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Abstract. The quality of cement bond is related to the safety of oil and gas well
production and the service life of casing. At present, acoustic variable density
logging (VDL) is the most widely used method for evaluating cementing quality
in oil fields. The data interpretation of VDL still needs to rely on manpower, and
the accuracy of interpretation results is restricted by human factors, and the work-
load is heavy. Oilfields have accumulated a large number of practically verified
VDL interpretation results. It is of great research value and application potential
to sort out these historical data and mine them with the help of deep learning
technology, and establish an intelligent analysis method instead of humans to
explain the cementing quality. In this study, the VDL cementing quality evalua-
tion reports of several oil wells were collected. Through data preprocessing, the
acoustic variable density images were standardized and segmented along the bore-
hole direction. The cementation conditions of the first interface and the second
interface corresponding to each segment of the acoustic variable density image
were marked, and a sample set for cement bond quality evaluation was established.
The cementing quality evaluation problem is transformed into an image classifi-
cation problem, and the convolutional neural network method is introduced. On
the basis of LeNet5, AlexNet and other classic image recognition architectures,
considering the characteristics of acoustic variable density images, a personal-
ized convolutional neural network (CBQNet) for cementing quality evaluation
is designed, including 28 layers and more than 32 million learnable parameters.
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Using historical cementing quality evaluation samples to train and analyze the
performance of convolutional neural network, the results show that: CBQNet has
a training accuracy rate of 95.9% and a verification accuracy rate of 95.4% in
the first interface cementing quality evaluation. In the cementing quality evalu-
ation of the second interface, the training accuracy rate reached 90.8%, and the
verification accuracy rate reached 88.1%. It shows that the convolutional neural
network realizes efficient and accurate interpretation of cementing quality by min-
ing and learning the interpretation results of historical VDL data, and provides a
new method for cementing quality evaluation.

Keywords: Cement Bond Quality Evaluation - Convolutional Neural Network -
VDL Logging - Pattern Recognition

Nomenclature

ay Output of the kth sample;

C Cross-entropy loss function;

i,j Number of neurons;

j Total number of neurons of layer;
k Number of sample;

n Total number of samples;

relu;(x) ReLLU function,;
softmax;(x) Softmax function;

x Vector of parameters for each neuron in a neural network layer;
Xi, Xj Parameter for the ith and jth neurons;

y Label value;

Yk Label value of the kth sample

1 Introduction

Cementing is a key technology in the process of oil and gas field development, and
the quality of cement bond has a direct impact on the life and productivity of the well.
During the cementing process, it is difficult to ensure good cementing quality in the
entire well section due to the properties of the medium in the well, the cementing opera-
tion environment and various factors during the construction process [1-3]. Unqualified
cementing quality may lead to reduced well life and oil layer pollution. How to evalu-
ate the cementing quality reasonably, locate unqualified well sections in time, and give
reasonable remedial measures has become an important task of cementing.

Cementing quality evaluation is mainly based on the analysis of the cementation
of the two interfaces. Interface I is the cemented interface between the casing and the
cement sheath, and interface II is the cemented interface between the cement sheath
and the formation. No matter whether the cementation quality of the interface I or the
interface Il does not meet the standard, it is easy to cause downhole oil-water channeling,
and even destroy the regional geostress balance, resulting in casing damage [4-6].
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In the 1970s, acoustic variable density logging (VDL) technology was developed
for cement bond evaluation. The VDL logging tool adopts the single-send and double-
receive mode. The sound wave is emitted from the transmitter, and the sound wave passes
through various interfaces in the well and is finally received by the receiver. There are
two source distances for receivers. The 3ft source distance receiver is used to measure
the casing wave sound amplitude, which is used for the evaluation of the interface I.
The 5ft source distance receiver is used to measure the full wave of the sound wave,
and the acoustic variable density image is obtained after processing, which can reflect
the cement bonding of the interface I and interface II. VDL logging technology has
become more and more mature and has become the most widely used cementing quality
evaluation technology. However, at present, the data interpretation of VDL still needs
to rely on manpower, and the accuracy of interpretation results is restricted by human
factors, and the workload is heavy [7-9].

Big data and deep learning technology are causing a new round of technological
revolution. Breakthroughs have been made in many fields such as image recognition,
voice processing, and unmanned driving [10]. Petroleum companies are also actively
introducing artificial intelligence technology to promote intelligent transformation and
upgrading [11, 12]. At present, the oil field has accumulated a large number of practically
verified VDL interpretation results. It is of great research to sort out these historical data
and mine them with the help of deep learning technology, so that it can replace humans in
cementing quality interpretation. This has great research value and application potential.

In this study, we propose to apply convolutional neural network to the problem
of cementing quality evaluation. Firstly, a sample set of cementing quality evaluation
will be prepared based on the historical VDL data and the corresponding cementing
quality interpretation results. After that, a cement bond quality evaluation model will be
established based on convolutional neural network. The sample set will be mined and
learned, and the performance of the model will be analyzed.

The paper is structured as follows: Sect. 2 provides an description of the preparation
process for the cementing quality evaluation sample set. Section 3 discusses the design
concept and outcomes of the convolutional neural network architecture for cementing
quality evaluation. Section 4 presents the training process and performance analysis
results of the neural network for cementing quality evaluation. Finally, Sect. 5 concludes
the paper.

2 Preparation of Cement Bond Quality Evaluation Sample Set

2.1 VDL Logging Interpretation Image

VDL is a commonly used cementing quality detection method in the field. The principle
is to reflect the bonding quality between cement and casing, and between casing and
formation by using the large difference in acoustic impedance between cement and mud
(or water) on the attenuation of sound waves propagating along the axial direction of the
casing [2].

The VDL tool adopts the single-send and double-receive mode. The sound wave
is emitted from the transmitter, and the sound wave passes through various interfaces
in the well and is finally received by the receiver. There are two source distances for
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receivers. The 3ft source-distance receiver measures the sound amplitude of the casing
wave, which is used for the evaluation of the first interface of cementing. The receiver
with a source distance of 5ft is used to measure the full wave train of the sound wave, and
then the components and amplitude of the first arrival wave are extracted through data
processing, and the sound wave variable density map is obtained, which can reflect the
cement cementation of the interface I and interface II. There are black and white strips
on the acoustic variable density image, and the intensity of the signal is represented by
the color of the strips. In the acoustic variable density image, combined with geological
information and cementing slurry information, the cementing quality analysis can be
carried out according to the clarity of the full wave train strips [13].

Figure 1 illustrates a typical image of cementing quality interpretation results. The
figure presents six types of logging information, namely natural gamma ray logging
(GR), caliper logging (CAL), acoustic amplitude logging (AC), acoustic time difference
logging (CBL), magnetic positioning logging (CCL), and acoustic variable density log-
ging (VDL). Additionally, the image displays the cementing quality analysis results of
two interfaces, namely interface I and interface II, on the left side. The different tiles in
the image correspond to different cementing qualities, including five distinct interpreta-
tion results, namely good cementation, moderate cementation, poor cementation, mixed
mud zone, and mud zone.
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Fig. 1. A typical image of cementing quality interpretation results.
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2.2 Sample Set Preparation

Cementing quality interpretation result images from oil fields were collected. The entire
interpretation result image was segmented along the borehole direction with a width of
Im, results many independent images for each meter, each with a size of 1886 x 41
pixels.

Each meter of the interpretation result image was further cropped to intercept the
VDL image part, the interpretation result part of the interface I, and the interpretation
result part of the interface II. Specifically, the VDL image part was cropped to a size
of 511 x 41 pixels, while the interpretation result parts of the first and second interface
sections were cropped to sizes of 73 x 41 pixels each. An example of resulting images
is presented in Fig. 2.

Fig. 2. An example of resulting images cropped from an interpretation result image. (a) VDL
image part. (b) interface I interpretation result part. (c) interface II interpretation result part.

The VDL image in Fig. 2(a) is a black and white image that can be transformed into
a matrix of size 511 x 41, where each element in the matrix takes a value of either O
or 1. In this matrix, O represents a white pixel and 1 represents a black pixel. Similarly,
the images in Fig. 2(b) and Fig. 2(c) are black and white and represent the interpretation
results of the first and second interfaces. During the preparation of the sample set, the
interpretation results of the wellbore interfaces were transformed into vectors using the
one-hot encoding method, as shown in Table 1.

Table 1. Interpretation results and corresponding one-hot code.

Image of interpretation results  Description of interpretation results One-hot code
I- good cementation [10000]
IH' moderate cementation [01000]
poor cementation [00100]
mixed mud zone [00010]
mud zone [00001]
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The cement bond quality evaluation sample set was obtained by processing the
interpreted image for each meter of each well. A total of 3351 samples were prepared
in this study. Each sample contains an input image, and two labels representing the
cementing quality of the first interface and the second interface, respectively.

3 Architecture Design of Convolutional Neural Network
for Cementing Quality Evaluation

Given that the input for evaluating cement bond quality is the VDL image, a convolutional
neural network (CNN) with robust image feature learning and classification abilities was
chosen. CNN is the leading algorithm in computer vision research, especially in image
recognition, and has demonstrated a range of successful applications [14]. As a deep
learning algorithm, CNN is inspired by the visual cortex structure in animals that adap-
tively extracts spatial hierarchical information from images through layers of various
visual neurons. CNN typically includes three kinds of layers, namely, convolutional lay-
ers, pooling layers, and fully connected layers. The convolutional and pooling layers are
utilized for image feature extraction, where the former leverages different convolutional
kernels to scan the feature maps for extracting features from diverse perspectives, and
the latter reduces the dimensionality of the features. The fully connected layer maps the
extracted features to the final output.

For different problems, the number and logical relationship of convolutional layer,
pooling layer and fully connected layer are different, that is, the design of convolutional
neural network architecture is different. Due to the inexplicability of neural network
algorithms, the current neural network architecture design still lacks general standards
and specifications, and relies more on experience and trial and error. According to the
characteristics of the cementing quality evaluation problem, combined with the classic
network architectures such as LeNet-5, AlexNet, VGGNet, GoogleNet and ResNet in
the image recognition field [15], the architecture of the convolutional neural network
for cementing quality evaluation is designed and named as CBQNet. Its architecture
parameters are shown in Table 2.

The designed convolutional neural network, CBQNet, for evaluating the quality of
cementing contains a total of 28 layers, including 6 convolutional layers that all utilize
3 x 3 small convolutional kernels and 3 pooling layers that all use 2 x 2 maximum
pooling method. With the exception of the Softmax activation function used before
the classification output, all intermediate layers use the ReLU activation function. The
formulas of Softmax and ReL.U activation functions are:

softmaxi(x) = - (i=1,2,3,---,J)

J C:

Lo (1)

J=1

relu;(x) = max(0,e%) (i=1,2,3,---,J) 2)

The CBQNet has a total of over 32 million learnable parameters. To avoid issues
related to overfitting and lengthy training times, five dropout layers were added. Dur-
ing training, the dropout layers randomly select a certain proportion of neurons to stop



Table 2. Architecture parameters of CBQNet.

Intelligent Evaluation Method of Cement Bond Quality 71

Layer No. | Layer Type Settings Dimensions Learnable Parameters
1 Image Input 511 x 41 x 1
2 Conv2D Size:3 x 3 509 x 39 x 32 | Weights: 3 x 3 x 1 x
No.: 32 32
Stride: 1 x 1 Bias: 1 x 1 x 32
Activation Function: ReLU 509 x 39 x 32
4 Conv2D Size:3 x 3 507 x 37 x 32 | Weights: 3 x 3 x 1 x
No.: 32 32
Stride: 1 x 1 Bias: 1 x 1 x 32
Activation Function: ReLU 507 x 37 x 32
Pooling Type: Max Pooling | 254 x 19 x 32
Size: 2 x 2
Stride: 2 x 2
7 Dropout Ratio: 5% 254 x 19 x 32
Conv2D Size:3 x 3 252 x 17 x 64 | Weights: 3 x 3 x 32
No.: 64 X 64
Stride: 1 x 1 Bias: 1 x 1 x 64
9 Activation Function: ReLU 252 x 17 x 64
10 Conv2D Size:3 x 3 250 x 15 x 64 | Weights: 3 x 3 x 64
No.: 64 X 64
Stride: 1 x 1 Bias: 1 x 1 x 64
11 Activation Function: ReLU 250 x 15 x 64
12 Pooling Type: Max Pooling | 125 x 8 x 64
Size:2 x 2
Stride: 2 x 2
13 Dropout Ratio: 5% 125 x 8 x 64
14 Conv2D Size:3 x 3 123 x 6 x 128 | Weights: 3 x 3 x 64
No.: 128 x 128
Stride: 1 x 1 Bias: 1 x 1 x 128
15 Activation Function: ReLU 123 x 6 x 128
16 Conv2D Size: 3 x 3 121 x 4 x 128 | Weights: 3 x 3 x 128
No.: 128 x 128
Stride: 1 x 1 Bias: 1 x 1 x 128
17 Activation Function: ReLU 121 x 4 x 128
18 Pooling Type: Max Pooling | 61 x 2 x 128
Size: 2 x 2
Stride: 2 x 2
19 Dropout Ratio: 5% 61 x 2 x 128

(continued)
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Table 2. (continued)

Layer No. | Layer Type Settings Dimensions Learnable Parameters

20 Fully Connected | No.: 2 048 1 x1x2048 | Weights: 2048 x
15616
Bias: 2048 x 1

21 Activation Function: ReLU 1 x1x2048

22 Dropout Ratio: 5% 1 x1x2048

23 Fully Connected | No.: 512 1 x1x512 Weights: 512 x 2048
Bias: 512 x 1

24 Activation Function: ReLU 1x1x512

25 Dropout Ratio: 25% 1x1x512

26 Fully Connected | No.: 5 I x1x5 Weights: 5 x 512
Bias: 5 x 1

27 Activation Function: Softmax |1 x 1 x5

28 Output 1x1x5 28

participating in computations. This not only reduces computation time, but also trans-
forms a single large-scale model into a collection of relatively smaller models, which
effectively improves the model’s ability to generalize.

4 Neural Network Training and Performance Analysis

4.1 Training Parameter Setting

Neural network training is the process of finding the weights between the convolutional
kernels in the convolutional layers and the neurons in the fully connected layers, with
the aim of minimizing the difference between the calculated output of the output layer
and the true label given in the sample set. The selection and setting of the loss function
and optimizer play a critical role in neural network training. First, the data samples are
input into the neural network, then the current model performance is evaluated through
the forward propagation process and the loss function. Next, the optimizer updates the
weights of the learnable parameters in the neural network based on the size of the loss,
using the backward propagation process.

The loss function used for training CBQNet is the cross-entropy loss function, which
measures the distance between two probability distributions. Its expression is as follows:

1 n
==Y [y + (1 =y In(l - ap)] ®)
k=1
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In this study, the optimizer used is Adadelta, an improved and extended version
of the Adagrad algorithm. Compared with Adagrad, Adadelta no longer accumulates
all past gradients, but adjusts the learning rate based on the moving window updated
by the gradient, making it more robust. The main parameters for setting the Adadelta
algorithm include a learning rate of 1.0, a decay rate of 0.95 for the moving average of
gradient squares, a blur factor of 1 x 107, and a learning rate decay value of O after
each parameter update.

During the training process, 20% of the samples were randomly selected as the
validation set, and the remaining 80% of the samples were used as training data. The
total number of training epochs was set to 30, and 100 samples were fed into the neural
network for each training iteration. The training environment was set up using Keras and
TensorFlow. The workstation was equipped with an Intel Xeon E5-2673 v3 12C/24T
2.40 GHz processor and 64 G 2 400 MHz DDR4 ECC memory.

As each input image in the wellbore cementing quality evaluation sample set corre-
sponds to two labels, representing the cementing quality of the first and second interfaces,
respectively, two training processes are required during neural network training. The first
training process uses the cementing quality of the first interface as the output, resulting
in the CBQNet-1 neural network model for analyzing the quality of the first interface.
The second training process uses the cementing quality of the second interface as the
output, resulting in the CBQNet-2 neural network model for analyzing the quality of the
second interface.

4.2 Performance Analysis

The accuracy and loss of CBQNet-1 during training are shown in Fig. 3 and Fig. 4. It can
be seen from Fig. 3 that after the first training epoch, the model’s training accuracy and
validation accuracy were 78.5% and 84.2%, respectively, with a significant gap between
them, indicating that the training was not sufficient. With the increase of training epochs,
the training accuracy of the model showed a stable upward trend, with a fast-then-slow
increase rate, and the training accuracy had exceeded 99% after 20 epochs. The upward
trend of validation accuracy was consistent with that of training accuracy before the
12th epoch, and then validation accuracy showed some fluctuations without significant
improvement. After 12 epochs of training, the training accuracy and validation accuracy
of the model were 95.9% and 95.4%, respectively. Although further training could still
improve the training accuracy, the validation accuracy no longer improved significantly,
and the gap between the two began to increase, indicating that further training would
lead the model to overfitting. From Fig. 4 we can see that the trend of the training loss
and validation loss during training was basically the same as that of the accuracy, further
indicating that the ideal effect could be achieved after 12 epochs of training.

The accuracy and loss of CBQNet-2 during training are shown in Fig. 5 and Fig. 6.
It can be observed from Fig. 5 that after the completion of the first epoch, the model’s
training accuracy and validation accuracy were 40.3% and 46.7%, respectively, which
were relatively low, indicating that a single round of training was insufficient for the
neural network to fully grasp the rules between sample inputs and outputs. Similar to
CBQNet-1, the model’s training accuracy increased rapidly at first and then slowed
down as the number of training epochs increased. After 20 epochs, the training accuracy
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Fig. 4. The loss of CBQNet-1 during training.

exceeded 99%. The trend of the validation accuracy was consistent with that of the
training accuracy before the 12th epoch. However, the validation accuracy showed a
certain degree of fluctuation thereafter, with no significant improvement. After 12 epochs
of training, the model’s training accuracy and validation accuracy were 90.8% and 88.1%,
respectively. From Fig. 6 we can see that the trend of the model’s training loss and
validation loss with respect to the number of training epochs was similar to the trend
of the accuracy, which further indicates that the desired effect can be achieved after 12
epochs of training.

Overall, the accuracy of CBQNet-2 is lower than that of CBQNet-1, indicating that
the analysis of the second interface bonding quality is more difficult than the analysis of
the first interface bonding quality, which is consistent with the traditional understanding
of manual analysis.
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Fig. 6. The loss of CBQNet-2 during training.

The training time of CBQNet-1 and CBQNet-2 is shown in Fig. 7. From the figure, it
can be observed that the training time of the two neural networks follows a similar trend.
When the number of training epochs is small, the fluctuation in training time is stronger.
However, with the increase in the number of training epochs, the training time of each
epoch becomes more stable. The average training time per epoch is 188 s, indicating
that the model’s training efficiency is relatively high. If more samples are added in the
future, it is possible to complete the training of a new model in a relatively short time.

Overall, the trained CBQNet-1 and CBQNet-2 can achieve high accuracy and auto-
mated analysis of the first and second interface cementing quality. They can save a lot
of time spent on manual analysis, freeing petroleum engineers from simple and com-
plicated work and allowing them to devote more energy to higher-level intelligent tasks
such as operation management and anomaly handling.
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5 Conclusion

A batch of historical cementing interpretation result images of oilfields were collected,
and the images were standardized to establish a cement bond quality evaluation sample
set. The sample set contains a total of 3351 samples, and each sample contains two labels
of the cementing quality of the first interface and the second interface.

Combined with the characteristics of the cementing quality evaluation problem, the
convolutional neural network was selected to carry out the personalized design of the
network architecture, and a CBQNet with 28 layers and more than 32 million learnable
parameters was constructed. After setting reasonable learning parameters, the CBQNet
was trained with the ementing quality evaluation sample set, resulting in two models:
CBQNet-1 for the cementing quality evaluation of the first interface and CBQNet-2 for
the cementing quality evaluation of the second interface, with validation accuracy rates
of 95.4% and 88.1%, respectively.

Future work will focus on expanding the cementing quality evaluation sample set,
addressing the problem of uneven sample distribution, introducing more evaluation
indicators, and further improving model accuracy.
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