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Abstract. Mud logging serves as the “eyes” of exploration and development,
acting as a counselor for drilling safety, the center of information transmission,
and holding the first-hand data on oil and gas exploration and development. With
the rapid development of informatization, digitization, intelligence, and remote
support systems, the demand for high-quality mud logging data has continuously
risen, where sensor calibration and calibration technology serve as the foundation
for ensuring accuracy and reliability. This paper proposes an artificial intelligence-
based comprehensive mud logging instrument sensor calibration and calibration
technology, targeting the issues of prolonged service life, low precision, and low
inspection rate of traditional mud logging instruments. The technology primarily
involves collecting and pre-processing sensor output data such as filtering, sam-
pling to eliminate noise, and improve the dataset’s quality. Mathematical models
of sensors were constructed using machine learning or deep learning algorithms
to analyze the relationship between sensor outputs and actual values, which could
also compute sensor errors and uncertainties. Algorithm optimization methods
such as wavelet transform and adaptive filtering were used to process and ana-
lyze sensor data for different types of sensors and environmental conditions. The
adaptive control algorithm was then utilized based on the predicted model results
and actual measurement results to calibrate the sensor, ultimately helping to avoid
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errors and uncertainty in the traditional manual calibration process. Experimental
results show that this technology has higher accuracy and reliability than tradi-
tional calibration techniques while maintaining simple operation, fast speed, and
cost-effectiveness. This technology improves the level of detection and evaluation
technology of comprehensive mud logging instruments, Standardizes mud log-
ging equipment management, and plays an essential role in timely discovering,
evaluating oil and gas layers, and optimizing drilling construction safety.

Keywords: Artificial Intelligence · Mud Logging · Sensors · Calibration
Technology

1 Introduction

Informationization, digitization, intelligentization, and remote support systems require
high-quality mud logging data. The comprehensive mud logging instrument is the main
technical equipment on-site for mud logging, responsible for data collection, process-
ing, analysis, and transmission. It monitors engineering parameters and drilling fluid
parameters in real-time during the drilling process, analyzes various gas contents in the
drilling fluid. The accuracy and reliability of mud logging data directly affect the quality
and safety of drilling projects. It is the basis for timely discovering and evaluating oil
and gas layers and optimizing drilling construction safety. Currently, there are several
factors that affect the quality of mud logging data.

(1) The harsh installation and usage conditions of the mud logging sensors may cause
reduced accuracy, malfunctions, and damages (as shown in Fig. 1).

(2) Mechanical vibration and impact caused by frequent lifting and long-distance trans-
portation can damage equipment in the instrument room. Chipsets and electronic
components will have degraded performance as their service time increases, which
can lead to abnormal data channels or reduced conversion accuracy.

(3) The performance of the gas analysis system will decrease with production and
operation time.

(4) Similar to drilling operations, mud logging operations are located in remote loca-
tions with difficult-to-control environmental conditions. Existing indoor testing and
assessment devices have low integration and large size and weight, which can-
not meet on-site testing needs, resulting in delayed and incomplete testing and
assessment.

(5) Comprehensive mud logging instruments of different brands and periods have sig-
nificant differences in quality, configuration, performance, etc. Many instruments
have been in service for more than 10 years.

(6) Most mud logging companies mainly focus on individual testing, calibration, and
verification, lacking a unified and systematic comprehensivemud logging instrument
testing and evaluation device and technical specifications.

Therefore, major petroleum companies at home and abroad attach great importance
to mud logging work, regarding improving mud logging equipment performance and
ensuring mud logging data quality as the basis for improving mud logging quality and
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engineering technical data quality. In order to eliminate the impact of the above unfavor-
able factors, research on comprehensive mud logging instrument testing and evaluation
technology and equipment has been conducted, forming a set of complete technical
specifications for comprehensive mud logging instrument testing and evaluation, and
developing a comprehensive mud logging instrument testing and evaluation device that
can adapt to fieldwork.

Fig. 1. Partial sensors of comprehensive mud logging instrument

Significant progress has been made in recent years with the application of artificial
intelligence technology. Many researchers apply AI to sensor-based health and sports
biomechanics [1–7], while others utilize it for intelligent industrial manufacturing [8–
10]. In the area of using artificial intelligence for sensor calibration, many scholars have
also conducted extensive research and achieved significant progress [11–16].

2 Performance Testing, Data Acquisition and Preprocessing
of Sensor

2.1 Performance Testing of the Sensors

Sensor performance testing and data acquisition and preprocessing form the foundation
of artificial intelligence-based calibration technology for comprehensive logging instru-
ment sensors. A complete set of sensor performance testing equipment was developed
using a Siemens 16-bit high-precision PLC, high-precision pressure source, high and
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low-temperature constant temperature water tank, standard current generator, and sup-
porting coils and high-precision resistors, and an accompanying systemwas programmed
in C#.

Sensor performance testing: Standard testing equipment is used to test the perfor-
mance of the logging sensors and record measurement results and error data. Sensor
performance testing usually includes the following indicators: sensitivity, resolution,
accuracy, and response time. The performance of the sensor is determined by testing it
through methods such as adding a known quantity to the sensor or directly placing it in
a changing environment and collecting feedback signals. After completing the sensor
performance testing, the sensor is evaluated against specific application requirements.
In short, sensor performance testing is an important step in ensuring data accuracy and
reliability.

2.2 Data Collection and Preprocessing

The data collection system is used to collect the data obtained from the above tests
and preprocess it for feature extraction by machine learning algorithms. Different signal
acquisition methods, either analog or digital, are employed depending on the type of
sensor. Then, the collected data must be preprocessed to remove noise, artifacts, and
other unwanted signals.

Filtering is a common data preprocessing technique that can separate useful signals
from noisy signals by applying filters. Depending on the filtering method, it can be
classified into various types such as low-pass filtering, high-pass filtering, and band pass
filtering. Sampling refers to the process of discretizing rawdata by converting continuous
analog signals into discrete digital signals, making them easier to store and process.

Filtering is a process that removes or retains certain components of a signal via filters.
Its mathematical principles are based on signal processing theory. Common filtering
methods include moving average filtering, median filtering, IIR low-pass filtering, FIR
low-pass filtering, and frequency domain filtering. For logging sensor signal filtering,
FIR low-pass filtering is used.

The mathematical formula for FIR low-pass filter can be expressed as:

y(n) =
∑M

k=0
h(k)x(n − k) (1)

where x(n) represents the original signal, y(n) represents the filtered signal, and h(k)
represents the coefficients of the filter. The order of the filter is denoted by M.

A linear phase FIR filter is adopted, and the specific formula for calculating its
coefficients is as follows:
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In the above formula, h(k) represents the coefficients of the filter,M is the order of the
filter, and f c is the cutoff frequency of the filter. After calculating the filter coefficients
using the aforementioned formula, they can be applied to convolution operations to filter
the original signal and obtain the filtered results.

After applying the standard excitation signal generatedby thehigh-precision standard
source to the logging sensor, an analog current signal will be generated by the sensor,
which is generally located between 4–20 mA. With the developed signal acquisition
instrument, the current signal can be read and converted into corresponding physical
quantities to complete the calibration of the sensor. Figure 2 shows the sensor sig-
nal acquisition instrument, and Fig. 3 shows the working of the electric torque sensor
calibration device.

Fig. 2. SDA-01 Sensor Data Acquisition Instrument

Fig. 3. Calibration of electric torque sensors
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Fig. 4. Interface of the calibration system for comprehensive logging instrument sensors

3 Model Establishment Based on Bayesian Optimization

After obtaining the raw data of mud logging sensors, the optimal model structure and
hyperparameter combination are searched through Bayesian optimization to obtain a
better theoretical curve.

Bayesian optimization is a black-box function optimization method commonly used
in scenarios where a target function needs to be maximized or minimized. When con-
structing a Bayesian optimization model, we need to define a Gaussian process to
describe the overall trend and uncertainty information of the target function. We also
need to define a surrogate function to approximate the target function and optimize the
surrogate function to find the optimal solution of the target function.

Specifically, the following steps are taken to construct the Bayesian optimization
model:

(1) Define the prior distribution of the Gaussian process. In this step, we need to define
a mean function and a covariance function for the Gaussian process. The mean
function is used to describe the average value of the target function at different input
values, while the covariance function is used to describe the correlation between
different input values. The typically chosen Gaussian process prior distribution is
the zero-mean Gaussian process.

(2) Update the posterior distribution of the Gaussian process based on the existing
data. In this step, we need to update the mean function and covariance function of
the Gaussian process based on the existing sample data to obtain a more accurate
function approximation.

(3) Calculate the next sampling point based on the surrogate function. In this step,
we need to use the current Gaussian process to fit the target function, construct a
surrogate function, and select the next sampling point by optimizing the surrogate
function. Common optimization methods include greedy algorithm and coordinate
axis optimization.

(4) Update the posterior distribution of the Gaussian process based on the new sampling
point. After obtaining the new sampling point, it can be added to the existing samples,
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and these data can be used to update the mean function and covariance function of
the Gaussian process.

(5) Repeat steps 3 and 4 until the preset stopping conditions are met.

The entire process of Bayesian optimization can be mathematically expressed as
follows:

xi+1 = argmax
x

EI(x|Dt) = argmax
x

(μt(x) − ξσt(x) (3)

In the equation, xt+1 represents the next sampling point chosen in the iteration,
EI(x|Dt) is the expected improvement metric, representing the expected increase in
target function value over the current best known value, given x as input under Gaussian
process fitting. μt(x) and σt(x) represent the mean and standard deviation of the current
Gaussian process at x, respectively. ξ is a hyperparameter that controls the balance
between exploration and exploitation and is commonly set to 2 or 3”.

4 Model Training and Experimental Verification

4.1 Model Training

Neural networks are models composed of neurons that utilize components such as
weights, biases, and activation functions to facilitate information transmission and pro-
cessing. These models possess remarkable fitting and expressive abilities, making them
suitable for solving various machine learning and deep learning tasks. Therefore, in this
study, the neural networks were used to train the sensor calibration data. Simultaneously,
the Cross Entropy loss function and the Stochastic Gradient Descent (SGD) optimizer
was selected as key components of the neural network and combined to train a more
accurate and efficient model.

Model Training: Using a large-scale dataset to train the model, constantly updating
the model parameters to improve prediction accuracy and robust performance.

To train the model with a large-scale dataset, the following steps are required:

(1) Data collection and preparation: First, it is necessary to obtain enough data to train
the model, and the data should be representative and able to cover various possible
situations. Then, the data needs to be cleaned, transformed, and normalized, so that
the model can better understand and process it.

(2) Model selection and design: Based on the application scenario and data character-
istics, select an appropriate model structure and determine the parameters that need
to be optimized.

(3) Loss function and optimizer selection: Depending on the task of the model, select an
appropriate loss function and optimizer to evaluate the model and adjust the model
parameters.

(4) Batch training: Since the dataset is too large to be loaded into memory for training
at once, the data needs to be divided into equally-sized batches, and the stochastic
gradient descent algorithm (SGD) is used to update the model parameters batch by
batch.
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(5) Batch normalization and regularization: Performing batch normalization before or
after each batch can reduce the bias and variance of input features, thereby improving
the model’s prediction accuracy and robustness. In addition, methods such as L1 or
L2 regularization can constrain the size and number of model parameters, avoiding
overfitting and underfitting.

(6) Model evaluation and fine-tuning: Evaluate the model through the training and test-
ing sets to determine the model’s prediction accuracy and robust performance. If
problems are found in the model, fine-tuning is needed, such as changing the model
structure, adjusting the loss function or optimizer, etc.

Through these steps, the model can be trained using a large-scale dataset, constantly
updating the model parameters to improve prediction accuracy and robust performance.

When choosing the appropriate network architecture, number of layers, and number
of nodes to establish the ANN model and initialize weights, several steps usually need
to be performed:

The problem type is determined by firstly clarifying whether a classification problem
or a regression problem is faced. This will help determine the network structure and
activation function.

Input and output are determined by specifying the number and type of input feature
vectors and output predicted values.

An appropriate activation function is chosen based on the problem type, such as
sigmoid or ReLU.

The network structure is designed by selecting a network structure that includes
determining the range of the number of nodes in each hidden layer, whether to use
dropout techniques, and so on.

Weights are initialized by selecting appropriate weight initial values, such as Xavier
initialization, etc.

The model is trained by using the training dataset, and parameters are adjusted based
on the validation set results.

The model is evaluated by examining its performance using the testing set.
When selecting the network structure and number of nodes, the principle of Occam’s

Razor should be followed. That is to say, the model structure should be made as sim-
ple as possible with reduced node numbers to prevent overfitting. At the same time,
when designing the model, common deep learning frameworks such as TensorFlow and
PyTorch can be considered. They provide a series of optimized structures, numbers
of layers, and nodes, as well as pre-trained weights, which can reduce some manual
parameter tuning work.

Taking the casing pressure sensor as an example, with a measuring range of 0 ~
70MPa, it should be calibrated using a standard pressure pump source calibrated by the
Beijing Institute of Metrology and Measurement. The training samples are shown in the
table below.
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Table 1. Training sample for calibration of casing pressure sensor.

Input Output Result

0MPa 4.00 mA Pass the calibration

0MPa 4.01 mA Pass the calibration

0MPa 4.02 mA Pass the calibration

0MPa 4.03 mA Pass the calibration

… … …

0MPa 4.08 mA Pass the calibration

0MPa 4.09 mA Failure to pass the calibration

8.75 MPa 6.00 mA Pass the calibration

8.75 MPa 6.01 mA Pass the calibration

8.75 MPa 6.02 mA Pass the calibration

8.75 MPa 6.03 mA Pass the calibration

8.75 MPa 6.04 mA Pass the calibration

8.75 MPa 6.04 mA Pass the calibration

… … …

8.75 MPa 6.12 mA Pass the calibration

8.75 MPa 6.13 mA Failure to pass the calibration

… … …

4.2 Experimental Verification and Data Visualization

Test the model, compare the experimental data with the predicted data, evaluate the
reliability and accuracy of the model, and adjust and improve it accordingly.

Based on the experimental test results, present the data in the form of charts and
analyze the sources and trends of errors to provide visual support for sensor calibration
and testing.

As can be seen from the figure below, the data predicted by AI technology is in very
good agreement with experimental data, with a maximum error of only 0.15%, thereby
proving the effectiveness of this method.

Using the above technical solution, it is possible to utilize artificial intelligence
technology for the calibration of logging tool sensors in order to improve testing accuracy
and efficiency, reduce human error and testing costs, and provide strong support for the
drilling engineering in the oil and gas industry.
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Fig. 5. Experimental Verification and Data Visualization

5 Conclusion

(1) The application of artificial intelligence in mud logging sensors can greatly improve
the accuracy and reliability of the measurement results.

(2) The use of machine learning algorithms artificial neural networks (ANNs) can effec-
tively address the problem of nonlinearity and complex interference in mud logging
data.

(3) The calibration technology based on these algorithms has been successfully applied
to real drilling engineering, achieving excellent results. The study improves the
quality of mud logging data and provides a theoretical basis and practical guidance
for the further promotion and development of intelligent mud logging technology.
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