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Abstract. A large number of major oil fields in China have entered the late stages
of development, and the decreasing production is increasingly unable to meet
the continuously growing demand for energy. Therefore, it is crucial for oilfield
production to accurately and rapidly predict the effects of production-increasing
measures based on existing data. This paper comprehensively considers three
types of data: geological static parameters, production dynamic parameters, and
process parameters of measures. Advanced machine learning algorithms such as
random forest (RF), support vector regression (SVR), and extreme gradient boost-
ing (XGBoost) are separately used, together with data augmentation techniques
andBayesian optimization algorithms to construct the different enhancing produc-
tion through measures prediction model. The best prediction model is optimized
by comparing the scores of each model. The results of a comprehensive compar-
ison of various models based on the mean absolute error (MAE), mean squared
error (MSE), and coefficient of determination (R2) indicate that the model based
on the extreme gradient boosting algorithm performs the best. The application of
data augmentation and optimization algorithms significantly improves the model
performance. The accuracy of predicting the oil production enhancement effect
for a given measure can reach over 90%. Compared with traditional methods for
predicting the effects ofmeasures, this paper addresses the issues of long computa-
tional time in numerical simulations and difficulty in exploring the mechanism of
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oil production enhancement measures in depth, and achieves a rapid and accurate
predictionof themultidimensional effect ofmeasures for increasingoil production.
This paper employs machine learning algorithms to fully explore the relationship
between three types of data and oil production enhancement effects, accurately
predicting the effect of measures for increasing oil production. It provides a tech-
nical foundation for selecting reasonable measures to increase oil production in
oilfields and has certain guiding significance for actual production.

1 Introduction

As an irreplaceable strategic resource, petroleumplays a critical role in a country’s power
and economic development. Maintaining and increasing oil production has always been
an important energy goal for nations. However, due to China’s rapid economic growth
over the past few decades, the country’s consumption of petroleum has been steadily
increasing. Nevertheless, as most of China’s major oil fields have entered the middle and
late stages of development, issues such as increased water content and reservoir damage
have resulted in a decline in production capacity that is no longer sufficient to meet
current energy demands [1]. This has led to a severe dependence on foreign oil and gas
resources, with China’s external oil dependency exceeding 70% in 2020. Large-scale
oil imports could easily subject China to geopolitical risks, significantly threatening the
country’s energy security [2]. Therefore, implementing reasonable measures to increase
oil production is imperative for China to address its energy gap, stabilize domestic
economic development, and alleviate its energy crisis. However, with a wide variety of
measures available and varying effectiveness, accurately predicting the effectiveness of
such measures is crucial for oil field production.

In the field of measure effectiveness prediction, conventional methods such as the
water flooding characteristic curve method and the Weng cycle method have limitations
in their applicability due to various assumptions and complex formulas [3]. Although
numerical simulations have been attempted to predict the effectiveness ofmeasures, their
applicability is restricted due to the complex mechanisms of measures to increase oil
production and the expensive computations involved [4]. Research onmachine learning-
based measure effectiveness prediction is still in the exploratory stage, with a primary
focus on production forecasting. There has been limited consideration of including pro-
cess parameters in the evaluation of measures, as the limited sample size of measure
wells restricts research in this direction to primarily fracturing methods [5].

In recent years, the revolutionary development of artificial intelligence (AI) tech-
nology has attracted widespread attention from various industries due to its powerful
generalization ability and rapid response speed [6]. The petroleum industry has also accu-
mulated a large amount of historical data in production, and machine learning has shown
great potential in the field of petroleum engineering [7]. As an alternative data-driven
approach, machine learning can extract information from a large amount of historical
data and construct regression or classification prediction models [8]. Many supervised
machine learning methods, including linear regression, support vector machines, neural
networks, etc., have been used to predict production decline, optimize water injection
schemes, characterize reservoir permeability, and generate complex geological facies
[9].
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Based on the above content, in order to accurately and rapidly predict the effect
of oil recovery measures, this paper proposes a data-driven approach for predicting
the effect of oil recovery measures. Advanced machine learning algorithms, including
Random Forest (RF), Support Vector RegressionMachine (SVR), and ExtremeGradient
Boosting (XGBoost), are used to explore the influence of three types of data on the
effect of oil recoverymeasures, namely geological static parameters, production dynamic
parameters, and process parameters. A prediction model is built, and data augmentation
is employed to address the problem of insufficient samples, which improves the quality
of the sample dataset. In the hyperparameter tuning stage of the model, the Bayesian
optimization algorithm is introduced to solve the problem of difficult manual parameter
tuning and further improve the model accuracy. After comparative experiments, the
XGBoost algorithm-based oil recovery measure effect prediction model is selected, and
the accuracy in the test set can reach over 90%.

2 Methodology

2.1 Feature Engineering

Feature engineering is the process of taking the raw input data and creating new features.
To make the raw data more informative, it selects, extracts, and transforms meaningful
features from the raw data. Feature engineering involve various techniques, includ-
ing data cleaning, data normalization, data scaling, data augmentation, data encoding,
dimensionality reduction, and feature selection. The source data for this study is the
actual recorded data from the oil field, which has poor data quality. Therefore, feature
engineering is crucial in processing the data. In addition to common data cleaning, nor-
malization, and correlation analysis, this paper also employs the SMOTE oversampling
technique as a data augmentation method.

Synthetic Minority Over-Sampling Technique (SMOTE)
SMOTE [10] is an approach to the construction of classifiers from imbalanced datasets
is described. It is used to address the problem of imbalanced class distribution in data
by synthesizing data through a combination of over-sampling the minority class and
under-sampling the majority class [11]. The specific steps are as follows:

(1) For each sample x in the minority class, calculate its k-nearest neighbors to all
samples in the minority class using Euclidean distance as the metric. The formula is:

d(sl, sk) =
√∑m

j=1

(
slj − skj

)2 (1)

(2) Determine a sampling rate based on the imbalance ratio and set a sampling
multiplier N. For each minority sample x, randomly select several samples from its
k-nearest neighbors, denoted as xn.

(3) For each randomly selected neighbor xn, construct a new sample with the original
sample according to the following formula.

xnew = x + rand(0, 1) × (x̃ − x) (2)
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2.2 Regression Prediction Algorithm

Support Vector Regression (SVR)
SVR [12] is a type of machine learning algorithm used for regression analysis. It is based
on the Support Vector Machine (SVM) algorithm and is used to build models that can
predict continuous output variables. The basic principle of SVR is to find a hyperplane
in a high-dimensional space that best separates the data into different classes. In the case
of regression, the hyperplane is used to predict the value of the outcome variable based
on the input features. Therefore, the SVR problem can be formalized as:

min
w,b

1
2‖w‖2 + C

∑m
i=1 lε(f (xi), yi) (3)

In which, C is the regularization constant, lε is the ε-insensitive loss function. After
introducing slack variables and Lagrange multipliers and taking partial derivatives, the
formula of SVR can be expressed as:

f (x) = ∑m
i=1

(
α
∧

i − αi
)
κ
(
xTi x

) + b (4)

where κ
(
xTi x

)
=∅(xi)T∅

(
xj

)
is the kernel function.

Random Forest(RF)
RF [13] is a popular ensemble learning algorithm used for classification, regression, and
other machine learning tasks. The algorithm combines multiple decision trees to create
a “forest” of trees that work together to make predictions. In regression problems, the
output of each decision tree is averaged to obtain the final regression result [14]. The
specific idea is as follows:

(1) Assuming that the training dataset contains N data objects, a training dataset is
constructed by randomly sampling M samples with replacement using the bootstrap
method, where each sample is not completely identical to the others.

(2) Assuming that each sample data has X features, a subset of x (x < = X) features is
randomly selected from all the features, and the best splitting attribute is chosen as
the node to grow the CART decision tree, with k remaining constant during the tree
growing process.

(3) Repeat the above steps to build n CART trees, and obtain the final prediction by
averaging the outputs of these decision trees.

f
∧

= 1
B

∑B
b=1 fb

(
x

′)
(5)

eXtreme Gradient Boosting(XGBoost)
XGBoost [15] is a highly efficient gradient boosting decision tree algorithm that uses
the ensemble idea - the Boosting idea - to integrate multiple weak learners into a strong
learner through a certain method. Its algorithmic process is as follows:

(1) Set the model to begin with a constant value:

f
∧

(0)(x) = argmin
θ

∑N
i=1 L(yi, θ) (6)
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(2) Calculate the gradients and hessians:

g
∧

m(xi) =
[

∂L(yi,f (xi))
∂f (xi)

]
f (x)=f

∧

(m−1)(x)
(7)

h
∧

m(xi) =
[

∂2L(yi,f (xi))
∂f (xi)2

]
f (x)=f

∧

(m−1)(x)
(8)

(3) Train a base learner on the training set by solving the followingoptimizationproblem:

φ
∧

m = argmin
φ∈�

∑N
i=1

1
2h

∧

m(xi)

[
−g

∧

m(xi)

h
∧

m(xi)
− φ(xi)

]2
(9)

f
∧

m(x) = αφ
∧

m(x) (10)

(4) Modify the model:

f
∧

(m)(x) = f
∧

(m−1)(x) + f
∧

m(x) (11)

(5) Output:

f
∧

(x) = f
∧

(M )(x) = ∑M
m=0 f

∧

m(x) (12)

2.3 Optimization Algorithm

An optimization algorithm refers to the process of minimizing or maximizing an objec-
tive function, subject to given constraints, by finding one or more optimal or near-
optimal solutions. This paper introduces a tree-structured Bayesian optimization algo-
rithm to tune hyperparameters of the production enhancement effect prediction model.
This method solves the problem of obtaining the optimal prediction model through
manual tuning, providing a more efficient and effective approach.

Tree-structured Parzen Estimator(TPE)
TPE [16] uses two density functions to define p(x|y):

p(x|y) =
{
l(x) if y < y∗
g(x) if y ≥ y∗ (13)

In the above equation, l(x) is established using the observation space {x(i)} and the
corresponding loss f(x(i)) is less than y*, while g(x) is established using the remaining
observations. TheTPE-basedmethod relies on avalue of y*greater than the best observed
value of f (x), so that some points can be used to build l(x). TPE adopts expected
improvement (EI) as the acquisition function.However, since it is impossible to obtain the
posterior probability p(x|y), Bayesian formula is employed to transform the acquisition
function:

EIy∗(x) = ∫ y∗
−∞(y∗ − y)p(y|x)dy = ∫ y∗

−∞(y∗ − y) p(x|y)p(y)p(x) dy (14)

In this equation, y* represents a threshold value. Let γ = p(y < y*) denote a certain
quantile used in the TPE algorithm to partition l(x) and g(x). The value of γ is in the
range of (0, 1). The final simplified formula is:

EIy∗(x) = γ y∗�(x)−�(x)
∫ y∗

−∞p(y)dy

γ�(x)+(1−γ )g(x)
∝

(
γ + g(x)

�(x) (1 − γ )
)−1

(15)
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3 Experiment and Result

3.1 Introduction to the Dataset

This study collected data on all oil production enhancement measures implemented in
a certain block of an oilfield from 2017 to the present, including acidification, unclog-
ging, and water flooding. After selecting wells where the measures were effective and
conducting data cleaning and correlation analysis, the sample size of wells subjected
to acidification and unclogging measures was too small to support machine learning
analysis. Therefore, this study ultimately chose water flooding measures as an example
for oil production enhancement prediction. The sample database contains 147 wells that
achieved oil production enhancement after water flooding measures were implemented.
The input variables include eight geological static features, four production dynamic
features, and two measure process features, as shown in Table 1.

Table 1. Feature presentation table.

Feature category Feature name

Geological static features Porosity of injection well, Permeability of injection well,
Thickness of injection well, Oil temperature of injection well,
Viscosity of crude oil of injection well, Permeability of
production well, Porosity of production well, Distance between
wells

Production dynamic features Injection well pressure before the measure, Injection well daily
volume before the measure, Daily fluid production before the
measure, Daily oil production before the measure

measure process features Measure chemicals, Chemicals injection volume

According to statistics, there are three different chemical types A, B and C in 147
profile control measures samples, and the sample sizes of different classes of chemicals
are significantly different, among which 96 are of type A, 33 are of type B and 18 are of
type C. Unbalanced sample distribution has a great influence on the learning and pre-
diction of machine learning model. Therefore, this study adopted the data enhancement
method of oversampling to expand the data, so as to ensure the same sample size of the
three measures. Generate new 410 after SMOTE oversampling and screening and use
this new 410 as the data set for the forecast model.

3.2 Experimental Setting

To select the optimal predictive model for effects of oil-increasing measures, this study
compared three commonly used machine learning algorithms for regression problems
in petroleum engineering: Support Vector Regression (SVR), Random Forest (RF), and
XGBoost. Predictive models were constructed for each algorithm and their performance
was evaluated under multiple loss functions. The best-performing predictive model was
determined, and an optimization algorithm was introduced to fine-tune the model’s
hyperparameters, further enhancing its predictive accuracy.
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3.3 Result

Based on three different algorithms, data-driven predictive models were developed for
oil-increasing measures using geological static parameters, production dynamic param-
eters, and process parameters as inputs, and post-measure oil production as output. The
training and testing sets were divided in a 9:1 ratio. The prediction results of the different
algorithms are shown in Fig. 1. By comparing the performance of the models using the
same testing set, it can be observed that the predictive accuracy of XGBoost and RF
algorithms are significantly higher than that of SVR algorithm.

Fig. 1. The effect comparison of different algorithms

To conduct a precise analysis of the prediction performance of RF and XGBoost
algorithms, this study comprehensively evaluated their performance using three loss
functions: Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared
(R2), as shown in Table 2. From the numerical results, it can be seen that XGBoost
algorithm outperforms the other two algorithms. Therefore, XGBoost was selected for
further research.
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Table 2. Evaluation of three algorithms

Algorithms MAE MSE R2

SVR 13.12 453.82 0.26

RF 7.09 136.76 0.78

XBGoost 4.39 68.22 0.88

The above model obtained the optimal results by manually adjusting the hyperpa-
rameters after determining their approximate range using grid search. However, manual
tuning of hyperparameters can hardly result in the best combination ofmodel parameters,
and there is still room for improvement in hyperparameter performance. Therefore, this
study introduced a Bayesian optimization algorithm based on Tree-structured Parzen
Estimator (TPE) to optimize the hyperparameters of the XGBoost prediction model.
The final optimization result returned the maximum value of R2, and the optimized
parameters are shown in Table 3.

Table 3. Hyperparameter optimization results

Hyperparameter optimization results Hyperparameter optimization results

max_depth 5 n_estimators 498

learning_rate 0.0581 gamma 6.1491

colsample_bytree 0.9185 subsample 0.5102

reg_alpha 0.0196 reg_lambda 1.5302e-07

The performance of the TPE-XGBoost model for predicting the effect of enhanced
oil recovery measures, incorporating the optimization algorithm, is shown in Fig. 2 and
Table 4. It can be observed that the introduction of the optimization algorithm improves
the performance of the predictive model, with the optimized model outperforming the
non-optimized model under all three loss functions. The final predictive accuracy (R2)
can exceed 90%.

Table 4. The effect after hyperparameter optimization

Algorithms MAE MSE R2

XBGoost 4.39 68.22 0.88

TPE-XGBoost 4.11 58.19 0.91
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Fig. 2. The effect after hyperparameter optimization

4 Conclusion

This article proposes a data-driven method for predicting the effects of oil-increasing
measures based on the TPE-XGBoost algorithm. This method first enhances the data
samples to some extent, which alleviates the problem of insufficient sample size. At
the same time, the model comprehensively considers three types of features: geological
static parameters, production dynamic parameters, and measure process parameters,
deeply mining their relationship with the effect of increasing oil, and automatically
optimizing the model hyperparameters to achieve the prediction of daily oil production
after the measures, which significantly improves the prediction accuracy compared with
other algorithms and can reach over 90%. However, the current research is still limited
by the insufficient quality of on-site data. In future research, in addition to obtaining
high-quality data from the source, high-level feature engineering will also be the next
research focus. In addition, incorporating economic indicators into machine learning is
also a future direction of research.
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