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Abstract. To solve the problems of complex in-situ stress of tight sandstone reser-
voir, few sample points of experimental data, difficulty in in-situ stress prediction,
etc., amethod for one-dimensional, two-dimensional and three-dimensional in-situ
stress prediction based on geomechanics and BP neural network was innovatively
proposed by comprehensively using various data such as core data, mechanical
experimental data, logging data, etc. In this method, the rock mechanics parame-
ters of single well in the study area were predicted by neural networkmethod using
the logging data as the learning sample and measured rock physical parameters
as the monitoring data first; then the in-situ stress of single well was accordingly
calculated by empirical formula, and predicted and analyzed by neural network
algorithmusing the calculated in-situ stress of singlewell selected by error analysis
and the indoor measured in-situ stress as the monitoring data and the conventional
logging data as the learning samples. The application in the actual areas shows
that the predicted results of in-situ stress not only conform to the measured data,
but also follow the logging curves, and thus provide an important basis for the
design of integrated geological engineering scheme.
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1 Introduction

With increasing difficulty in conventional energy exploitation, tight sandstone reservoirs
have gradually become one of the important exploration and development targets [1–3].
Due to their low porosity and low permeability, they are mainly developed by horizon-
tal drilling and staged fracturing, for which the current in-situ stress state is the main
controlling factor [4–6]. In fracturing, the in-situ stress state controls the shape, height,
width and direction of hydraulic fractures, and affects the fracturing stimulation effect.
Also, in-situ stress is an important basis for well pattern deployment and adjustment and
lateral segment direction selection. Therefore, the evaluation of the current in-situ stress
is very important for the exploitation of tight sandstone reservoirs [7, 8].

Stress activity causes rock deformation or fracture and plays an important role in
oil and gas exploration and development (Jenkins, 2017). The in-situ stress is generally
composed of tectonic stress, gravity stress, thermal stress, pore pressure, etc., and its
state is usually represented by three normal stresses, the maximum horizontal principal
stress (σ H), vertical stress (σ v) and minimum horizontal principal stress (σ h) (Lin
et al., 2006; Kuuskraa and Ammer. 2004; Matsuki and Takeuchi. 1993) [9, 10]. The
magnitude and direction of in-situ stress in different strata in different regions in the
crust change with space and time to form an in-situ stress field. Nowadays, there are
many methods for evaluation of in-situ stress, such as hydraulic fracturing, acoustic
emission and logging calculation. The methods are commonly used to determine the
in-situ stress. Fracturing method refers to the calculation of the in-situ stress according
to the relationship of fracturing pressure and time. The hydraulic fracturing method is
reliable, direct and simple, but not all wells have small-scale fracturing test data in actual
production. Acoustic emission method (Goodman 1963) refers to the determination of
in-situ stress according to the characteristics of elastic waves in the form of which some
energy is released from the rocks when the rocks are compressed by external forces
[11]. By analyzing the acoustic characteristics of these elastic waves, the size of in-situ
stress can be obtained. The acoustic emission method can measure the stress in the
deep reservoirs, but has high costs of acoustic emission test, uncontinuity of results,
and few sample points of indoor measured data and roughly estimates the in-situ stress
state of the untested reservoirs. The logging curve-based formulas method overcomes
the shortcomings of high test price and discontinuous measuring points. It refers to the
method of indirect calculation of in-situ stress according to the formula after the logging
data are used to calculate the rock mechanics parameters, such as formation Poisson’s
ratio, Young’s modulus, shear modulus and bulk modulus, etc. However, the calculation
process cannot be directly calibrated by the indoor experimentallymeasured in-situ stress
results [12], and there is a large error between final calculation results and the measured
data always [13, 14]. The neural network method better overcomes the disadvantage
that the indoor experimentally measured in-situ stress results cannot be used for logging
calibration, and seeks the relationship between the indoor experimentally measured in-
situ stress results and the geophysical logging curve by machine learning. However, the
relationship will be supported by a large number of the indoor experimentally measured
in-situ stress results [15].
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To solve the above problems, the data point continuity of logging curve-based for-
mulas method and the advantages of data calibration of BP neural network method were
combined to further improve the accuracy of in-situ stress prediction.

It includes the following steps: (1) The geophysical logging parameters of tight sand-
stone oil and gas wells, X-MAC logging parameters, indoor experimentally measured
rock parameters and stress value parameters were acquired; (2) The standard layer statis-
tical analysis method was used for environmental correction, and the histogram method
was used to standardize the data of tight sandstone oil and gas wells; (3) The location
correction method was used to correct the depth data used during the acquisition of the
above data; (4) Linear regression method was used to predict the data of S-wave curve
according to X-MAC logging parameters and processed geophysical logging parame-
ters of the area; (5) According to the predicted S-wave slowness, geophysically logged
P-wave slowness and density logging parameters, the dynamic Young’s modulus and
dynamic Poisson’s ratio of rock were calculated jointly; according to the indoor exper-
imental data, the rock mechanics parameters calculated according to the logging data
were dynamically and statically corrected to obtain static Young’s modulus, static Pois-
son’s ratio, etc.; (6) according to the indoor experimentally measured data, the biot
coefficient and pore pressure were obtained by fitting, and combined with the static rock
mechanics parameters to calculate the vertical stress, maximum horizontal stress and
minimum horizontal stress; and the error of the indoor experimentally measured stress
data was analyzed; (7) the calculated in-situ stress of the wells with small errors was
used to extend the indoor experimentally measured in-situ stress data of small samples
to form large sample learning data; and the geophysical logging parameters of single
wells were used as training samples to calculate the vertical in-situ stress, maximum
horizontal stress and minimum horizontal stress of tight sandstone oil and gas wells by
neural network method; (8) a geological mesh model was created to spatially interpolate
geophysical logging parameters, and a three-dimensional in-situ stress field model was
obtained based on neural network method to predict, analyze and evaluate the spatial
in-situ stress distribution of tight sandstone reservoirs.

2 Sample and Experiment

A tight sandstone reservoir in Sanzhao Sag in the north of Songliao Basin was taken
as an example. It has large depth, strong diagenesis, relatively tight lithology, active
porosity of 13.5%, and air permeability of 0.9 × 10−3 μm2. The natural gamma-
ray logging curve of the whole well section shows “sandstone in mudstone”, and the
natural gamma-ray logging curve shows typical “sandstone-mudstone formation”. The
channel fill deposit and delta front deposit, especially anastomosing river flooding basin,
mainly develop. The natural gamma-ray logging curves mainly show a dentate clock
with medium/high amplitude, box, and small sawtooth with low amplitude. The data
used were the logging data of 5 wells (G1, G2, G3, G4, and G5) in the area. There
were 8 logging curves in total, including natural gamma-ray logging curve, natural
potential curve, deep lateral resistivity curve, deep lateral resistivity curve, apparent
resistivity curve, borehole diameter, density curve, and P-wave slowness curve. The
reservoir more than 3550 m deep from the surface to underground was sampled at the
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interval of 0.125 m. In addition, G2 well has X-MAC logging data, including S-wave
slowness, P-wave slowness, etc.

The standard layer statistical analysismethodwas used for environmental correction.
The relationship between the target curve and the reference curve of the standard layer
was statistically analyzed by using one or more logging curves less affected by the
borehole as the generating curves (reference curves) and the curve to be corrected as
the target curve. The correlation between the generating curve and the target curve was
established for the non diameter-expanded section to predict the target curve of the
trans-well section to be corrected. The multiple regression analysis method was used
to establish the functional relationship. The coefficients of each reference curve were
obtained by solving the equation, and then the coefficients and reference curves were
used to create a mathematical model. This method, which is to apply the mathematical
model to obtain new curves in the borehole diameter-expanded section, comprises the
following steps: (1) the data of the depth section beyond the target layer (30m away from
top or bottom) were removed, and only the data of the target layer of tight sandstone
reservoir were remained for later data processing; (2) the lateral profiles of geophysical
logging curves, such as diameter curve, gamma ray curve, P-wave slowness curve and
density curve of 5 wells, were plotted; (3) the wells or depth sections with abnormal
borehole diameters were found out through horizontal comparison, and the influences
of borehole diameters on different curves were analyzed; and (4) and other curves of
the depth sections with large error at the expanded diameter were reconstructed by
empirical formula or linear relationship using one or more logging curves less affected
by the borehole as the generating curve.

The linear correlation analysis based on the data of other wells except G5 shows that
the relationship between the logarithm of P-wave slowness and the logarithm of density
is not very linear, while the relationship between the logarithm of P-wave slowness and
the logarithm of natural gamma-ray logging data is very linear. The P-wave slowness
curve was corrected for the diameter-expanded section of G5 well by the established
linear relationship.

Histogram method was used for standardization. The frequency histogram of each
logging curve in the standard layer of each well in the study area was plotted first, and
then the histogram of other wells was compared with the histogram of a coring well or
specific well as the standard histogram. If both of them have the same value and similar
shape, their scales are accurate. If they are very different and their standard layers have
consistent lithology, their scales are inaccurate, and the difference in response value
between their standard layer and the standard layer of the coring well is the correction
value.

In the area, 5 wells were tested by uniaxial compression and triaxial rock mechanics
experiment. The depth at which the indoor experimentally measured data were acquired
was corrected by the location correction method. In this method, a bar chart was plotted
based on the indoor experimentally measured data and compared with the trend of the
logging curve at the same depth. In case of the best agreement, the upward and downward
movement distance of the core was the corrected core location value; a bar chart was
plotted based on the measured core density and compared with the logging curve at the
same depth. In case of the best agreement, the core movement was taken as the corrected
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location value. The location correction method can show the location depth difference
intuitively. According to the above method, the indoor experimentally measured depth
of the cores from 5 coring wells in the area was corrected for depth location, with the
adjustment rate of 2.33%. The depth was not greatly corrected, with the average of 0.5 m
and maximum of 1.2 m, within the allowable error range.

As shown in Fig. 2, the S-wave data calculation formula of tight sandstone in this
area was established by linear regression between the S-wave slowness curve and the P-
wave slowness curve of G2 well undergoing the X-MAC logging of Q1–Q7 layers. The
regression equation has the calculation error of R2= 0.897, indicating high correlation,
so it can be used as a reference for calculation of the S-wave slowness curve data of
other wells without X-MAC logging data. The S-wave slowness is calculated according
to the following formula:

�ts = 51.142× e0.0121×�tp (1)

where �ts and �tp are the S-wave slowness and P-wave slowness, respectively.
The data of the S-wave slowness curve of Q8–Q9 layers of G2 well were used as

posterior data for error analysis. The results show that the S-wave predicted by linear
regression is highly consistent with the measured S-wave, with the relative error of
predicted S-wave slowness within 2%, indicating that the data of the S-wave slowness
curve are so reliable as to provide a basis for calculation of tight sandstone reservoir
rock parameters in the next step.

According to the different methods for their acquisition, the rock mechanics param-
eters are divided into two types, static parameters, which are obtained from uniaxial or
triaxial loading tests of rock samples in a laboratory, and dynamic parameters, which are
the mechanical parameters under various dynamic loads or periodically varying loads
(such as acoustic, impact, vibration, etc.) calculated according to the data of the logging
curve.

According to P-wave and S-wave propagation equations, the theoretical relationship
between P-wave and S-wave velocity and dynamic rock parameters was given; the P-
wave slowness �tp and S-wave slowness �ts was obtained from the logging data; and
the bulk density ρwas obtained from the density logging data in order to calculate various
rock mechanics parameters, including dynamic Young’s modulus E, bulk modulus K,
shear modulus G, and dynamic Poisson’s ratio μ.

The e dynamic Young’s modulus E is calculated according to the following formula:

E = ρ

�t2s

3�t2s − 4�t2p
�t2s − �t2p

(2)

where ρ represents the bulk density.
The dynamic Poisson’s ratio, μ, is calculated according to the following formula:

μ = 1

2

�t2s − 2�t2p
�t2s − �t2p

(3)

The shear modulus, G, is calculated according to the following formula:

G = ρ

�t2s
= E

2(1+ μ)
(4)
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The bulk modulus, K, is calculated according to the following formula:

K = ρ
3�t2s − 4�t2p
3�t2s �t2p

= E

3(1− 2μ)
(5)

The deformation and rupture process of rock is slow and static. Before analysis of
all rock mechanics, it is necessary to determine static parameters in order to predict the
deformation and rupture of rock.

The elastic modulus directly calculated according to acoustic wave and density data
is dynamic and thus impossible to predict the static mechanical properties of rocks. It
is necessary to use a conversion formula obtained by laboratory data analysis to convert
(generally linearly) the dynamic elastic modulus into static modulus, as shown in Fig. 3,
so as to dynamically and statically correct the dynamic rock mechanics parameters
calculated according to the logging data. According to the corrected static rock parameter
results, the rockparameter profile of singlewellwas plotted. It can be seen fromFig. 4 that
the calculated static Young’s modulus of G1 well is similar to the acoustic logging curve
and density logging curve, and the static Poisson’s ratio curve is negatively correlated to
the acoustic logging curve and density logging curve, consistent with the trend of indoor
experimentally measured data, indicating that the calculation result reflects the rock
mechanical properties of the reservoir very well. According to the calculation results,
the rock parameters of each single well in the study area can be evaluated.

The vertical stress, maximum horizontal stress and minimum horizontal stress of 5
wells in the study area were calculated according to the data of the density logging curve
and static rock parameters. The number of experimentally measured in-situ stress values
is too limited to obtain a continuous in-situ stress profile. However, the logging data
have good continuity and high resolution, so it is very easy to popularize the method for
prediction by empirical formula and BP neural network.

First of all, the data of the density logging curve were used to calculate the integral
of formation thickness and density and further obtain the vertical in-situ stress. The
calculation formula is as follows:

σv =
∫ h

0
ρ(h)g · dh (6)

where σv is vertical in-situ stress, MPa; h is the depth, m; ρ(h) is the density logging
value, g/cm3; g is the acceleration of gravity, m/s2.

Then the formation pore pressure was calculated. In this embodiment, it was
obtained by fitting the relationship between pressure and depth according to the indoor
experimentally measured data.

Next, the biot coefficient was calculated. In this embodiment, it was obtained by
fitting the indoor experimentally measured data. The indoor experimentally measured
mineral volume content and porosity were taken as the input conditions to solve the biot
coefficient (α), which is the ratio of formation pore space deformation to total volume
change. The biot coefficient (α) is calculated according to the following formula:

α = 1− Kdry/Km (7)
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where Kdry is the bulk modulus of dry rock, GPa; Km is the bulk modulus of mineral,
GPa.

Then the biot coefficient was linearly fitted with the active porosity to obtain the
expression of the biot coefficient of tight sandstone reservoir:

α = 0.386 · ln(ϕeff) + 1.743 (8)

where α is biot coefficient, dimensionless;Feff is the active porosity of tight sandstone,
%. The active porosity was calculated according to the logging curve in order to calculate
the biot coefficients of single wells in the whole area and modeled work area.

Finally, the maximum horizontal in-situ stress and minimum horizontal in-situ stress
were calculated according to the following formula based on the rock parameters, biot
coefficient and pore pressure:

σh = ν

1− ν
(σv − αPp) + Eξh

1− ν2
+ νEξH

1− ν2
+ αPP

σH = ν

1− ν
(σv − αPp) + EξH

1− ν2
+ νEξh

1− ν2
+ αPP (9)

whereσH is themaximumhorizontal principal stress,MPa;σh is theminimumhorizontal
principal stress, MPa; υ is Poisson’s ratio, dimensionless; σv is the overburden pressure,
MPa; α is biot coefficient, dimensionless; Pp is pore pressure, MPa; E is Young’s modu-
lus, GPa; εh and εH are the strain in the direction of minimum and maximum horizontal
principal stress obtained by fitting the experimental data, respectively, dimensionless.

According to the measure in-situ stress of the tight sandstone reservoir in the north
of Songliao Basin, the error of the calculated in-situ stress was analyzed. The error is
the ratio of the difference between the calculated stress and the indoor experimentally
measured stress to the measured stress. The error analysis shows that the overall error of
vertical stress is within 5%, meeting the error requirement. However, the calculated min-
imum horizontal stress of G2, G4 and G5 wells and the calculated maximum horizontal
stress of G5 well have large errors (more than 5%). Thus, the calculation of in-situ stress
is a complex technical task. At present, there is no calculation formula suitable for all
wells in one area. These calculation formulas are always called in-situ stress calculation
models. The results calculated according to the formulas deviate from the actual in-situ
stress value and thus will be corrected by other methods (Table 1).

In order to avoid the deviation between the calculated maximum and minimum
horizontal stress, the implicit relationship between the in-situ stress of the reservoir and
the conventional logging data was established by using the calibration and prediction
advantages of BP neural network in order to form a new in-situ stress predictionmodel in
the area. The correlation analysis between the measured stress data points of the core in
the area and the conventional logging curves (P-wave slowness, neutron logging curve,
density logging curve, gamma-ray logging curve) and depth attributes show that the
total correlation coefficient between the sample data and the input layer is more than
91%. Thus, these logging parameters can be used as learning sample data for machine
learning.

The area has some problems, such as only 48 in-situ stress measurement data points,
few learning samples, discontinuous data, multiple solutions, and random data between
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Table 1. Error of Calculated In-situ Stress

Well No. Error of calculated in-situ stress

Depth range (m) Relative error of
vertical stress (%)

Relative error of
maximum horizontal
stress (%)

Relative error of
minimum horizontal
stress (%)

G1 1773–1875 0.63 2.82 2.87

G2 2015–2100 0.30 3.29 5.24

G3 2015–2110 2.24 2.04 3.27

G4 1793–1886 0.83 3.75 5.02

G5 1996–2141 1.13 8.05 7.63

Average - 0.90 3.99 4.86

Fig. 1. Prediction of single well in-situ stress by BP neural network

measurement points. In order to solve the above problems, the neural network method
calculation formula method were organically combined together, i.e. the continuous data
of the wells with small errors in the calculated in-situ stress results were used as the sam-
ple data of machine learning, to extend the sample data from small core (discontinuous)
samples to large logging (continuous) samples, further reduce the possibility of mul-
tiple prediction results and thus keep a good correlation between the prediction result
and logging curve. Specifically, the continuous vertical stress, calculated maximum and
minimum horizontal stress of G1 well and G3 well at different depths with the error of
calculated stress value within 3%were selected to extend the data of 48 measured in-situ
stress parameters (small samples) and thus form large sample (learning sample) data;
the vertical in-situ stress, maximum horizontal stress and minimum horizontal stress
of tight sandstone oil and gas wells were calculated by BP neural network model using
the geophysical logging (acoustic logging, neutron logging, density logging, gamma-ray
logging) curve of single well and depth value as training samples. After determination of
the above training input parameters of machine learning, the BP neural network model
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(as shown in Fig. 7) consisting of one input layer, two hidden layers and one output layer
built by matlab was used to select Levenberg-Marquardt backpropagation for training
and predict the maximum and minimum horizontal principal stress of G2, G4 and G5
wells. Tables 5–6 are obtained through error statistics. The error analysis shows that
the maximum horizontal principal stress and the minimum horizontal principal stress
predicted by BP neural network based on the indoor experimentally measured data have
the average error of 4.73% and 10.28%, respectively. Compared with the error of the
calculated in-situ stress, the error doesn’t reduce. The maximum and minimum hori-
zontal principal stresses predicted by BP neural network based on the extended large
sample have the average error of 1.54% and 1.45%, respectively. The prediction by BP
neural network model shows that the extended large sample has much smaller error than
the small sample. Therefore, the calculated in-situ stresses of the wells with small error
were used to extend the learning sample of the indoor experimentally measured data and
thus change the small sample into a large sample for prediction by BP neural network.
Thus, the prediction result is more accurate. This method can be used to predict and
comprehensively evaluate the in-situ stress of other wells in this area.

Fig. 2. Indoor measured and Calculation of dynamic-static Poisson’s ratio or Young’s modulus
based on logging curve
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Table 2. Comparison of errors of the in-situ stress predicted by neural network models based on
different learning samples

Well No. Error of the in-situ stress
predicted by formula
method (%)

Error of the in-situ stress
predicted by BP neural
network only based on
indoor experimentally
measured data (%)

Error of the in-situ stress
predicted by BP neural
network based on
extended large samples
(%)

Maximum
horizontal
stress

Minimum
horizontal
stress

Maximum
horizontal
stress

Minimum
horizontal
stress

Maximum
horizontal
stress

Minimum
horizontal
stress

G2 3.29 5.24 5.23 12.07 0.16 0.21

G4 3.75 5.02 4.54 10.86 3.61 3.34

G5 8.05 7.63 4.42 7.93 0.85 0.80

Average
error

5.03 5.96 4.73 10.28 1.54 1.45

Fig. 3. Comparison between the calculated results of the three-dimensional stress neural network
and the measured values
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3 Results and Discussions

The abovemethod can further extend the establishment of in-situ stress geologicalmodel,
i.e. the fine geological model was created by using log and seismic data first and then
the acoustic wave slowness curves, neutron logging curves, density logging curves,
and gamma-ray logging curves of 5 wells in the area were discretized to obtain the
averages of each layer in each well. The area has large area and only 5 wells, so the
co-kriging interplotation algorithmwas used for spatial interpolation to obtain the spatial
distribution characteristics of different parameters.

The interpretation results of the above-mentioned in-situ stress were discretized to
obtain the correlation between statistical data points and conventional logging curves
(acoustic wave slowness logging curve, neutron logging curve, density logging curve,
gamma-ray logging curve) and depth attribute model. The neural network algorithm
shows that the total correlation coefficient exceeds 0.98. Therefore, it is feasible to use
these logging parametermodels as learning data and themeasured in-situ stress as sample
data for machine learning.

(a. Correlation between vertical stress and different logging parameter models) (b. Correlation between 
maximum horizontal stress and different logging parameter models)

(c. Correlation between minimum horizontal stress and different logging parameter models)

Fig. 4. Spatial Distribution Model of Logging Parameters

The models of vertical stress, maximum horizontal stress and minimum horizontal
stress were created by neural network algorithm. The in-situ stress prediction shows that
the study area has the characteristics of maximum horizontal principal stress > vertical
principal stress > minimum horizontal principal stress, i.e. Class III in-situ stress in
the state of sliding stress, and always form vertical fractures after fracturing. Therefore,
the area can be developed by horizontal well + fracturing; the horizontal well trend
is perpendicular to the direction of the maximum horizontal stress, so the north-north-
east well spacing is suggested. The study on the stress difference distribution shows
that due to relatively large stress difference in the axial region and anticline, intensive
cut fracturing of horizontal wells is suitable for the large stress blocks to improve the
producing degree; the basal leaf cross has smaller stress difference than the anticline,
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so large cluster distance fracturing is suitable for small stress blocks to form complex
artificial fractures and expand the swept volume.

4 Conclusions

Compared with the existing technology, this method has the following beneficial effects:
(1) By comprehensively using core analysis data, indoor measured mechanical data,
conventional logging data, XMAC logging data, etc., the method for prediction of one-
dimension, two-dimension and three-dimension in-situ stress prediction integrating arti-
ficial intelligence and traditional geomechanics was innovatively put forward based on
research on structure, sedimentary facies and reservoir properties in order to extend
small core samples to large logging samples; (2) by creating a neural network-based
three-dimensional in-situ stress prediction model, the spatial in-situ stress distribution
of tight sandstone reservoirs in the test area was predicted and analyzed. The relative
error between the predicted in-situ stress and the measured result is within 3%, indi-
cating that the method improves the prediction accuracy of in-situ stress in the study
area. Thus, the research results provide an important basis for the design of integrated
geological engineering scheme. In conclusion, this method is very worthy of applica-
tion in stress prediction technology for tight sandstone reservoirs due to its advantages,
including simple logic, accuracy and reliability.
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