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Abstract. China is rich in tight oil resources, with a wide distribution range and
a large amount of resources, making it one of the key areas for strategic replace-
ment of future oil reserves and production. In response to issues such as strong
heterogeneity of terrestrial tight oil reservoirs, difficulty in drilling high-quality oil
layers, large production differences, and unclear main control factors for produc-
tion capacity, a detailed analysis of dynamic and static data of production wells
was conducted to analyze production performance and decline patterns. Produc-
tionwellswere classified according to production characteristics, and development
indicators at different stageswere statistically analyzed based on actual production
days. Using a combination of principal component analysis and Pearson corre-
lation coefficient, based on multiple dynamic and static data such as geological
factors, fracturing factors, and development factors, and analyzing the correlation
between different single and combined factors and cumulative oil production at
different stages, the main control factors for different production stages of tight
oil were obtained. A production capacity prediction model for tight oil fracturing
horizontal wells was established based onmachine learning intelligent algorithms,
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A production capacity evaluation and prediction technology for tight oil fracturing
horizontal wells has been developed. By comparing with actual production data,
the accuracy of the predicted results canmeet production needs, providing a strong
technical foundation for precise prediction and guidance of tight oil production in
China.

Keywords: Tight oil · Production forecast · Data analysis · Analysis of main
control factors · Intelligent algorithms

1 Introduction

Rich tight oil resources have been discovered in terrestrial sedimentary reservoirs of
multiple basins in China, with a total resource volume exceeding 11 billion tons, mak-
ing tight oil a major development replacement field and a new strategic growth point for
crude oil production in China. Compared with North American marine tight oil, Chinese
terrestrial tight oil has the characteristics of “multiple types, low porosity, low fluidity,
and relatively poor oil properties”. The geological conditions of terrestrial tight oil in
China are complex, with multiple types and complex resource composition. The distri-
bution of sand bodies is scattered, the vertical and horizontal continuity of reservoirs is
poor, the reservoirs are dense and heterogeneous, and there are significant differences
in single well drilling rates. The source reservoir relationship is mainly dominated by
the intra source type, accounting for approximately 77.7%, the sub source type account-
ing for 18.2%, and the above source type accounting for 4.1%. The lithology is mainly
composed of sandstone, accounting for about 69%, carbonate rock accounting for about
29.8%, and sedimentary volcanic rock accounting for about 1.3%. The pressure coeffi-
cient is mainly high pressure, 64.8% of which is >1.2, 29.3% of which is 0.8–1.2, and
22% of which is <0.8. The physical properties of crude oil are mainly low viscosity
crude oil, with 41.2% having a viscosity of <2 mPa.s, 31.7% having a viscosity of 2–10
mPa.s, and 27.1% having a viscosity of >10 mPa.s.

Through the analysis of development effectiveness, domestic tight oil development
currently faces two challenges in terms of production and efficiency: firstly, the large
difference in single well production capacity, rapid decline, and low EUR of tight oil,
which poses challenges to the effective utilization of tight oil. The second is the high cost
and poor efficiency of using horizontal wells and volume fracturing for development.
In the current context of low oil prices, how to reduce costs and improve development
efficiency faces serious challenges. Through research, it has been found that the strong
heterogeneity of the physical properties and oil-bearing properties of tight oil reservoirs
is the fundamental reason for the significant productivity differences in horizontal wells.
The significant difference in the effectiveness of tight oil fracturing is an important factor
affecting production capacity. The production of tight oil in a single well depends on
the production of each fracturing section, which is mainly controlled by the oil-bearing,
physical properties, fluid properties, and fracturing effect of the reservoir; The organic
matching of high-quality reservoir drilling rate and effective fracturing interval number
is the main controlling factor for single well productivity. The strong heterogeneity of
the reservoir is an important factor affecting the drilling rate. The low drilling rate and
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low saturation of movable fluids in Class I high-quality reservoirs are the fundamental
reasons for the failure to achieve the expected production of horizontal wells.

In order to effectively predict the decline law of tight oil production, analytical
and numerical calculation methods are currently mainly used. Among them, analytical
calculation methods mainly include Arps decline curve method, typical decline curve
chart method, relative permeability curve method, etc. Numerical calculation methods
mainly refer to reservoir numerical simulation methods. However, each of these two
methods has its advantages and disadvantages: the analytical calculation method has a
fast calculation speed and can quickly provide a rough curve trend pattern. However, the
decline pattern of tight oil is complex, and a single decline pattern formula is difficult to
describe the overall decline process, and the calculation accuracy is not very accurate.
However, the reservoir numerical simulation method can accurately calculate numerical
solutions, but generally takes a long time and has high calculation costs.

With the gradual rise of artificial intelligence technology and the significant improve-
ment of computer computing power, artificial intelligence prediction technology has
emerged. From the perspective of big data analysis, this technology considers more
influencing factors and is more comprehensive compared to traditional analytical meth-
ods. At the same time, compared to reservoir numerical simulation methods, it does not
require global direct numerical simulation of the flow field values at each time step,
greatly improving the calculation speed. Hamid Rahmanifard [1] made a detailed com-
parative analysis of the performance of ML algorithms and statistical methods, and then
used two statistical methods (exponential smoothing and seasonal autoregressive com-
prehensive moving average) to make a comparative study of six kinds of modern ML
networks, including multilayer perceptron (MLP), long short-term memory (LSTM),
bidirectional LSTM (BiLSTM), convolutional neural network (CNN), long-term recur-
sive convolutional network (LRCN) and gated recursive unit (GRU). In order to deter-
mine the relationship between static and dynamic data of some development units in the
oilfield and the decline rate of oil production, Zhang Yan [2] used data-drivenmethods to
identify the correlation between post fracturing production and production influencing
factors by analyzing the geological properties and fracturing construction parameters of
tight sandstone inChangqingOilfield. Elastic networks, decision tree regression, support
vector regression have been used to establish prediction models from reservoir proper-
ties and fracturing construction parameters to production. Liang Tao [3] established an
initial cumulative oil production mixing model for Multi Fractured Horizontal Wells
(MFHWs) that considers both geological and volumetric fracturing factors. Based on
big data, a multi-level evaluation system has been established using Analytic Hierarchy
Process. Calculate theweighting factor to reveal the key factors affecting the productivity
ofMFHWs. Using fuzzy logic method to calculate Euclidean distance and quantitatively
predict the production of any horizontal well. Zainab Al Ali Hussain Al Ali [4] used
two deep learning models, namely, Long short-term memory (LSTM) and N-BEATS,
to predict the oil recovery data of two wells in Norway’s Norne Oilfield. The use of pre-
trained N-BEATSmodels overcomes the shortcomings of LSTMmodels that previously
required feature selection and rich training history, and the performance of N-BEATS
meta learning methods is superior to LSTM models. The LSTM neural network model
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has been used multiple times to predict the trend of monthly oil production and water
content in high water cut old oilfield blocks [5–11].

The eXtremeGradient Boosting (XGBoost) algorithm is a scalable distributed gradi-
ent boosting decision tree (GBDT) machine learning library. XGBoost provides parallel
tree enhancement function and is an advanced machine learning library for regression,
classification, and ranking problems.XGBoostwas initially initiated as a research project
byTianqi Chen as part of theDistributed (Deep)MachineLearningCommunity (DMLC)
group. It is an optimized distributed gradient enhancement library designed for efficiency,
flexibility, and portability. XGBoost is a tool for large-scale parallel boosting trees, which
is more than 10 times faster than common toolkits. In terms of large-scale data in the
industry, the distributed version of XGBoost has extensive portability, supporting run-
ning on various distributed environments such as Kubernetes, Hadoop, SGE,MPI, Dask,
etc., making it a good solution to the problem of large-scale data in the industry.

This paper adopts the XGBoost algorithm to establish a corresponding single well
production decline prediction model based on the characteristics of tight oil reservoirs
in China. Through practical application in a tight oil field in China, the superiority
and correctness of this method in predicting single well production capacity have been
confirmed,meeting the urgent needs of oilfield dynamic analysis, development planning,
and decision-making.

2 Analysis of the Declining Law of Tight Oil Production

Although the overall changes in production characteristics of horizontal wells in each
block are consistent, there are certain differences in the changes in daily liquid produc-
tion, daily oil production, water content, production casing pressure, and other char-
acteristics of each horizontal well based on the analysis of single well development
performance data. Through literature research, it was found that most tight oil reservoirs
are analyzed for production characteristics based on the variation of daily oil production
with mining time. Therefore, this article will classify and analyze the production and
mining characteristics of horizontal wells in the study area based on the variation of
daily oil production. According to the curve characteristics of the daily oil production
of a single well changing with mining time, the production and mining characteristics
of horizontal wells can be divided into four categories:

2.1 Type 1: Rapid Increase in Initial Production and Short Stable Production
Period

The overall performance is that the daily oil production capacity of horizontal wells
continues to increase in the initial stage of production, and reaches the highest daily
oil production level (10t–15t) within about 10 months. However, the stable production
period is relatively short, and after 1 year of production, the daily oil production begins
to decrease. After 2 and a half years, the daily oil production of a single well decreases to
about 5t; The change in daily liquid production is similar to that of daily oil production;
The water cut changes in the opposite direction and fluctuates within the range of 80% to
100%. The fracture network formed by horizontal well fracturing is the reason for high
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production in the initial stage of production, and the high production period is generally
maintained between the second month and the sixth month, after which it enters the
decreasing stage. The typical production curve is shown in Fig. 1(a).

(a)                                    (b)

(c)                                     (d)

Fig. 1. Curve of Daily Oil Production of a Single Well Changing with Production Time.

2.2 Type 2: High Initial Production and Rapid Decline in Later Stages

The overall performance is that the horizontal well has a high daily oil production
capacity in the early stage of production, but the stable production period is extremely
short. Generally, the daily oil production level starts to decrease within one month,
and the daily oil production in the first three months drops to about 50% of the initial
production, with a very fast decline rate. Generally, the daily oil production of the well
drops to below 5t within 2–3 years of production. The changes in daily liquid production
and production casing pressure of horizontal wells are similar to daily oil production.
The typical production curve is shown in Fig. 1(b).
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2.3 Type 3: The Fluctuation of Production is Large and Showing Multiple
“Peaks”

The performance is that the daily oil production capacity of horizontal wells gradually
increases in the initial stage of production, but the stable production period is short.
During the production time, the daily oil production continuously fluctuates up and
down. Overall, the daily oil production level is the strongest in the initial stage, and
the daily production in the later stage shows a downward trend fluctuation. Generally,
the daily production of wells decreases to below 5t after 4–5 years of production. The
typical production curve is shown in Fig. 1(c).

2.4 Type 4: No Significant Fluctuations in Production and Maintaining Stable
Production

The performance is that the daily oil production capacity of horizontal wells gradually
increases in the initial stage of production, reaching its maximum in about 3 months,
and the daily oil production is relatively stable throughout the entire production period,
maintaining between 5–10t/d; The changes in water content and daily liquid production
are similar to the daily oil production. The maximum daily oil production of this type
of horizontal well is within the range of 5–10t/d, which is at a moderate level. At the
same time, the production time is relatively short, mostly within two years. The daily
production is still in a stable period, so there is no significant fluctuation and stable
production has been maintained. The typical production curve is shown in Fig. 1(d).

3 Introduction of XGBoost Algorithm

XGBoost, as one of the Boosting algorithms, is a lifting tree model that integrates many
tree models. By adding a regular term to the loss function, the complexity of the model
is controlled to prevent overfitting. It can achieve parallel processing, which has greatly
improved the speed compared to GBDT. XGBoost is essentially k decision trees (k is
a positive integer), and the output of the regression tree is a real number (continuous
variable). Boostingmethod is to combinemultipleweak learners to give the final learning
results, and take the output results of eachweak learner as continuous values. The purpose
of this is to accumulate the results of each weak learner, and better use the loss function
to optimize the model.

Let f t(xi) is the output result of the t-round weak learner, y
∧(t)
i it is the output result

of the model, yi it is the actual output result, and the expression is as follows:

y
∧(t)
i =

∑t

k=1
f k(xi) = y

∧(t−1)
i + f t(xi) (1)

The objective function, that is, the loss function, builds the optimal model by min-
imizing the loss function. The loss function should add a regular term representing the
complexity of the model, and the model corresponding to XGBoost contains multiple
CART trees. Therefore, the objective function of the model is:

obj(θ) =
∑n

i
L
(
yi, y

∧(t)
i

)
+

∑t

k=1
�

[
f k(xi)

]
(2)
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The above formula is the regularization loss function. The first part on the right side
of the equation is the training error of the model, and the second part is the regularization
term. The regularization term here is the sum of the regularization terms of k trees. The
specific form is:

�
[
f k(xi)

]
= γT + 1

2
λ‖w‖2 (3)

where: T is the number of leaf nodes, ‖w‖ is the modulus of the leaf node vector, γ it
indicates the difficulty of node segmentation, indicates L2 regularization coefficient.

According to the expansion rule of the second derivative of the Taylor formula, the
training error is further deduced and expanded to obtain:

obj(θ)(t) =
∑T

j=1

[

Gjwj + 1

2

(
Hj + λ

)
w2
j

]

+ γT (4)

where: Gj represents the sum of the first derivative of all input samples mapped as leaf
node j, Hj represents the sum of second derivative of all input samples mapped to leaf
node j.

In summary, we have introduced the main algorithms of XGBoost, which lays a
theoretical foundation for subsequent prediction applications.

4 Workflow

For the prediction of well production in tight oil fields, first of all, data collection and pre-
processing should be carried out, including the static and dynamic data of the reservoir,
and the corresponding sample database should be established. Then, closely combining
with the field data of the oilfield, and making full use of geological, engineering and
development data, based on the production performance analysis and production decline
law analysis in the study area, Identify the relevant influencing factors that affect the
production capacity of horizontal wells for volume fracturing in tight oil reservoirs, cal-
culate the partial correlation coefficient between the two factors, screen out independent
influencing factors, and conduct single factor and multiple combination factor analysis
from three aspects: geological parameters, engineering parameters, and development fac-
tors. Through Principal Component Analysis (PCA) & Pearson Correlation Coefficient
Analysis method (PCCA) methods, comprehensively analyze multiple/single factors to
screen out the main controlling factors for production capacity; Establish a prediction
model based on XGBoost, which requires training and tuning the model to ultimately
form the optimal XGBoost tight oil field well production prediction model. The specific
process is shown in Fig. 2.
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Fig. 2. Technical workflow.

4.1 Data Collection and Preprocessing

Collection and Organization of Data. The production of a single well in a tight oil field
is influenced by various factors, mainly including reservoir parameter data, fracturing
engineering parameter data, and development and production parameter data. In terms
of reservoir parameter data, it also includes block basic data, drilling data, horizontal
section logging display data, horizontal section drilling rate data, horizontal section
reservoir evaluation data, geological reserve parameter data, etc. The specific relevant
parameters are shown in Table 1.
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Table 1. Collected dynamic and static parameters.

Data classification Related parameters

Reservoir parameter data Block basic data a) Block, well number, horizon,
sublayer, reference well,
interpretation layer, effective
thickness of each sublayer,
designed production capacity,
designed well depth, and
designed horizontal section
length

Drilling data b) First drilling time, completion
time, year of production,
completion method, cycle,
well depth, artificial bottom
hole, oblique depth of point A
during actual drilling, vertical
depth of point A during actual
drilling, length of horizontal
section, length of horizontal
section used

Horizontal logging display data c) The length of sandstone
encountered in horizontal
section logging, the length of
oil layer encountered in
horizontal section logging, the
drilling rate of sandstone
encountered in horizontal
section logging, the drilling
rate of oil layer encountered
in horizontal section logging,
the oil immersion length of
horizontal section logging, the
length of oil spot in horizontal
section logging, the length of
oil stains in horizontal section
logging, the fluorescence
length of horizontal section
logging, and the total length
of horizontal section logging

(continued)
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Table 1. (continued)

Data classification Related parameters

Horizontal logging drilling rate
data

d) The length of sandstone
encountered during horizontal
logging, the length of oil layer
encountered during horizontal
logging, the drilling rate of
sand-stone encountered
during horizontal logging, and
the drilling rate of oil layer
encountered during horizontal
logging

Horizontal reservoir evaluation
data

e) Horizontal Section I Reservoir
Length, Horizontal Section II
Reservoir Length, Horizontal
Section III Reservoir Length,
Horizontal Section IV
Reservoir Length, Horizontal
Well Classification Evaluation
Category, Horizontal Well
Classification Evaluation
Index

Geological reserve parameter
data

f) Production thickness, fracture
length, porosity, average
saturation, density, volume
coefficient, controlled
reserves, production reserves

Fracturing engineering parameter data g) Fracturing completion
structure, number of
fracturing segments, number
of fracturing clusters, average
interval spacing, average
cluster spacing, total
fracturing fluid volume, total
fracturing sand volume, fluid
intensity, sand intensity,
single stage fluid volume,
single stage sand volume,
fracturing completion time,
soaking time after fracturing,
single cluster fluid volume,
single cluster sand volume

(continued)
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Table 1. (continued)

Data classification Related parameters

Develop production parameter data h) Block, well number, well
pattern type, production time,
oil production method, pump
diameter, oil pressure, casing
pressure, dynamic liquid
level, production days,
cumulative production days,
monthly oil production,
monthly water production,
verification of monthly oil
production, verification of
monthly water production,
verification of cumulative oil
production, verification of
cumulative liquid production,
number of wells opened, daily
liquid production capacity,
daily oil production capacity,
water content, verification of
daily liquid production
capacity, verification of daily
oil production capacity, depth
of middle oil layer, flow
pressure, storage and
production coefficient Return
rate, deficit, recovery degree,
upward pumping time, and
number of months of
self-production

In addition to the single factor mentioned above, in order to highlight the impact
of different factors and have a greater correlation with production capacity, the follow-
ing multiple factors have been added according to the needs of the research problem,
including:

Among them, the effective length of the horizontal well Leh is

Leh = a1Loi + a2Losp + a3Lost+a4Lf (5)

And the oil-bearing Sob is

Sob = Leh
Loi + Losp + Lost + Lf

(6)

where: Loi stands for the length of oil immersion, m; Losp stands for the length of oil spot,
m; Lost stands for the length of oil stains, m; Lf stands for the length of fluorescence, m;
ai, i = 1, 2, 3, 4 stands for the weight.
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Table 2. Added multiple factor parameters.

Data classification Related parameters

Reservoir parameter multiple data a) Oil-bearing
b) Effective length of horizontal well
c) Permeability × Thickness used
d) Permeability × Thickness used × Effective

length of horizontal well
e) Utilized reserves × Permeability
f) Utilized reserves × Permeability/Viscosity
g) Oil-bearing × Production reserves ×

Permeability/Viscosity
h) Reservoir quality × Oil-bearing × Produced

reserves × Permeability/Viscosity

Multiple data of fracturing engineering a) Liquid strength × Sand strength
b) Liquid strength × Sand strength × Number of

segments
c) Liquid strength × Sand strength × Number of

segments × Effective length of horizontal well
d) The amount of liquid added in single stage ×

Effective length of horizontal well
e) The amount of sand added in single stage ×

Effective length of horizontal well

Note: Liquid strength equals to the amount of total liquid/Utilized reserves. Sand strength equals
to the amount of total sand/Utilized reserves

Data Preprocessing. For different types of data in tight oil well areas, data cleaning is
carried out based on their data volume, data type, data quality, etc., eliminating duplicate
well information, completing missing data, data integration, data transformation, and
other processes, and corresponding preprocessing is carried out for each data item.

(1) Correction of flowback period data: After fracturing construction, the production
during the flowback period is very low, which is not a normal industrial oil flow.
Therefore, it is necessary to remove the time period of the flowback period and the
oil production below a certain amount. The specific quantitative values vary from
different oilfields;

(2) Reorganize production data based on differences: Due to the cleaning of flowback
period data and time periods, it is necessary to recalculate the cumulative oil produc-
tion, cumulative liquid production, and water content for different production time
periods;

(3) Removal of abnormal well data: Based on expert experience and data analysis, iden-
tify wells with abnormally high or low production by drawing charts, and eliminate
them according to specific circumstances;

(4) Pre processing of specific data tables:
(a) Reservoir static data: porosity, formation pressure, and other data, with fixed

values for each block. Based on the collected data, these types of data are
supplemented in the data table.
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(b) Developing dynamic data: Dynamic data such as extraction degree and dynamic
liquid level vary, varies with production time, and need to be recalculated and
organized based on expert experience and specific formulas.

(c) The combination of dynamic and static data: Through difference calculation, the
production dynamic data has been reorganized and calculated. Merge the newly
generated development dynamic data into a static data table according to the
well name.

4.2 Data Correlation Analysis

After sorting out the influencing factors of production capacity and preprocessing the
data, it is necessary to conduct correlation analysis between the influencing factors and
production capacity, and screen out the main controlling factors of production capacity.
This article adopts a combination of principal component analysis (PCA) and Pearson
correlation coefficient, the method of combining PCA and Pearson is adopted.

Principal Component Analysis (PCA). The principal component analysis method is
to transform multiple existing indicators into a few well representative comprehensive
indicators, which can reflect most of the information of the original indicators and main-
tain independence between each indicator to avoid overlapping information. Principal
component analysis mainly plays a role in reducing dimensionality and simplifying data
structures.

(a) Standardize indicator data, collect p-dimensional random vectors X , n samples,

Xi = {
Xi1,Xi2, . . . ,Xip

}T
, (i = 1, 2, . . . , n) (7)

Construct a sample matrix and perform standardized transformation on the
sample matrix;

Zij = xij − xj
sj

, (i = 1, 2, . . . , n; j = 1, 2, . . . , p) (8)

(b) Calculate correlation coefficient matrix based on standardized matrix;

R = [
rij

]
pxp = ZTZ

n − 1
(9)

(c) Solve the characteristic equation of the sample correlation matrix R, obtain p
characteristic roots, and determine the principal components;

Uij = zTi b
o
j , (j = 1, 2, . . . ,m) (10)

(d) Convert the standardized indicator variables into main components;
(e) Perform a comprehensive evaluation of m principal components, sum them with

weights, and obtain the final evaluation value. Theweight is the variance contribution
rate of each principal component.
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Pearson Correlation Coefficient Analysis Method (PCCA). Pearson correlation
coefficient analysis is a method used to measure the degree of correlation between two
variablesX and Y, with values between−1 and+1. Defined as the quotient of covariance
and standard deviation between two variables.

ρX ,Y =
∑n

i=1

(
Xi − X

)(
Yi − Y

)

√
∑n

i=1

(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2
(11)

By using the above method, the correlation coefficients between the factors in
Tables 1 and 2 and the cumulative oil production at different stages were obtained,
as shown in Table 3.

Table 3. Correlation analysis results of various factors and oil production.

Influence factor Correlation coefficient (Weight)

Effective length of horizontal section 0.304

Oil-bearing 0.212

Thickness used 0.152

Controlled reserves 0.152

Permeability × Thickness used 0.05

Controlled reserves × Permeability/Viscosity 0.05

Permeability × Thickness used /Viscosity 0.015

Number of fracturing segments 0.222

The amount of sand added in single cluster 0.14

Liquid strength 0.098

The amount of liquid added in single stage 0.091

Storage and production correlation coefficient 0.08

The amount of sand added in single cluster 0.079

Post-pressure soaking time 0.07

Total amount of sand added 0.05

Production pressure difference 0.048

Return rate before oil breakthrough 0.035

Sanding strength 0.023

Liquid strength × Sand strength 0.017

Number of fracturing clusters 0.017

(continued)
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Table 3. (continued)

Influence factor Correlation coefficient (Weight)

Bottom hole pressure 0.012

The amount of sand added in single stage 0.01

Total amount of liquid added 0.005

Water displacement before oil exposure 0.002

4.3 Selecting Main Controlling Factors for Tight Oil Production

Through the above data analysis and combined with expert experience, the following
parameters were ultimately selected as the main control factors (Table 4):

Table 4. Results of main control factors for tight oil production.

Classification Main control factors

Main control factors for geology a) Effective length of horizontal
section

b) Oil-bearing

c) Thickness used

d) Controlled reserves ×
Permeability/Viscosity

Main control factors for fracturing and development e) Number of fracturing segments

f) The amount of sand added in single
cluster

g) Liquid strength

h) The amount of liquid added in
single stage

i) The amount of liquid added in single
cluster

j) Total amount of sand added

k) Production pressure difference

4.4 Constructing a Typical Well Production Sample Library

Combining professional knowledge and expert experience, based on correlation analysis
results and combined with cumulative production data from different stages, a sample
library reflecting the changes in single well production was established. Through the
sample library, expert experience was reflected.
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4.5 Establishing a Multi Parameter Prediction Model for Well Production

Model Construction. Due to the fact that this article only involves three blocks of an
oil field with a small sample size, it belongs to the small sample problem. Therefore, in
the design of the prediction model, the concept of cyclic input is considered, which is to
establish production prediction models according to different stages. When predicting
the current stage of production, the cumulative output value of the previous production
stage is input, as follows (Table 5):

Table 5. Prediction model input and output values.

No. Input values Output value

1 Main control factors Q1

2 Main control factors, Q1 Q3

3 Main control factors, Q1,Q3 Q6

4 Main control factors, Q1,Q3,Q6 Q9

5 Main control factors, Q3,Q6,Q9 Q12

6 Main control factors, Q6,Q9,Q12 Q18

7 Main control factors, Q9,Q12,Q18 Q24

8 Main control factors, Q12,Q18,Q24 Q36

9 Main control factors, Q18,Q24,Q36 Q48

Note: Qi stands for the accumulated oil production until the ith month.

As shown in the above table, this article adopts the concept of “equal dimensional
replenishment”, which refers to the dimension of input data. Except for the initial three
stages as the initiation stage, all other stages use fixed four dimensional data input,
always using the latest stage production data as the input of the model, and establishing
a mapping relationship with the accumulated oil production in the next stage.

Model Training. Configure algorithm parameters and conduct model training.

(1) Max_depth: Themaximumdepth of each tree.When establishing each tree, achiev-
ing the expected accuracy or maximum depth will proceed to the next tree model
construction. The default value is 6.

(2) Learning rate: learning rate is one of the most important hyperparameter. After
each new tree model is established, the prediction results of the new model are
given based on the previous prediction results and the interaction between the leaf
output and the learning rate calculated this time. For different problems, the ideal
learning rate will fluctuate between 0.05 and 0.3.

(3) Booster model: There are two models to choose: gbtree and gblinear. Gbtree uses
a tree based model for lifting calculations, while gblinear uses a linear model for
lifting calculations. The default is gbtree.

(4) Gamma: The minimum “loss reduction” required for further splitting at leaf nodes,
with a default of 0.
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(5) Min_child_weight: It can be understood as the minimum number of samples for
leaf nodes, with a default of 1.

(6) Subsample: The sampling ratio of the training set. Before fitting a tree, this sampling
step will be performed, with a value range of (0, 1]. The default is 1.

(7) Colsample_bytree: Before fitting a tree each time, determine how many features to
use, with a value range of [0, 1], and the default value is 1.

(8) Reg_alpha: Tuning of regularization parameters. The alpha parameter can reduce
the complexity of the model, thereby improving its performance.

(9) Reg_lambda: Tuning regularization parameters. Lambda parameters can reduce
the complexity of the model and improve its performance.

(10) Random_State: Random seed, 0 by default.

Model Evaluation. Based on parameters such as the error and root mean square error
between the predicted and actual data of the model, model optimization is carried out
to provide the optimal model for predicting single well oil production. The calculation
method for model accuracy is:

(1) Calculate the data of individual well oil production over time for each well sample
in the test set;

(2) Calculate the average absolute percentage error between all predicted data points
and actual data points, which is the model prediction accuracy.

During the calculation process, the following error calculations were used [12–18].
Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE):

MAE = 1

n

∑n

i=1

∣
∣y′

i − yi
∣
∣ (10)

MAPE = 1

n

n∑

i=1

∣
∣y′

i − yi
∣
∣

yi
(11)

Coefficient Determination (R2):

R2 = 1 −
∑n

i=1

(
yi − y′

i

)2

∑n
i=1

(
yi − yi

)2 (12)

4.6 Using Optimal Intelligent Models for Indicator Prediction

In response to the problem of predicting single well oil production, the optimized and
trained XGBoost prediction model for single well oil production was used to carry out
prediction work, obtaining future trends of single well oil production that can be used to
guide actual production and conform to production laws. This plays a positive guiding
role in production operation scheduling and adjustment of work systems.
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5 Calculation Results and Analysis

5.1 Overview of FY Oilfield Work Area

TheFYoil layer is the earliest discovered,most abundant, andwidely distributed oil layer
in the southern part of the SL Basin. The FY oil layer is distributed in the CL depression,
HG terrace, and western region of the FX uplift zone in the central depression area. FY
oilfield includes three blocks: Q block, R1 block, and R2 block.

5.2 Establishing a Multi Parameter Intelligent Prediction Model for Single Well
Indicators

Model Construction. The XGBoost model for predicting single well oil production in
tight oil fields was constructed using the XGBoost model introduced in the previous
section. Establish models for different production stages.

Model Training. According to the basic content of the model training parameters men-
tioned in the previous section, parameter tuning tests were conducted with the accuracy
of the test set as the evaluation label. There are a total of 84 wells in the sample set,
with a ratio of 8:2 for training + validation sets, and testing set. This means that there
are a total of 67 wells in the training + validation set, and 17 wells in the testing set.
Compared through testing, max_depth is 15, learning rate is 0.1, boost model is gbtree,
gamma is 0, min_child_weight is 1, subsample is 1, colsample_bytree is 1, reg_alpha is
0, reg_lambda is 1, random_state is 0.

Model Evaluation. The prediction model is constructed based on different sample
types, and the final 12 to 48 months prediction model R2 has an average accuracy of
86%, an average MAPE value of 13%, and an average MAE value of 351t.

5.3 Model Prediction Results and Analysis Discussion

Based on the optimal oil production prediction model in this article, relevant prediction
workwas carried out for 17wells in three blocks of FYOilfield. The comparison between
the predicted results and actual production data of four wells is listed below, as shown
in Figs. 3 and 4.

Figure 3 shows the predicted results of cumulative oil production at different produc-
tion stages of wells WQ1 and WQ2. It can be seen that at the beginning of production,
the predicted results are in good agreement with the actual production curve. During the
production period of 20 to 48 months, the predicted values were slightly higher than the
actual production data. The predicted value of WQ2 well in the mid-term production
stage is slightly lower than the actual production data, and then the predicted value and
production value continue to increase by the same magnitude.

Figure 4 shows the results of cumulative oil production predictions for WQ3 and
WQ4wells at different production stages. It can be seen that the predicted value ofWQ3
well is generally lower than the actual production value, but the difference is relatively
small. However, in the early stage of production, the predicted value of WQ4 well
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Fig. 3. Comparison between the predicted and real cumulative oil production with wells WQ1
and WQ2.

Fig. 4. Comparison between the predicted and real cumulative oil production with wells WQ3
and WQ4.

increases alternately with the actual production data, and remains basically consistent
after 25 months of production.

From the comparison between the predicted results in Figs. 3 and 4 and the actual
production curve trend, as well as the model error evaluation results, it can be seen
that the prediction accuracy of the model in this paper is relatively high in predicting
the cumulative oil production over 48 months. This indicates that the prediction model
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established through a series of methods and techniques introduced in this article is more
effective in predicting the cumulative production of a single well, thus achieving multi-
dimensional tight oil single well production prediction, This provides a strong technical
foundation for precise prediction and reasonable optimization of tight oil production in
China.

6 Conclusion

Based on the XGBoost model, a typical tight oil well production sample library was con-
structed through data collection, organization, and preprocessing. Correlation analysis
of influencing factors was conducted, and amulti-parameter intelligent predictionmodel
for single well oil production indicators was established. The development indicators
were predicted, and the conclusion is as follows:

(1) Established a complete and effective method for predicting development indicators
of tight oil fields based on XGBoost model;

(2) The XGBoost cumulative oil production prediction model established is suitable for
predicting the trend of cumulative oil production in tight oil fields, and the established
model has a high accuracy in predicting single well production;

(3) The methods and techniques introduced in this article are not only limited to tight
oil fields, but can also be applied to the production prediction of unconventional oil
and gas fields.

In summary, the artificial intelligence model established in this article has achieved
multi-dimensional prediction of single well tight oil production, improved the dynamic
management level of oil well production, improved the accuracy of single well measure
decision-making, and improved the ultimate oil recovery rate and production efficiency
of the oilfield. This provides a strong technical foundation for precise prediction of tight
oil production and reasonable optimization of production allocation in China.
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