaning Evaluation

For the MLP metric, the result of the dimensional analysis is present in Eq. (8).
b represents the dimension of bit and T represents the dimension of time. This
equation confirms that the metric represents the average number of bytes trans-
mitted between the memory and processor. The factor of one thousandth that
features in the equation emerges from prefix conversions derived from the band-
width metric, expressed in megabytes per second, and the latency metric, quan-
tified in nanoseconds. The metric is a valid representation of the system’s par-
allelism.

MLP = b1T−1 × b0T 1 = b1T 0 = 10−3 × byte (8)

Conversely, the Power metric, as evidenced in Eq. (9), cannot be explained
in terms of physical quantities, which could yield unexplained results. The factor
of ten raised to the fifteenth power is obtained through unit conversion. While
the trend of the metrics shows that the bandwidth metric is reasonable as the
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numerator and the latency metric as the denominator, the physical meaning of
the Power metric remains unclear.

Power = b1T−1/ b0T 1 = b1T−2 = 1015 × byte

s2
(9)

The process of dimension analysis for the Hmem is demonstrated in Eq. (10).
Although Hmem is dimensionless owing to its relative speedup characteristics,
it maintains its practical relevance by signifying the ratio of the average mem-
ory performance improvement of the SUT over the reference system. As differ-
ent metrics exhibit distinct data dispersion and dimensions, Hmem nullifies the
dimension’s impact through the ratio.

Hmem = (b1T−1/ b1T−1) × (b0T 1/ b0T 1) = b0T 0 (10)

In summary, MLP is reasonable for representing the parallelism of memory.
Further experimental data is needed to determine how effective the MLP metric
is in terms of overall main memory performance. The physical meaning of the
Power metric remains ambiguous, structured with the bandwidth and latency
metrics serving as numerator and denominator, respectively. Hmem practically
represents the SUT average memory performance improvement over the reference
machine.

6.3 Proximity of Holistic Metrics and Workload Performance

In order to reflect the overall performance of a given workload, we compute the
correlation between our proposed metric and the workload’s throughput, cor-
responding to the SPECspeed and SPECrate metrics of the SPEC CPU 2017
benchmark suites. An appropriate holistic main memory metric for measuring
holistic memory performance should correlate highly with the workload through-
put. We perform two non-parametric correlation tests: spearman rank correla-
tion coefficient (SROCC) and kendall rank correlation coefficient (KROCC).
The mathematical definition of SROCC and KROCC is given in Eq. (11) and
Eq. (12).

rSROCC =
cov(R(X), R(Y ))

σR(X)σR(Y )
(11)

rKROCC =
nc − nd√

(n0 − nX) (n0 − nY )
(12)

R(X) and R(Y ) denote the ranks of X and Y , respectively. cov(R(X), R(Y ))
represents the covariance of the ranks of X and Y . σR(X) and σR(Y ) are the stan-
dard deviations of the rank variables. nc and nd are concordant and discordant
pairs, n0 is the total number of pairs. nX nY are the number of X and Y of con-
cordant pairs, respectively. They assess how well the relationship between two
variables can be described using a monotonic function. The values of SROCC
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and KROCC are between 1 and –1, corresponding to positive and negative lin-
ear correlations. Latency should have a negative correlation, and other metrics
should have a positive correlation. The SROCC for each memory metric against
the workload’s throughput is calculated and shown in Table 4. It can be observed
that Hmem has the strongest correlation with the workload’s throughput, with
an average SROCC of 0.85. This correlation between Hmem and the workload’s
throughput reflects that Hmem is more appropriate to represent holistic main
memory performance.

Table 4. Spearman’s rank correlation coefficient of different metrics in different work-
loads, BW indicates bandwidth, LAT indicates latency.

Benchmark Spearman’s rank correlation coefficient

Raw Metric Holistic Metric

BW LAT MLP Power Hmem

503.bwaves r 0.20 –0.60 0.20 0.40 0.80

519.lbm r 0.40 –0.80 0.40 0.80 1.00

549.fotonik3d r 0.20 –0.60 0.20 0.40 0.80

554.roms r 0.20 –0.60 0.20 0.40 0.80

603.bwaves s 0.20 –0.60 0.20 0.40 0.80

619.lbm s 0.40 –0.80 0.40 0.80 1.00

649.fotonik3d s 0.20 –0.60 0.20 0.40 0.80

654.roms s 0.20 –0.60 0.20 0.40 0.80

Average 0.25 –0.65 0.25 0.50 0.85

Among the other holistic metrics, the Power metric is the best with an aver-
age SROCC value of 0.5. Compared to Power, Hmem improves the correlation
value by 0.35. This observation is due to the fact that within these workloads,
the Hmem is consistently better than the Power metric. Interestingly, MLP has
the same SROCC as BW, meaning that the rank order of BW is the same as
MLP. This is probably because, compared to LAT, BW’s change range domi-
nates the MLP value. Compared to LAT, BW can be increased exponentially
more easily. Among the raw metrics, LAT has the best average SROCC value
of -0.65. The main memory performance bottleneck needs further analysis to be
confirmed. The SROCC results also indicate that raw metrics measured from
benchmarks cannot singly be used to represent systems’ holistic main memory
performance of systems. The KROCC for each memory metric against the work-
load’s throughput is calculated and shown in Table 5. It can be observed that
Hmem also has the strongest correlation with the workload’s throughput, with
an average KROCC of 0.75. Among the other holistic metrics, the Power metric
is the best with an average KROCC value of 0.42. Compared to Power, Hmem
improves the correlation value by 0.33. Among the raw metrics, LAT has the
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Table 5. Kendall’s rank correlation coefficient of different metrics in different work-
loads, BW indicates bandwidth, LAT indicates latency.

Benchmark Kendall’s rank correlation coefficient

Raw Metric Holistic Metric

BW LAT MLP Power Hmem

503.bwaves r 0.00 –0.33 0.00 0.33 0.67

519.lbm r 0.33 –0.67 0.33 0.67 1.00

549.fotonik3d r 0.00 –0.33 0.00 0.33 0.67

554.roms r 0.00 –0.33 0.00 0.33 0.67

603.bwaves s 0.00 –0.33 0.00 0.33 0.67

619.lbm s 0.33 –0.67 0.33 0.67 1.00

649.fotonik3d s 0.00 –0.33 0.00 0.33 0.67

654.roms s 0.00 –0.33 0.00 0.33 0.67

Average 0.08 –0.42 0.08 0.42 0.75

best average KROCC value of -0.42. In summary, Hmem represents the high-
est correlation with the workload’s throughput. Experimental results indicate
Hmem is a more appropriate metric for measuring overall memory performance.

7 Threats to Validity

Internal Threats. In this paper, we have assumed equal weighting for both sce-
narios and metrics (bandwidth and latency). Depending on evaluation require-
ments, the weights assigned to scenarios and metrics need to be customized to
fit requirements. Besides that, memory capacity impacts workload performance
in some scenarios, especially when not enough memory capacity is available for
the workload. Current memory benchmark metrics do not represent the impact
of memory capacity on performance.

External Threats. Performance testing requires system quiescent to get
repeatable and reliable benchmarking results. The unpredicted changes in hard-
ware and software of cloud environments would influence bandwidth and latency
measurement results. In addition, due to the impact of test scenarios on Hmem,
in order to better reflect the workload performance, the test scenarios should be
closer to workload memory access patterns.

8 Practical Experience

Hmem has been adopted in the server evaluation environment of a large cloud
service provider. It is automatically calculated on each execution of its evalu-
ation pipeline, which runs hundreds of times a day. We also summarize three
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points of industrial experience in cloud server selection from the perspective of
comprehensive memory performance evaluation.

1. Holistic Performance Metric Design: In holistic metric design, analyzing
the metric with clear, interpretable physical meaning is necessary. It must be
verified in detail to ensure the metric will not produce misleading results in
practical applications.

2. Automated Evaluation for Different Requirements: The focused test
scenarios consist of different memory access patterns according to perfor-
mance requirements. The precipitation of automated evaluation scripts for
different performance requirements can efficiently calculate holistic perfor-
mance metrics to support decisions.

3. Efficient Cloud Server Selection: To guarantee the comprehensive-
ness of evaluation, we typically conduct both micro-benchmarking and
macro-benchmarking to cover real workload behaviors. Holistic metrics of
microbenchmarks could be helpful to improve efficiency by filtering the range
of servers for engineers before conducting macro-benchmarking.

9 Conclusion and Future Work

In this paper, we define a holistic memory performance metric, Hmem, calcu-
lated from a fusion of bandwidth and latency metrics across different access
patterns. It can also be applied to different test scenarios for a more compre-
hensive evaluation. We also conduct a comparative analysis of state-of-the-art
memory performance metrics with Hmem. To validate the physical meaning of
metrics, we use dimensional analysis to verify that metrics have clear physical
meaning. To reflect the overall performance of a given workload, we compute
the correlation between our proposed metric and the workload’s throughput.
Hmem provides the strongest correlation in correlation coefficients compared to
other optimal metrics. Experimental results indicate Hmem is a more appro-
priate metric for measuring overall memory performance. A large cloud service
provider has adopted Hmem to evaluate cloud instance memory performance in
each execution of the cloud server evaluation pipeline.

For future work, Hmem could also be measured at each level of the cache
hierarchy to provide valuable insight. Hmem could also provide reference to other
systems evaluated by throughput and latency metrics, such as disk, network,
or applications that cross multiple computers. We can also combine cost and
Hmem metrics to calculate the memory performance and price ratio to guide us
in making better decisions on memory selection. This work also informs future
holistic metric design and validation research.
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