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Abstract. Uncertainties in the characterization of new-found, ultra-deep, thin
and low porosity Permian gas reservoir reduce feasibility for development index
(DI) prediction through reservoir simulation. DI prediction with big data analysis
approach are studied. Geology and production data from 30 mature gas fields are
reviewed and 13 parameters are selected to represent geological features, deliver-
ability and DI of individual reservoir. Based on the BP neural network algorithm,
proxy models are established to correlate DI with geology and deliverability data,
and the bagging method is used to effectively improve the experimental accuracy
and stability while avoiding over-fitting phenomenon in the case of limited sample
data. The coefficient of determination coefficient (R2) are selected to evaluate the
prediction effect of DI. The mean value of the prediction results of the model with
higher R2 value in 2000 numerical experiments was selected as the final predic-
tion result. With the established proxy model, DI for QX reservoir in Permian
formation are predicted and the influence of heterogeneity are also evaluated.
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1 Introduction

TheUltra-deep (>7000m) Permianmarine carbonate formation is a prospective conven-
tional gas exploration and development domain in Sichuan Basin, China, and in recent
years, significant breakthrough have been made in some appraisal wells with testing
gas rates above 1.0 MMm3/D fromMiddle Permian QX gas reservoir in Sichuan Basin,
China (hereinafter referred to as QX reservoir). To meet market needs for clean energy,
the full development of this reservoir is put on agenda.

The QX reservoir is structurally located at the LongmenMountain buried thrust front
zone, and containsmanyNE-SW trending faulted anticline and faulted nosing structures,
and currently, 6 NE-SW trending tectonic high belts have been defined through seismic
and a rough structure map is given in Fig. 1. Due to limited drillings and complex
structure, the extension of faults, communication between each belt and gas and water
distribution inQX reservoir are still uncertain,which reduce feasibility for a full reservoir
modeling and simulation.

Fig. 1. Top structure map of Permian QX reservoir, SYS Block, Sichuan Basin

Current drilling, geology and geophysics studies show that QX reservoir is featured
with ultra-deep buried depth (7200–7800 m), high pressure (>93 MPa), low porosity
(3.9% in average) and thin layer (average pay zone thickness 20 m). Due to uneven
development of natural fractures and vugs, heterogeneity exists in this reservoir with
permeability ranging among0.01–10mD.Theuncertainty andheterogeneity in this ultra-
deep, thin layered and low porosity reservoir pose risks in cost-effective development,
to lower risks in initiating exploitation activities, proper Development Index (DI) for
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guiding the commercial and steady development of the new findings are the key concerns
of management.

Usually, in Field Development Plan (FDP), full reservoir modeling and simulation
will be performed to predict DI which consists of a series of parameters including
Field Annual Production Rate (FAPR), Field Plateau Period (FPP) at certain FAPR,
Well Spacing Density (WSD), Well Average Daily Production (WADP) during FPP,
and field Ultimate Recovery Factor (URF). And these key index will direct operators to
make drilling plan and development policies. But this common approach is less reliable
in QX reservoir due to uncertainties in reservoir characterization. Recently, big data
analysis technique (Safavian et al., 1991; Quinlan, 1986; Rao et al., 2019; Franco-
Lopez et al., 2001; Gou et al., 2019; Thierry et al., 2019; Burges et al., 1998; Chapelle
et al., 1999; Janik et al., 2006; Torkaman et al., 2015) provides novel, efficient and
economical tools for reservoir engineering and has been proved to be a powerful tool
in production forecast. Some researchers use big data technology to build proxy model
by correlating the complex, non-linear relationship among parameters to forecast flow
rates and hydrocarbon recoveries (Panja et al., 2017; Zhong et al., 2020; Ng et al., 2021;
Li et al., 2021; Shen et al., 2022; Zha et al., 2021; Zhou et al., 2014), and in some
literatures, big data technology have been utilized to facilitate reservoir simulation in
saving run time and cost, or improving accuracy in history matching (Ke et al., 2017;
Cheng et al., 2019; Luciana et al., 2020; Feng et al., 2019), and some researchers use
big data technology to guide stimulation design by correlating the fracturing parameters
into post stimulation oil production prediction model (Zhu et al., 2015).

But less literature is presented to forecast overall DI for a raw gas reservoir with
big data analysis technique. The purpose of this paper lies in the point that how we
utilized the geology and production history data in developed reservoirs to facilitate the
exploitation of new findings. Geology, dynamic and DI data from 30 mature gas fields
are collected and processed, and 13 parameters are selected to represent geological fea-
tures, deliverability and DI of individual reservoir. Through BP Neural Network, proxy
models are established to correlate DI with geology and deliverability data. Moreover,
the stability of the predicted results are also considered, to avoid randomness in a single
experiment, Baggingmethod (Eugene et al., 2022) is used tomake the resultsmore stable
for cases with limited samples. With the established models, overall DI for QX reservoir
are then given based on current drilling and testing information, and risks caused by
heterogeneity are also discussed. The results can serve as a criteria for directing the
successful development of this ultra-deep marginal pools.

2 Data Acquisition and Processing

Geology, deliverability and DI data of 30 major mature gas reservoirs from different
gas-bearing basins in China are reviewed. With per capita porosity among 3.4%–28.6%
and per capita dynamic permeability (Kdynamic, permeability from well test interpre-
tation) ranging from 0.1–38.5 mD, these reservoirs contain sandstones and carbonate
rocks with or without natural fractures. Based on post FDP implementation evaluation
of DI, these reservoirs, with 15–691 109 m3 in OGIP and 0.3–10.7 109 m3/a in actual
plateau gas production, are all believed to be successfully developed reservoirs. In data
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preparation, logging and dynamic data of 1500+ wells in these reservoirs are reviewed
to better understand the productivity and its dominating factors of individual reservoir.
And 13 parameters are selected and listed in Table 1 to represent geological features,
deliverability and DI of individual reservoir. To make sure that these parameters fully
represent reservoir characteristics, a lot of reservoir engineering study are conducted,
especially in the selection of productivity related parameters, such as permeability and
well AOF. We have two sets of reservoir permeability, which are matrix permeability
(Kmatrix) obtained in well logging interpretations or core testing and dynamic perme-
ability (Kdynamic) calculated in well test interpretation. The correlations of permeability
(both Kmatrix and Kdynamic) vs porosity, and Kdynamic vs Kmatrix shown in Fig. 2 indicate
that the porosity for most reservoirs are quite low (<10%), but the permeability varies
considerably, and inconsistency exists between Kdynamic and Kmatrix due to the devel-
opment of natural fractures. Figure 3 indicates that one of the DI parameters—FPR is
more dependent on Kdynamic than Kmatrix, and it can be seen in Fig. 4 that Kdynamic also
dominate well deliverability (AOFP).

Table 1. Geology, deliverability and DI parameters for individual reservoir

Parameter type No. of parameters parameters scope of values in
30 reservoir
samples

Values in QX
reservoir

Geology 6 reservoir depth,
m

910–6800 7500

reservoir
pressure, MPa

9.8–115.5 96

pressure
coefficient,
MPa/100 m

0.85–2.12 1.28

reserves
abundance,
109m3/km2

0.1–5.9 0.32

average porosity,
%

3.4–28.6 3.7

average Kmatrix,
mD

0.01–37.3 0.51

Deliverability 2 average
Kdynamic, mD

0.1–38.5 2.0

well average
AOFP, 103m3/d

68–9695 1420

(continued)
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Table 1. (continued)

Parameter type No. of parameters parameters scope of values in
30 reservoir
samples

Values in QX
reservoir

DI 5 Field Annual
Production Rate
(FAPR), %

0.18–4.11 2.5

Field Plateau
Period (FPP), a

5–20 9–11

Well Spacing
Density (WSD),
km2/well

0.4–10.5 5–6

Ultimate
Recovery Factor
(URF), %

37.4–75.0 62

Well Average
Daily
Production,
103m3/d

4–1907 280–300

(a) Kmatrix and Kdymamic vs. porostiy (b) Kdymamic vs. Kmatrix
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Fig. 2. Kmatrix, Kdymamic and porostiy in 30 sample fields
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3 BP Neural Network Algorithms

The BP (Back Propagation) neural network is a data mining technique in developing
correlation models between input variables and output variables in big data analysis. In
the following we would briefly describe the main algorithms.

The BP neural network, a concept introduced by scientists in 1986, is a multilayer
feed-forward neural network trained according to an error back propagation algorithm
and is one of the most widely used neural network models (Burks et al., 2000, Meinel
et al., 2010). Currently, the vast majority of neural network models used in the practical
application of artificial neural networks are in the form of BP networks and variations
of it.

TheBPalgorithmconsists of twoprocesses: the forward propagation of the signal and
the backward propagation of the error (Hecht-Nielsen, 1989). In forward propagation,
the input samples are passed in from the input layer, processed in turn by the hidden
layer and then passed to the output layer. If the actual output of the output layer does
not match the desired output, it moves to the back propagation of error stage. The BP
network consists of an input layer, an output layer and a hidden layer, and the structure
of the BP neural network is as follows (Fig. 5).
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Fig. 5. Structure of BP neural network

The specific steps are: let the input vector is X = (x1, x2, …, xn), the input vector
of the hidden layer is hi = (hi1, hi2, …, hip), the output vector of the hidden layer is ho
= (ho1, ho2, …, hop), the input vector of the output layer is yi = (yi1, yi2, …, yiq), the
output vector of the output layer is yo = (yo1, yo2, …, yoq), the desired output vector is
do = (d1, d2, …, dq).

The input and output of each neuron in the hidden layer are calculated by randomly
selecting the kth input sample.

hih(k) =
∑n

i=1
wihxi(k) − bh h = 1, 2, ..., p (1)

hoh(k) = f (hih(k)) h = 1, 2, ..., p (2)

yio(k) =
∑p

h=1
whohoh(k) − bo o = 1, 2, ..., q (3)

yoo(k) = f (yio(k)) o = 1, 2, ..., q (4)

where wih is the connection weight of the input layer to the middle layer, who is the
connection weight of the hidden layer to the output layer, bh is the threshold of each
neuron in the hidden layer, and bo is the threshold of each neuron in the output layer, f ()
is the activation function.

Initialize the error functionwith a randomnumberwithin (−1, 1) and set the precision
ε. With a maximum number of iterations M, the error function is

e = 1

2

∑q

o=1
(do(k) − yoo(k))

2 (5)

Calculate the partial derivatives of the error function with respect to each neuron in
the output layer and calculate the parameters of each layer with following equation:

∂e

∂who
= ∂e

∂yio

∂yio
∂who

= δo(k)hoh(k) (6)
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∂e

∂yio
= ∂

( 1
2

∑q
o=1 (do(k) − yoo(k))

)2

∂io
= −(da(k) − yoo(k))yo

′
o(k) · ne(do(k) − yoo(k))f (yio(k)) = δo(k) (7)

∂yio(k)

∂who
= ∂

(∑p
h whhoh(k) − bo

)

∂who
= hoh(k) (8)

Calculate the partial derivatives of the error function for each neuron in the hidden
layer, the connection weights that follow, and the input values for that layer,

∂e

∂hih(k)
= −

(∑q

h=0
δ0(k)who

)
f ′(hih(k)) = δh(k) (9)

∂huh(k)

∂wih
= xi(k) (10)

∂e

∂wih
= δh(k)xi(k) (11)

Use (6) (7) (8) to correct the output layer connection weights,

�who(k) = −μ
∂e

∂who
= μδo(k)hoh(k) (12)

wN+1
ho = wN

ho + ηδo(k)hoh(k) (13)

Use (9) (10) (11) to correct the hidden layer connection weights,

�wih(k) = −μ
∂e

∂wih
= −μ

∂e

∂hih(k)

∂hih(k)

∂wih
= δh(k)xi(k) (14)

wN+1
ih

= wN
ih

+ ηδh(k)xi(k) (15)

Finally, calculate the global error,

E = 1

2

∑m

k=1

∑q

o=1
(do(k) − yo(k))

2
(16)

4 Bagging

Bagging is a parallel method of ensemble learning, where data is sampled and the
results are voted on. For a given data set containing multiple samples, we randomly
select one sample into the sampling set and put that sample back into the initial data set,
making it still possible for it to be selected for the next sampling. Combining Bagging
with BP neural network. The model is trained several times to get the average of the
predicted values. It can improve the accuracy and stability of prediction while avoiding
the over-fitting phenomenon.
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5 DI Prediction Proxy Model Development Through Big Data
Analysis

5.1 Correlation Coefficient Calculation

As we want to build DI prediction model through big data analysis, geology and deliver-
ability parameters listed in Table 1 are categorized as characteristic data and DI param-
eters in the table are defined as target output variables. In proxy model development,
initially, the coefficient of correlation r (Bookbinder et al., 1987) between characteristic
data and target output data are calculated and those characteristic data with high abso-
lute r values are selected as input parameters. Table 2 presents the calculated r values
between characteristics data and DI, and those characteristic data with underlined values
are selected as inputs.

Table 2. Calculated r values between Characteristic Data and DI

DI
parameters

Depth Pressure Pressure
Coefficient

Reserves
Abundance

Kmatrix Porosity Kdynamic AOFP

URF 0.358 0.333 0.204 0.298 0.273 −0.176 0.401 0.522

FPP −0.006 0.146 0.247 0.065 0.168 0.139 −0.127 0.136

FAPR −0.023 0.12F9 0.334 0.385 0.190 0.204 0.392 0.416

WSD 0.223 0.225 0.101 −0.318 -0.091 −0.450 0.123 0.167

WADP 0.326 0.494 0.624 0.735 0.745 −0.007 0.388 0.948

Note:those characteristic data with underlined values are selected as inputs

5.2 Proxy Model Development

In proxy model development, BP Neural Network is used to establish the relationship
between input variables and output variables.We design different combinations of corre-
lated variables as input models. For example, we design four input models for predicting
UFR and three input models for predicting FPR, as shown in Tables 3 and 4 respectively.

Table 3. Combinations of correlated variables as inputs for predicting URF

Input models Depth Pressure Kdynamic AOFP

Model 1 1 1 1 1

Model 2 1 0 1 1

Model 3 0 1 1 1

Model 4 0 0 1 1

Note:1 means the variable is used, 0 means it is not used
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Table 4. Combinations of correlated variables as inputs for predicting FAPR from gas fields

Input models Reserves Abundance Kdynamic AOFP

Model 1 1 1 1

Model 2 0 1 1

Model 3 1 0 1

Note:1 means the variable is used, 0 means it is not used

As limited sample data may introduce randomness and occasionality in model devel-
opment, thus weaken model credibility, to avoid these disadvantages, samples data are
disordered in each trainingwith 80%and20%being selected randomly formodel training
andmodel validating respectively. For fixed inputs and outputs, the risks of occasionality
caused by limited sample data also exist if only single numerical test is conducted, to
tackle this problem, 2000 numerical tests are performed and those models with high
coefficient of determination (R2) of test set are selected as best fit models. All best fit
models are used to predict the DI value, and then the average is calculated to obtain the
final prediction result. R2 is generally used in regression models to evaluate the degree
of conformity between predicted values and actual values, and R2 is defined as follows:

R2= 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − y)2

where: y denotes the average of the true target values. The higher the score of the R2,
the closer the predicted value of the sample is to the true value.

In summary, we calculate the correlation coefficients between the predictor variables
and other variables, find the most relevant variables to the predictor variables. Then use
the bagging-based BPNeural Network to establish the relationship between the predictor
variables and the relevant variables. Finally, the training effect is evaluated by R2. And
the final prediction value is obtained by averaging from the better prediction results.
Whole process of the algorithm is described in the Appendix, and Table 5 shows the
network parameter settings for WADP prediction experiments.

Table 5. Optimal values for each parameter in the predicted WADP

Parameters Setting

Units 10, 64, 128, 256 …, 64, 1

Epochs Period: 500

activation Relu

optimizer Adam

Figure 6 shows, as an example, the prediction results of the two experiments with
higher R2 in 2000 prediction experiments of WADP. As depicted in Fig. 6, sound fitting
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can be observed between prediction and actual values. The predicted value in Fig. 6(a)
is basically consistent with the measured value, while the predicted value in Fig. 6(b)
is slightly deviated from the measured value, but the error is still small in the case of
a small amount of data. Experimental results show that the bagging-based BP neural
network has high precision in DI prediction. In addition, this analysis method is easily
scalable with the addition of the latest machine learning methods.
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Fig. 6. WADP prediction models validation. (a) and (b) represent different models with different
numerical testing samples

5.3 DI Prediction for QX Reservoir

Current drilling, geology and well testing data in QX reservoir are reviewed, and charac-
teristic parameters including geology and deliverability data are evaluated based on our
understanding of the reservoir. The quantifying of these parameters will be discuss below
and their values are presented in Table 1. Reservoir mid-depth based on drilling wells
is 7500m with initial reservoir pressure of 96 MPa and pressure gradient 1.28 MPa/100
m; reservoir porosity from both core analysis and logging interpretations are among
2.0%–6.0%, with 3.7% in average; Kmatrix from core analysis range from 0.01 mD to 53
mD, and 0.51 mD in mean; Kdynamic obtained through 9 wells’ test interpretations are
ranging in the scope of 0.1–10 mD, with 2.0 mD in average, reflecting the improvement
of mobility with the development of natural fractures; AOFP from both horizontal wells
and vertical wells are among 0.15–3.85 106 m3/d, with average 1.42 106 m3/d; based on
logging and pressure data, average reserve abundance is evaluated as 0.32 109 m3/km2.

DI for QX reservoir are predicted through our proxy models with input parameters
given in Table 1, and the output results shown in Table 1 are as follow: FAPR 2.5%,
WSD5–6 km2/well,WADPduring FPP280–300 103 m3/d andURF62%.Heterogeneity
caused by lithology change or uneven development of natural fractures can be evidenced
from both core samples and deliverability data, as in the low part of structure, well
dynamic permeability are in the magnitude of 0.1mD. The influence of heterogeneity on
FAPR and URF are also predicted in the proxy models, and results presented in Fig. 7
show that in the “tight” part of the reservoir, the feasible FAPR decreases from 2.5% to
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1.5%, and URF declines from 62% to 50%, so economic risk exist in the development of
QX reservoir. The effects of horizontal drilling on FAPR and URF are also evaluated and
depicted in Fig. 7, and it can be seen that compared with vertical drilling (with average
AOFP 1.0MMm3/d), horizontal drilling (with average AOFP 1.4MMm3/d) show limited
enhancement in both FAPR and URF.
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Fig. 7. Predicted PR and URF vs. Kdynamic with different AOFP

It should be note the proxy model are based on data from 30 mature, successfully
developed major reservoirs, and the DI of these reservoirs contain certain development
policies followed currently by the operators. So the predicted DI for QX reservoir can
serve as a criteria for directing the successful development of this ultra-deep marginal
pools.

6 Conclusions

1. DI prediction models for raw gas reservoirs are established through big data analysis
approach. Geology and dynamic data from 30 mature gas reservoirs are reviewed,
and 12 parameters are selected to represent geology, deliverability and DI data for
individual reservoir, then proxy model are built through bagging-based BP neural
network to correlated DI with geology and deliverability data.

2. Experimental results show that the bagging-based BP neural network has high
precision in DI prediction in the case of limited sample data.

3. Based on geology and dynamic data, theDI forQX reservoir are predicted in the proxy
model with results as following: FAPR 2.5%, FPP 9–11 years, URF 62%, WSD 5–6
km2/well, WADP during FPP 280–300 103 m3/d. Sensitivity analysis showed that
for relative “tight” area, 1.5% of FAPR with UFR of 50% are expected.

4. Through big data analysis, the development polices formed in mature gas fields can
provide valuable knowledge in the development of ultra-deep raw gas fields, thus
mitigating risks due to uncertainties in reservoir characterization.

Funding. This study was supported by the Scientific and Technology Research Program Funded
by CNPC, China (Project No. 2021DJ1505 and 2022KT0905).
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Appendix

Algorithm for Prediction Model Devlopment

Input: Select variable combination models as input 
Initialize training data and set test number 
repeat 

1k k
for 1j to N do in parallel

ˆ ( , )j jy M X y

Calculate 2R value jc , get set ˆ{ , }j j jS y c

end for

Select s jy S where j corresponds to 
1

( )
N

jj
j

Averagec c

until  k K
ˆ ( )sAveragy ye

return ŷ
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