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Abstract. Green Sustainable Development of Oil and Gas Fields considers oil
and gas exploration as well as environmental conservation. Currently, national
ecological protection requires that oil and gas exploration wells be shut down
and closed when they withdraw, and that oil and gas facilities be demolished to
restore the surrounding geomorphology and ecology. As a result, the condition of
ecological restoration of oil and gas sites withdrawal is an essential component
to evaluate the ecological protection of oil and gas fields. In this article, multi-
temporal high-resolution satellite remote sensing big data is employed to achieve
intelligent monitoring and assessment of green recovery at oil and gas sites. The
technical process of remote sensing intelligent monitoring of oil and gas well with-
drawal and ecological restoration includes three steps: 1. Determine the different
types of well sites. Identify well sites where oil and gas facilities depart using
high-resolution remote sensing oil and gas well site interpretation markings; 2.
Detect well site modification. 3. Evaluate well site recovery by using the GRNDVI
vegetation growth index into the well site vegetation change over time. To evalu-
ate well site recovery, set a threshold value based on change detection data. Using
Dabusu in Jilin Oilfield and Liaohekou in Liaohe Oilfield as experimental areas,
remote sensing monitoring results show that 18 well sites in Dabusu experimental
region were withdrawn in 2019 and all achieved vegetation restoration; 15 well
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sites in Liaohekou experimental region were withdrawn from April to Novem-
ber 2018 to achieve natural restoration; and PetroChina has achieved results in
ecological restoration of oil and gas well site withdrawal; remote sensing intel-
ligent monitoring technology of oil and gas well site withdrawal and ecological
restoration can realize large-scale and large-quantity well site withdrawal as well
as efficient and accurate vegetation restoration monitoring. This technology ought
to be used and popularized.

Keywords: Ecological restoration - Oil and gas well sites - Remote sensing
monitoring - Change detection - GRNDVI

1 Introduction

Inrecent years, the state has accelerated the promotion of ecological environment restora-
tion and management, as well as the construction of green mines, promoted the green
and sustainable development of energy and resource exploitation, practiced the devel-
opment concept of “Clear waters and green mountains are as good as mountains of gold
and silver,” and required energy enterprises to consider environmental protection while
exploring and developing, in order to achieve the goals of the Kyoto Protocol. When oil
and gas exploration and development wells exit, they must shut down the wells, disman-
tle the oil and gas facilities, avoid and reduce environmental pollution and land damage
in the mining area, and carry out landform restoration and ecological restoration of
the surrounding environment, according to the requirements of ecological environment
protection. As a result, the ecological restoration condition of oil and gas well exit is a
significant component of assessing the environmental protection of oil and gas fields.
Currently, ecological restoration monitoring in the exit region of oil and gas well
sites is mostly accomplished by recurrent field inspection, which is unsuitable for large-
scale monitoring due to its high cost and lack of timeliness. Remote sensing technology
provides the advantages of long-range monitoring, short return periods, cheap cost,
and the ability to do large-scale vegetation restoration monitoring and evaluation on
a regular basis. Because oil and gas well sites are small in scale, large in number, and
widely distributed, and their remote sensing image features differ by region and industry,
it is necessary to develop a set of oil and gas well exit and ecological restoration index
parameters, as well as a remote sensing intelligent monitoring technology process.

2 Remote Sensing Data and Evaluation Indicators

2.1 Introduction to Remote Sensing Data

GF2 is China’s first self-developed submeter civil optical remote sensing satellite, which
was successfully launched on August 19, 2014, from China’s Taiyuan Satellite Launch
Center. The satellite has two 1 m panchromatic/4 m multispectral cameras with a 45 km
imaging width. The revisit duration can be reduced to 5 days with the use of a side swing
(see Table 1).
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Panchromatic and multispectral pictures are among the GF2 data. Panchromatic
pictures have a spectral range of 450 nm to 900 nm with a spatial resolution of around
1m.The blue light band has a spectral range of 450 nm—520 nm, the green light band has
a spectral range of 520 nm—590 nm, the red light band has a spectral range of 630 nm—
690 nm, and the near-infrared band has a spectral range of 770 nm—-890 nm. It has a
spatial resolution of around 4 m.

Table 1. GF2 satellite payload technical indicators

load Spectral | Spectrum Spatial Width (km) Side sway | Time of
segment |range (um) | resolution capacity revisit
number (m) (days)
Panchromatic | 1 045~0.90 |1 45 + 35 5
multispectral | 5 045~052 4 (combination
camera of 2 cameras)
3 0.52 ~0.59
4 0.63 ~ 0.69
5 0.77 ~ 0.89

2.2 Construction of Evaluation Indicators

The vegetation restoration evaluation index utilized in this article is the growth root
normalized differential vegetation index (GRNDVI), which is based on the classic nor-
malized vegetation index (NDVI) and has been enhanced to better the description of
vegetation growth.

The classic NDVI indicator is made up of a red light band and a near-infrared band
that can rise with vegetation development, although it is strongly influenced by high
vegetation covering, atmosphere, and soil backdrop. When the vegetation coverage rate
is low, the NIR/R is small, and the NDVI is obviously affected by the soil background,
resulting in a larger NDVI value than is actually the case; when the vegetation coverage
rate is high, the NIR/R is large, and the vegetation’s absorption of R is gradually saturated,
but the reflection of NIR continues to increase, causing its value to change more slowly,
and the NDVI value is not sensitive to the response of vegetation changes.

NIR — R

NDVI = ——
NIR +R

(1

Because the NDVI value is larger than the actual situation when the NIR/R is small, and
the NDVI response is not sensitive enough when the NIR/R is large, multiplying the two
can combine the characteristics of the two to some extent to alleviate the shortcomings of
NDVI; however, the form of the product leads to the strengthening of the high value part
and the weakening of the low value part. To address this issue, we square the product
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result; at the same time, the NDVI value is theoretically between (—1,1). To prevent
negative values, multiply the NDVI by 1.

NIR\ /NIR —R 05
GRNDVI = | [ — ) ——— 41 )
R NIR + R

NIR refers to the surface reflectance in the near-infrared band, and R refers to the surface
reflectance in the red band.

3 Technical Process

The technological process of remote sensing monitoring for oil and gas well withdrawal
and ecological restoration is divided into four stages: data acquisition and pretreatment,
establishment of interpretation marks and interpretation, establishment and calculation of
vegetation growth indicators, change detection analysis, and restoration effect evaluation
(see Fig. 1).

The image data is preprocessed to provide surface reflectance data using distinct
time phase high-resolution remote sensing pictures (including red light and near-infrared
bands), and its geometric correctness fulfills the criteria of change detection. The inter-
pretation markings of well sites and distinct oil and gas facilities are established based
on the preprocessed pictures, and the well sites where oil and gas facilities depart are
recognized based on this. The GRNDVI vegetation growth index is introduced to quan-
titatively describe plant growth in the well site’s exit area. The change in plant growth
state in different times is assessed using the GRNDVI of distinct time phases, and the
vegetation restoration of the well site where the oil and gas facilities are extracted is
evaluated.

3.1 Data Pre-processing

Data pre-processing primarily consists of ortho-correction, radiometric correction, atmo-
spheric correction, geometric registration, picture fusion, and other similar operations.
During imaging, ortho rectification may minimize geometric distortion caused by ter-
rain variation, sensor side view angle, attitude, and azimuth. Image fusion may take into
account both the spatial resolution of a panchromatic image and the spectral resolu-
tion of a multispectral image, which is used to extract color and texture information for
interpretation marks. Radiation correction changes the DN value to apparent reflectance,
whereas atmospheric adjustment removes the impact of the atmosphere to convert appar-
ent reflectance to surface reflectance, which is used to construct the GRNDVI vegetation
growth index. Geometric registration guarantees that the spatial coordinates of several
temporal pictures are constant, and it offers a correct data foundation for detecting and
analyzing changes between various phases at different times.

3.2 Establishment of Interpretation Marks

Oil and gas well sites are distinguished by their modest scale, huge quantity, and
widespread dispersion within the context of oilfield exploration and mining rights. The
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Fig. 1. Technical flow chart

remote sensing interpretation indications are summarized in Table 3 based on the color,
geometric form, texture, azimuth relationship, size, and other features of oil and gas well
sites and oil and gas facilities on high-resolution remote sensing pictures.

3.3 Change Detection

Change detection is comprised of two components: qualitative classification of change
kinds and quantitative assessment of change degree.

Qualitative categorization of well site change types: based on the preprocessed pic-
ture, the vegetation growth index GRNDVI is extracted, and the well site area is classified
into “vegetation” and “bare land” by setting threshold values of 1 and 0, respectively.
Then, using varying time differences, three change types were obtained: “unchanged”,
“vegetation -> bare land”, and “bare land -> vegetation”.

Quantitative evaluation of well site change degree: based on the preprocessed picture,
the vegetation growth index GRNDVlI s retrieved, and quantitative change data is derived
by comparing GRNDVI values in different time phases. Threshold values are established
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Table 2. Remote sensing interpretation marks of different types of well sites

Type GF2 image Description Field photos
Oil and gas well sites are generally
square bare ground with light color and _
rectangular shape; Wired roads are con- I L
nected with it and interconnected with
other well sites through roads,; There are
different types of pumping units in the
well site of the oil production well in use, 7
and the common beam pumping units,
due to the difference in imaging angles, ———
have a "sickle" or "long strip" shape, and
the pixels in the front of the strip are
blurred;Under different lighting condi-
tions, dark shadows like "straight lines",

"broken lines" or "lumps" will appear
near some pumping units.
The shape of abandoned wells is mostly
rectangular, occasionally with other
irregular shapes;Its hue is mostly light,
which is obviously different from the
surrounding background;There are gen-
erally no oil and gas facilities inside, and
sometimes a small amount of vegetation
can be seen
Most of the well sites under restoration
are rectangular in shape;There is no
obvious difference between the restored g
vegetation area and the surrounding
background tone;Generally, there are no
oil and gas facilities inside, but some-
times there are cement bases for pumping
units. The bases are mostly light colored
rectangles, which are obviously different
from the surrounding background.

(Well site in
use)
Production
well

(Exited from
the well site)
Completely
naked

(Well site
under restora-
tion)
Seminaked

The tone and texture of the recovered
well site are completely consistent with
the surrounding background;The bounda-
ries of a few well sites are indistinct and
visible, and most of them have no fixed
shape after full recovery, so it is almost
impossible to distinguish them from the
surrounding background.

Well site
restore

for evaluating quantitative change data, and the modified well site regions are classified
as “growing better,” “growing worse,” or “growing without significant change.”

Calculate the proportion of “bare land -> vegetation” and “obviously growing bet-
ter” at the well site, and establish a threshold to split the well site into “recovered”,
“recovering (good recovery),” and “not recovered (general recovery).” When comput-
ing the percentage, the overlapping section of the two types of regions should be deleted
to avoid remeasurement.
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4 Method Experiment

According to the survey, Liaohe Qilfield gradually withdrawn oil wells from the nature
reserve from 2013 to 2019, and insisted on restoring the coverage of vegetation such
as reeds primarily through natural recovery supplemented by manual recovery; Jiaohe
Oilfield completed the withdrawal of oil wells from the Dabusu Nature Reserve in
2018, and carried out the ecological reclamation of the withdrawn oil wells. In this
paper, the demonstration areas of Liaohekou and Dabusu are chosen to conduct remote
sensing intelligent monitoring technology and method experiments for oil and gas well
withdrawal and ecological restoration, as well as to further evaluate the effectiveness of
Liaohe Oilfield and Jilin Qilfield in ecological reclamation.

¥ | T~ Dabusu Experimental Area

™ Liaohekou Experimental Area

Fig. 2. Location of Demonstration Area

4.1 Dabusu Experimental Region

Dabusu Lake is located in the south of Songnen Plain, with the geographical coordinates
of 123.60°-123.71° E and 44.75°-44.84° N. It was formed in the late Pleistocene, and
its water quality is strongly alkaline, with a PH of 10-11. The average temperature in
January in this area is about —14.5 °C, which is the lowest temperature in the whole
year; The average temperature in July is about 25 °C, the highest temperature in the
whole year; The average annual rainfall is about 400 mm, of which the proportion of
rainfall in June, July and August accounts for more than 70% of the total rainfall of the
year. The experimental area is located on the northeast bank of the Great Busu Lake.

4.1.1 Introduction to Remote Sensing Data

The remote sensing images of GF2 satellite were screened according to the three prin-
ciples of 2017-2019, the same period in summer and less than 5% cloud cover, and the
images of August 25, 2017 and September 4, 2019 were selected as the remote sensing
data of the study area (see Fig. 3 and Fig. 4).
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Fig. 3. Image of Dabusu on August 30,2017 Fig. 4. Image of Dabusu on September 4, 2019

4.1.2 Change Detection Experiment

The experiment procedure is divided into three stages: theme information extraction of
the well site and GRNDVI, multi temporal remote sensing image change detection, and
well site vegetation restoration evaluation.

1. Extraction of thematic information

The two time phases’ remote sensing pictures are preprocessed with radiometric
correction, image fusion, and other techniques, and oil and gas wells are detected and
retrieved using the established remote sensing interpretation markers. At the same time,
the GRNDVI vegetation growth index for each time phase is computed.

2. Detection of Changes

The detection of change is separated into two parts: qualitative classification of
change kinds and quantitative evaluation of change degree.

The first is the identification of change kinds by qualitative categorization. The
GRNDVI criteria for the two stages are established. In the Dabusu experimental region,
the GRNDVI threshold of the remote sensing picture is set to 1.4. The well site area is
classified into “vegetation” and “bare land” based on the threshold segmentation findings,
with values of 0 and 1, respectively. The categorization results were divided into two
time periods, and three forms of change were detected: “unchanged” “vegetation -> bare
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land” and “bare land -> vegetation” (see Fig. 5). Choose the “bare land -> vegetation”
type region, which is referred to as the “vegetation restoration area”.

The second step is a quantitative assessment and study of the degree of change.
The GRNDVI index of the two time phases is distinguished, and the difference result’s
threshold value is established. Following the experiment, the threshold is set to 0.2,
and the values are allocated to -1, 0, and 1. The well site is rated as “growing better”,
“growing worse” or “growing with no significant change” (see Fig. 6). Choose the
“growth recovery area”, which has a rating of “growing better”.

- Bare land
B vecetation

A I vesetation —>Bare land
B ‘f\ﬁ Unchanged
¥ - ,&@;3 - Bare land ->vegetation
(a) 2017 GRNDVImap (b) 2019GRNDVI map (c) bare land ->vegetation

Fig. 5. Qualitative detection results of change types in Dabusu region

3. Recovery Evaluation

Count the “vegetation restoration area” and “growth restoration area” within the
well site, calculate the proportion of the combined area of the two areas in the total
area of the well site, and set a threshold for this proportion to further evaluate the well
site’s vegetation restoration. In conjunction with the unique conditions of the Dabusu
region, the threshold value is established at 0.8, and the vegetation restoration of the
well site is graded as zero levels of “under restoration” and “restored”. Table 3 displays
the statistical data.

4.1.3 Analysis of Experimental Results

All oil wells in the Dabusu experimental region have completed the withdrawal of oil
and gas facilities, according to the evaluation results of vegetation restoration in Table 1.
According to the statistical data, each well site has two phenomena. Firstly, the “number
of vegetation restoration pixels” and “number of overlapping pixels” of all well sites are
very close, and in some cases equal, indicating that most areas in the well site have been
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Fig. 6. Quantitative evaluation results of change degree in Dabusu region

restored from “bare land” to “vegetation” and their growth has also improved signifi-
cantly. Secondly, the “number of growth restoration pixels” of each well site exceeds the
“number of vegetation restoration pixels,” indicating that there was a significant amount
of vegetation in some areas of each well site prior to the withdrawal of oil and gas facil-
ities, but there is still much room for growth improvement. Finally, except for Well Site
1 and Well Site 4, where the recovery rate is around 72.4% and 75.6%, the recovery rate
of the remaining well sites is greater than 80%, implying that there are 16 “recovered”
well sites in the Dabusu experimental region.

4.2 Liaohekou Experimental Region

The Liaohe River estuary is located in Panjin City, Liaoning Province, at the mouth of the
Liaohe River. Its geographical coordinates are 121.86°-121.88° E and 41.038°-41.045°
N, with an average altitude of about 2 m. The region belongs to temperate semi humid
monsoon climate, with four distinct seasons. The annual average temperature is about
8.5 °C, of which the average temperature in summer is about 23 °C, and the average
temperature in winter is about - 8 °C; The average annual rainfall is about 650mm, of
which heavy rainfall is easy to occur in June, July and August. The Liaohe River estuary
experiment is divided into two parts, north and south.

4.2.1 Introduction to Remote Sensing Data

In order to monitor the vegetation restoration in Liaohekou experimental region, GF2
satellite remote sensing images with cloud cover less than 5% in 2017-2022 and the
same period in summer were screened, and the images on August 30, 2017 and August
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Table 3. Results of Dabusu experiment and evaluation of vegetation restoration

Well Site | facilities Analysis of well site green restoration pixels Vegetation
No Exit restoration
evaluation evaluation

vegetation | growth coincident | Restore pixels in | Percentage

restoration | recovery | pixels pixels the well | of recovered

pixels pixels merging | site pixels
1 Exited 26 49 25 50 69 0.724638 Recovering
2 Exited 81 116 81 116 135 0.859259 Recovered
3 Exited 94 124 94 124 149 0.832215 Recovered
4 Exited 61 90 55 96 127 0.755906 Recovered
5 Exited 67 101 66 102 118 0.864407 Recovered
6 Exited 173 225 173 225 244 0.922131 Recovered
7 Exited 52 78 52 78 96 0.8125 Recovered
8 Exited 135 157 135 157 161 0.975155 Recovered
9 Exited 68 107 68 107 122 0.877049 Recovered
10 Exited 25 58 25 58 69 0.84058 Recovered
11 Exited 157 198 159 196 219 0.894977 Recovered
12 Exited 66 88 66 88 107 0.82243 Recovered
13 Exited 118 159 118 159 180 0.883333 Recovered
14 Exited 84 143 84 143 176 0.8125 Recovered
15 Exited 90 97 77 110 136 0.808824 Recovered
16 Exited 89 83 73 99 119 0.831933 Recovered
17 Exited 53 52 51 54 64 0.84375 Recovered
18 Exited 103 101 100 104 108 0.962963 Recovered

14, 2020 were selected as the basic data of Liaohekou experimental south region (see
Fig. 7), The images on August 30, 2017 and July 14, 2022 are selected as the research

data of Liaohekou experimental north region (see Fig. 8).

Fig. 7. Image of Liaohekou south region (left: August 30, 2017; right: August 14, 2020)
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Fig. 8. Image of Liaohekou north region (left: August 30, 2017; right: July 14, 2022)

4.2.2 Change Detection Experiment

1. Extraction of thematic information

The remote sensing images of the two time phases are preprocessed by radiometric
correction, image fusion, etc., and oil and gas wells are identified and extracted according
to the established remote sensing interpretation marks. At the same time, the GRNDVI
vegetation growth index of the two time phases is calculated respectively.

2. Detection of changes

The detection of change is separated into two parts: qualitative classification of
change kinds and quantitative evaluation of change degree. The procedure is the same as
in the Dabusu experimental region. The threshold values for change detection fluctuate
due to the geographical environment and climate features of the Liaohekou region, as
well as the effect of the time equivalent components of the photos utilized.

The first is the identification of change kinds by qualitative categorization. The
GRNDVTI threshold values in the south and north portions of the experiment are 1.6
and 1.4, respectively. The well site area is classified into “vegetation” and “bare land”
based on the threshold segmentation findings, with values of 0 and 1, respectively.The
classification results were divided into two time periods, and three types of changes were
detected: “unchanged”, “vegetation -> bare land” and “bare land -> vegetation” (see
Fig. 9 and Fig. 11). Choose the “bare land -> vegetation” type region, which is referred
to as the “vegetation restoration area”.

The second step is a quantitative assessment and study of the degree of change. The
GRNDVTIindex of the two time phases of the southern and northern experimental regions
is distinguished, and the difference result’s threshold value is determined. The southern
region of Liaohekou estuary’s threshold value is set to 0.3, while the northern region
of Liaohe estuary’s threshold value is set to 0.2, with the values assigned to —1, 0, and
1. The well site is graded as “growing better”, “growing worse” or “growing without
significant change” (see Fig. 10 and Fig. 12). Choose the “growth recovery area”, which
has a rating of “growing better”.

3. Recovery Evaluation

Count the “vegetation restoration area” and “growth restoration area” within the
well site, calculate the proportion of the combined area of the two areas in the total
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(a) 2017 GRNDVI map

- Bare land

vegetation

(b) 2020 GRNDWI map

- Vegetation —->Bare land
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(c) Bare land->vegetation map

Fig. 9. Qualitative detection results of change types in Liaohekou south region

(b) 2020 GRNDVI map

growing worse
no change

- growing better

(¢) GRNDVI change map

Fig. 10. Quantitative evaluation results of change degree in Liaohekou south region

area of the well site, and set a threshold for this proportion to further evaluate the well
site’s vegetation restoration.In conjunction with the current situation of the Liaohekou
experimental region, the threshold values are set to 0.5 and 0.8, and the vegetation
restoration of the well site is evaluated as “average restoration”, “good restoration”
or “restored”, with “average restoration” and “good restoration” being the status of
vegetation restoration. Table 4 displays the statistical data.
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Fig. 11. Qualitative detection results of change types in Liaohekou north region

4.2.3 Analysis of Experimental Results

All oil wells in the Liaohekou experimental region have completed the withdrawal of
oil and gas facilities, according to the evaluation findings of vegetation restoration in
Table 2. Similar to the situation in the Dabusu experimental region, the “number of
vegetation restoration pixels” and “number of overlapping pixels” of all well sites are
very close, and the “number of growth restoration pixels” of all well sites is greater than
the “number of vegetation restoration pixels,” indicating that most areas are recovered
from “bare land” to “vegetation” at the same time, according to the statistical data
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Fig. 12. Quantitative evaluation results of change degree in Liaohe north region

in Table 2. Its growth has also improved dramatically, indicating that there was a big
quantity of vegetation in some regions of each well site prior to the removal of oil and
gas infrastructure, and its growth still has a lot of potential to develop. However, unlike
the Dabusu experimental region, only five well sites have been found in the Liaohekou
experimental region, namely well sites 7, 8, 9, 13, and 14. There are another eight well
locations with strong recovery effects: 1, 3, 5, 6, 10, 11, 12, and 15. Finally, two well
sites, well sites 2 and 4, had moderate recovery effects.
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Table 4. Results of Liaohekou experiment and evaluation of vegetation restoration

Well | facilities | Analysis of well site green restoration pixels Vegetation
Site | Exit restoration
No | evaluation evaluation

vegetation | growth | coincident K Restore | pixels | Percentage

restoration | recovery | pixels pixels |inthe | of

pixels pixels merging | well | recovered

site | pixels

1 Exited 61 128 59 130 208 |0.625 good
2 Exited 30 56 30 56 135 10.414815 | general
3 Exited 72 163 68 167 238 ]0.701681 | good
4 Exited 44 134 39 139 321 10.433022 | general
5 Exited 43 52 41 54 74 1 0.72973 good
6 Exited 194 281 182 293 421 ]0.695962 | good
7 Exited 69 124 69 124 140 | 0.885714 | Recovered
8 Exited 145 185 149 181 197 |0.918782 | Recovered
9 Exited 149 230 141 238 288 0.826389 | Recovered
10 | Exited 56 97 56 97 151 0.642384 | good
11 | Exited 146 245 142 249 342 10.72807 good
12 | Exited 39 82 31 90 133 10.676692 | good
13 | Exited 142 262 134 270 328 |0.823171 | Recovered
14 | Exited 272 325 271 326 351 ]0.928775 | Recovered
15 | Exited 32 102 28 106 148 0.716216 | good

5 Conclusion

Given the characteristics of small, large, and widely distributed oil and gas well sites,
in order to carry out large-scale oil and gas well site exit and vegetation restoration
monitoring efficiently, accurately, and intelligently, this paper proposes an intelligent
remote sensing monitoring technology for oil and gas well exit and ecological restoration
based on multi temporal high-resolution satellite remote sensing data, and chooses GF2
satellite remote sensing images. Using Liaohekou and Dabusu as experimental places,
the technological procedure is used to monitor and analyze the removal of oil and gas well
sites as well as vegetation restoration. The results show that remote sensing intelligent
monitoring technology for oil and gas well withdrawal and ecological restoration is
effective in monitoring and counting the vegetation restoration of oil and gas facility
withdrawal well sites, and has low cost and high efficiency advantages that traditional
methods do not have.



Application of Remote Sensing Intelligent Monitoring Technology 19

The experimental area’s statistical data show that the vegetation restoration effect of

the well sites with oil and gas facilities withdrawn in Liaohekou experimental region is
good, compared to that of the well sites with oil and gas facilities withdrawn in Dabusu
experimental region, the vegetation restoration effect of the well sites with oil and gas
facilities withdrawn in Dabusu experimental region is more significant.
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Abstract. A large number of major oil fields in China have entered the late stages
of development, and the decreasing production is increasingly unable to meet
the continuously growing demand for energy. Therefore, it is crucial for oilfield
production to accurately and rapidly predict the effects of production-increasing
measures based on existing data. This paper comprehensively considers three
types of data: geological static parameters, production dynamic parameters, and
process parameters of measures. Advanced machine learning algorithms such as
random forest (RF), support vector regression (SVR), and extreme gradient boost-
ing (XGBoost) are separately used, together with data augmentation techniques
and Bayesian optimization algorithms to construct the different enhancing produc-
tion through measures prediction model. The best prediction model is optimized
by comparing the scores of each model. The results of a comprehensive compar-
ison of various models based on the mean absolute error (MAE), mean squared
error (MSE), and coefficient of determination (R2) indicate that the model based
on the extreme gradient boosting algorithm performs the best. The application of
data augmentation and optimization algorithms significantly improves the model
performance. The accuracy of predicting the oil production enhancement effect
for a given measure can reach over 90%. Compared with traditional methods for
predicting the effects of measures, this paper addresses the issues of long computa-
tional time in numerical simulations and difficulty in exploring the mechanism of
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oil production enhancement measures in depth, and achieves a rapid and accurate
prediction of the multidimensional effect of measures for increasing oil production.
This paper employs machine learning algorithms to fully explore the relationship
between three types of data and oil production enhancement effects, accurately
predicting the effect of measures for increasing oil production. It provides a tech-
nical foundation for selecting reasonable measures to increase oil production in
oilfields and has certain guiding significance for actual production.

1 Introduction

As anirreplaceable strategic resource, petroleum plays a critical role in a country’s power
and economic development. Maintaining and increasing oil production has always been
an important energy goal for nations. However, due to China’s rapid economic growth
over the past few decades, the country’s consumption of petroleum has been steadily
increasing. Nevertheless, as most of China’s major oil fields have entered the middle and
late stages of development, issues such as increased water content and reservoir damage
have resulted in a decline in production capacity that is no longer sufficient to meet
current energy demands [1]. This has led to a severe dependence on foreign oil and gas
resources, with China’s external oil dependency exceeding 70% in 2020. Large-scale
oil imports could easily subject China to geopolitical risks, significantly threatening the
country’s energy security [2]. Therefore, implementing reasonable measures to increase
oil production is imperative for China to address its energy gap, stabilize domestic
economic development, and alleviate its energy crisis. However, with a wide variety of
measures available and varying effectiveness, accurately predicting the effectiveness of
such measures is crucial for oil field production.

In the field of measure effectiveness prediction, conventional methods such as the
water flooding characteristic curve method and the Weng cycle method have limitations
in their applicability due to various assumptions and complex formulas [3]. Although
numerical simulations have been attempted to predict the effectiveness of measures, their
applicability is restricted due to the complex mechanisms of measures to increase oil
production and the expensive computations involved [4]. Research on machine learning-
based measure effectiveness prediction is still in the exploratory stage, with a primary
focus on production forecasting. There has been limited consideration of including pro-
cess parameters in the evaluation of measures, as the limited sample size of measure
wells restricts research in this direction to primarily fracturing methods [5].

In recent years, the revolutionary development of artificial intelligence (AI) tech-
nology has attracted widespread attention from various industries due to its powerful
generalization ability and rapid response speed [6]. The petroleum industry has also accu-
mulated a large amount of historical data in production, and machine learning has shown
great potential in the field of petroleum engineering [7]. As an alternative data-driven
approach, machine learning can extract information from a large amount of historical
data and construct regression or classification prediction models [8]. Many supervised
machine learning methods, including linear regression, support vector machines, neural
networks, etc., have been used to predict production decline, optimize water injection
schemes, characterize reservoir permeability, and generate complex geological facies

[9].
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Based on the above content, in order to accurately and rapidly predict the effect
of oil recovery measures, this paper proposes a data-driven approach for predicting
the effect of oil recovery measures. Advanced machine learning algorithms, including
Random Forest (RF), Support Vector Regression Machine (SVR), and Extreme Gradient
Boosting (XGBoost), are used to explore the influence of three types of data on the
effect of oil recovery measures, namely geological static parameters, production dynamic
parameters, and process parameters. A prediction model is built, and data augmentation
is employed to address the problem of insufficient samples, which improves the quality
of the sample dataset. In the hyperparameter tuning stage of the model, the Bayesian
optimization algorithm is introduced to solve the problem of difficult manual parameter
tuning and further improve the model accuracy. After comparative experiments, the
XGBoost algorithm-based oil recovery measure effect prediction model is selected, and
the accuracy in the test set can reach over 90%.

2 Methodology

2.1 Feature Engineering

Feature engineering is the process of taking the raw input data and creating new features.
To make the raw data more informative, it selects, extracts, and transforms meaningful
features from the raw data. Feature engineering involve various techniques, includ-
ing data cleaning, data normalization, data scaling, data augmentation, data encoding,
dimensionality reduction, and feature selection. The source data for this study is the
actual recorded data from the oil field, which has poor data quality. Therefore, feature
engineering is crucial in processing the data. In addition to common data cleaning, nor-
malization, and correlation analysis, this paper also employs the SMOTE oversampling
technique as a data augmentation method.

Synthetic Minority Over-Sampling Technique (SMOTE)
SMOTE [10] is an approach to the construction of classifiers from imbalanced datasets
is described. It is used to address the problem of imbalanced class distribution in data
by synthesizing data through a combination of over-sampling the minority class and
under-sampling the majority class [11]. The specific steps are as follows:

(1) For each sample x in the minority class, calculate its k-nearest neighbors to all
samples in the minority class using Euclidean distance as the metric. The formula is:

d(st,s1) = | S (s = su)” M)

(2) Determine a sampling rate based on the imbalance ratio and set a sampling
multiplier N. For each minority sample x, randomly select several samples from its
k-nearest neighbors, denoted as xy.

(3) For each randomly selected neighbor x;, construct a new sample with the original
sample according to the following formula.

Xpew = X +rand(0, 1) x (x — x) 2)
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2.2 Regression Prediction Algorithm

Support Vector Regression (SVR)

SVR [12] is a type of machine learning algorithm used for regression analysis. It is based
on the Support Vector Machine (SVM) algorithm and is used to build models that can
predict continuous output variables. The basic principle of SVR is to find a hyperplane
in a high-dimensional space that best separates the data into different classes. In the case
of regression, the hyperplane is used to predict the value of the outcome variable based
on the input features. Therefore, the SVR problem can be formalized as:

gf’g%nwnz + C Y L (f (), i) 3)

In which, C is the regularization constant, le is the e-insensitive loss function. After
introducing slack variables and Lagrange multipliers and taking partial derivatives, the
formula of SVR can be expressed as:

F@) =0 (@ — ai)e (T x) +b @

where « (x/ x)=2(x;)" @(x;) is the kernel function.

Random Forest(RF)

RF [13] is a popular ensemble learning algorithm used for classification, regression, and
other machine learning tasks. The algorithm combines multiple decision trees to create
a “forest” of trees that work together to make predictions. In regression problems, the
output of each decision tree is averaged to obtain the final regression result [14]. The
specific idea is as follows:

(1) Assuming that the training dataset contains N data objects, a training dataset is
constructed by randomly sampling M samples with replacement using the bootstrap
method, where each sample is not completely identical to the others.

(2) Assuming that each sample data has X features, a subset of x (x < = X) features is
randomly selected from all the features, and the best splitting attribute is chosen as
the node to grow the CART decision tree, with k remaining constant during the tree
growing process.

(3) Repeat the above steps to build n CART trees, and obtain the final prediction by
averaging the outputs of these decision trees.

f =3 Sih(x) )

eXtreme Gradient Boosting(XGBoost)

XGBoost [15] is a highly efficient gradient boosting decision tree algorithm that uses
the ensemble idea - the Boosting idea - to integrate multiple weak learners into a strong
learner through a certain method. Its algorithmic process is as follows:

(1) Set the model to begin with a constant value:

/ ©0X) = argénin SN L 0) (6)
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(2) Calculate the gradients and hessians:
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(3) Trainabase learner on the training set by solving the following optimization problem:
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(4) Modify the model:
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(5) Output:
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2.3 Optimization Algorithm

An optimization algorithm refers to the process of minimizing or maximizing an objec-
tive function, subject to given constraints, by finding one or more optimal or near-
optimal solutions. This paper introduces a tree-structured Bayesian optimization algo-
rithm to tune hyperparameters of the production enhancement effect prediction model.
This method solves the problem of obtaining the optimal prediction model through
manual tuning, providing a more efficient and effective approach.

Tree-structured Parzen Estimator(TPE)
TPE [16] uses two density functions to define p(x|y):

I(x) ify <y*

13
g(x) ify >y* (13

plxly) = {
In the above equation, /(x) is established using the observation space {x®} and the
corresponding loss f(x) is less than y*, while g (x) is established using the remaining
observations. The TPE-based method relies on a value of y* greater than the best observed
value of f(x), so that some points can be used to build /(x). TPE adopts expected
improvement (EI) as the acquisition function. However, since it is impossible to obtain the
posterior probability p(x|y), Bayesian formula is employed to transform the acquisition
function:

Ely (1) = 7 0% = pOindy = [ (7 — y) 220 gy (14)

In this equation, y* represents a threshold value. Let y = p(y < y*) denote a certain
quantile used in the TPE algorithm to partition /(x) and g(x). The value of y is in the
range of (0, 1). The final simplified formula is:

@@= po)dy e -1
Ely (x) = D0 el o (y +42a - y)) (15)
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3 Experiment and Result

3.1 Introduction to the Dataset

This study collected data on all oil production enhancement measures implemented in
a certain block of an oilfield from 2017 to the present, including acidification, unclog-
ging, and water flooding. After selecting wells where the measures were effective and
conducting data cleaning and correlation analysis, the sample size of wells subjected
to acidification and unclogging measures was too small to support machine learning
analysis. Therefore, this study ultimately chose water flooding measures as an example
for oil production enhancement prediction. The sample database contains 147 wells that
achieved oil production enhancement after water flooding measures were implemented.
The input variables include eight geological static features, four production dynamic
features, and two measure process features, as shown in Table 1.

Table 1. Feature presentation table.

Feature category Feature name

Geological static features Porosity of injection well, Permeability of injection well,
Thickness of injection well, Oil temperature of injection well,
Viscosity of crude oil of injection well, Permeability of
production well, Porosity of production well, Distance between
wells

Production dynamic features | Injection well pressure before the measure, Injection well daily
volume before the measure, Daily fluid production before the
measure, Daily oil production before the measure

measure process features Measure chemicals, Chemicals injection volume

According to statistics, there are three different chemical types A, B and C in 147
profile control measures samples, and the sample sizes of different classes of chemicals
are significantly different, among which 96 are of type A, 33 are of type B and 18 are of
type C. Unbalanced sample distribution has a great influence on the learning and pre-
diction of machine learning model. Therefore, this study adopted the data enhancement
method of oversampling to expand the data, so as to ensure the same sample size of the
three measures. Generate new 410 after SMOTE oversampling and screening and use
this new 410 as the data set for the forecast model.

3.2 Experimental Setting

To select the optimal predictive model for effects of oil-increasing measures, this study
compared three commonly used machine learning algorithms for regression problems
in petroleum engineering: Support Vector Regression (SVR), Random Forest (RF), and
XGBoost. Predictive models were constructed for each algorithm and their performance
was evaluated under multiple loss functions. The best-performing predictive model was
determined, and an optimization algorithm was introduced to fine-tune the model’s
hyperparameters, further enhancing its predictive accuracy.
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3.3 Result

Based on three different algorithms, data-driven predictive models were developed for
oil-increasing measures using geological static parameters, production dynamic param-
eters, and process parameters as inputs, and post-measure oil production as output. The
training and testing sets were divided in a 9:1 ratio. The prediction results of the different
algorithms are shown in Fig. 1. By comparing the performance of the models using the
same testing set, it can be observed that the predictive accuracy of XGBoost and RF
algorithms are significantly higher than that of SVR algorithm.

SVR:Campar ison of Actual and Predicted Values RF:Comparison of Actual and Predicted Values

—— Actual —— Actual
100 —— Predicted 100 —— Predicted

Daily oil production after measure (m3)
3

Daily oil production after measure (m)
8

0 5 10 15 20 % 0 B £l 0 5 10 15 20 % 0 B 4
Sample Sample
XGBoost :Compar ison of Actual and Predicted Values Compar ison of Actual and Predicted Values

— hotual — fctual

100 —— Predicted 100 — SR
XaBoost

— Rf

Daily oil production after measure (m®)
Daily oil production after measure (m*)
8

0 5 10 15 20 %5 30 35 4@ 0 5 10 15 2 5 30 3B 4
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Fig. 1. The effect comparison of different algorithms

To conduct a precise analysis of the prediction performance of RF and XGBoost
algorithms, this study comprehensively evaluated their performance using three loss
functions: Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared
(R2), as shown in Table 2. From the numerical results, it can be seen that XGBoost
algorithm outperforms the other two algorithms. Therefore, XGBoost was selected for
further research.
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Table 2. Evaluation of three algorithms

Algorithms MAE MSE R?

SVR 13.12 453.82 0.26
RF 7.09 136.76 0.78
XBGoost 4.39 68.22 0.88

The above model obtained the optimal results by manually adjusting the hyperpa-
rameters after determining their approximate range using grid search. However, manual
tuning of hyperparameters can hardly result in the best combination of model parameters,
and there is still room for improvement in hyperparameter performance. Therefore, this
study introduced a Bayesian optimization algorithm based on Tree-structured Parzen
Estimator (TPE) to optimize the hyperparameters of the XGBoost prediction model.
The final optimization result returned the maximum value of R2, and the optimized
parameters are shown in Table 3.

Table 3. Hyperparameter optimization results

Hyperparameter optimization results Hyperparameter optimization results
max_depth 5 n_estimators 498

learning_rate 0.0581 gamma 6.1491
colsample_bytree 0.9185 subsample 0.5102

reg_alpha 0.0196 reg_lambda 1.5302e-07

The performance of the TPE-XGBoost model for predicting the effect of enhanced

oil recovery measures, incorporating the optimization algorithm, is shown in Fig. 2 and
Table 4. It can be observed that the introduction of the optimization algorithm improves
the performance of the predictive model, with the optimized model outperforming the
non-optimized model under all three loss functions. The final predictive accuracy (R?)
can exceed 90%.

Table 4. The effect after hyperparameter optimization

Algorithms MAE MSE R2
XBGoost 4.39 68.22 0.88
TPE-XGBoost 4.11 58.19 0.91
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Fig. 2. The effect after hyperparameter optimization

4 Conclusion

This article proposes a data-driven method for predicting the effects of oil-increasing
measures based on the TPE-XGBoost algorithm. This method first enhances the data
samples to some extent, which alleviates the problem of insufficient sample size. At
the same time, the model comprehensively considers three types of features: geological
static parameters, production dynamic parameters, and measure process parameters,
deeply mining their relationship with the effect of increasing oil, and automatically
optimizing the model hyperparameters to achieve the prediction of daily oil production
after the measures, which significantly improves the prediction accuracy compared with
other algorithms and can reach over 90%. However, the current research is still limited
by the insufficient quality of on-site data. In future research, in addition to obtaining
high-quality data from the source, high-level feature engineering will also be the next
research focus. In addition, incorporating economic indicators into machine learning is
also a future direction of research.
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Abstract. Casing damage is a common problem faced in the development of old
oilfields. Some areas with weak mechanical properties of rock layers and other
unfavorable factors are prone to severe casing damage, such as time of occurrence
and plane distribution of casing damage wells. The stable state of damaged rock
formations is a prerequisite for the implementation of workover and remaining oil
tapping. Traditional stability evaluation of damaged areas often relies on qualita-
tive analysis through well condition investigation and engineering logging, with
incomplete considerations and a high rate of judgment errors, often leading to
secondary concentrated casing damage after treatment. Therefore, based on the
research and understanding of centralized casing damage mechanism, taking into
account the changes in casing damage situation and the control of inducing factors,
9 indicators are selected to establish an evaluation index system for stability of
casing damage areas. Gradient lifting algorithm is applied to achieve quantitative
grading evaluation of the stability, with a verification compliance rate of 83.3%;
meanwhile, classified adjustment measures are implemented to overcome unstable
aspects, shorten the adjustment cycle, determine the timing of overall governance
as soon as possible, and ensure the oil recovery of casing damage areas. This
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method was applied in the X67 casing damage area, guiding the implementation
of various stability control workloads for 49 wells, and effectively improving the
stability of the casing damage area.

Keywords: concentrated casing damage area - comprehensive assessment -
stability adjustment - gradient lifting algorithm

1 Introduction

The casing damage in old sandstone oilfields developed by water injection is severe.
There is a phenomenon of concentrated casing damage, in some areas with large dip
angles, complex fractures, and large pressure differences [1-5]. The time of casing dam-
age occurrence, the location of casing damage layers, and the plane distribution of casing
damage wells are concentrated, which poses great harm to oilfield development effec-
tiveness, cost reduction and efficiency improvement, as well as safety and environmental
protection. Due to a lack of scientific understanding of the stability of casing damage
areas, production sites often rely on operational surveys or engineering monitoring to
qualitatively analyze the stability of casing damage areas based on information such as
the number of newly discovered casing damage wells and changes in inner diameter
of damaged casing [6]. This has led to improper timing of governance determined in
some concentrated casing damage areas, resulting in a recurrence of concentrated casing
damage after governance, seriously affecting the oil recovery process of these blocks
and significantly increasing the cost of well repair operations [7—10]. At present, there
are still two concentrated casing damage areas in Daqing Changyuan Oilfield that have
not fully resumed production and urgently need further treatment. In order to scientifi-
cally determine the timing of casing damage area treatment and restore the production
of casing damage area as soon as possible, there is an urgent need for an accurate and
quantitative centralized casing damage area stability evaluation and adjustment method,
which comprehensively evaluates the stability status of the damaged layer in the casing
damage area, and implement adjustments against unstable factors and causes to promote
the stability of the casing damage area as soon as possible, ensure the comprehen-
sive treatment effect of the casing damage area, and avoid the occurrence of secondary
concentrated casing damage situations.

This article is based on the research and understanding of the mechanism of con-
centrated casing damage. Mainly from two aspects, the trend changes in casing damage
situation and the inducing factors that affect the stability of damaged formation layers,
a stability evaluation index system and thresholds for concentrated casing damage areas
are created. Gradient lifting algorithms are optimized, and comprehensive evaluation
of casing damage area stability is carried out. At the same time, adjustment measures
against unstable factors in casing damage areas are provided to improve the stability
of damaged rock layers, providing guidance for the reasonable timing determination of
well workovers and drillings.
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2 Mechanism of Concentrated Casing Damage

In Daqing Changyuan Oilfield, there were 23 concentrated casing loss zones during the
three casing loss peak periods, of which 22 were concentrated casing loss zones of maker
bed as N_2 bottom. Through combing and comparing the causes of historical casing loss
in Table 1, the following characteristics were found in most of the concentrated casing
loss zones.

Table 1. Cause classification of concentrated casing damage zone

Geological Factors | Development Factors Engineering Factors

complex structure improper process before and after | poor cementing quality
complicated fault drilling renew with incomplete plugging
large dip angle uneven injection and production untimely casing leap discovery
dense fossils large pressure differences abnormal water absorption at the

large pressure rise during flooding | top of perforation

Firstly, in terms of geological factors, wells with casing damage are mostly located
in the area with large dip angle, the complex faults and the layers rich in fossil, especially
the oil shale in the maker bed of the N_2 bottom with well-developed horizontal joints
and micro-fractures, which are easy to crack. The Fig. 1 shows that micro-fractures
expand after water immersion, and the Fig. 2 shows that the rock strength decreases by
16.4%, which further weakens the shear resistance.

Secondly, in the development process, under the influence of unbalanced injection
and production adjustment or unreasonable drilling off and restoring, large regional
pressure difference or pressure change is generated, which leads to the sliding shear
along the bedding surface of the N_2 bottom oil shale, finally resulting in a large area
of concentrated casing losses.

At last, the engineering factors, due to some cementing with poor quality, untimely
casing leap discovery and incomplete well plugging, injected water get into the N_2
bottom along the channeling space, when there is abnormal water absorption at the
top section of the perforating, resulting in rock mechanical properties deteriorate, and
ultimately concentrated casing damage.

It can be seen from the above that the concentrated casing failure of the N_2 bottom is
caused by its mechanical properties, the influence of water immersion and the external
abnormal pressure. Therefore, the stability of the N_2 bottom maker bed is not only
affected by its own lithology and mechanical properties, but also affected by abnormal
development and water immersion factors.

3 Evaluation Method for Stability of Casing Damage Zone

Based on the understanding of the mechanism of concentrated casing loss, in addition
to the analysis of the current casing loss situation, the scientific and comprehensive
evaluation for the stability of the formation layer with concentrated casing loss, should
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a. Original sample b. Sample after water immersion

Fig. 1. Fracture extension induced by water immersion in the black shale
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Fig. 2. Changes in rock strength of N_2 bottom layer before and after immersion

focus on the development anomaly and the risk factors of water immersion that will
affect the stability of the rock layer in the future. Therefore, the stable state of the casing
loss area should be divided into two aspects. First, the casing loss situation is no longer
aggravated, which is mainly manifested as the area of the casing loss area does not
expand, the number of casing loss wells does not increase, and the casing loss degree
does not worsen. Secondly, the inducement factors of the centralized casing loss are
controlled or eliminated, including the water immersion risk of the N_2 bottom and the
abnormal development risk, to ensure that the secondary centralized casing loss will not
occur after the recovery of treatment.

3.1 Stability Evaluation Index System

Starting from the two aspects of stability evaluation in the cased damage area, 23 evalu-
ation indexes are selected preliminary, including 8 indexes related to the cased damage
situation, 10 for water immersion risk, and 5 for abnormal development risk.
Spearman correlation coefficient method was used to quantify the relationship
between 23 stability evaluation indexes and the occurrence of centralized casing loss.
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Among them, if the first correlation coefficient is greater than 0.7, it is strong correla-
tion; if the correlation coefficient is less than 0.4, it is weak correlation; and the rest are
medium correlation. Indicators with strong correlation are taken as alternative indicators.

Table 2.

Preliminary design of stability evaluation index of casing damaged area

Classification

Trend change index

Inducing factors

Risk of water immersion

Abnormal development
indexes

detailed index

change rate of casing
damage area

rate of casing damage
found during jobs

annual casing damage
rate

annual casing loss rate of
N_2 bottom layer

ratio of leap wells
change rate of inner
diameter of casing
change in stress direction
of casing damage well
time interval between
discovery of casing
damage and last job

abnormal drilling
information

updated numbers of
incompleted abandon
injection well
proportion of poorly
cementing wells
proportion of water
immersion risk wells
water immersion area
proportion of producing
liquid

proportion of abnormal
testing

ratio of unloading wells
to water immersion wells
ratio of abnormal
injection wells
centralized investigation

risk level of block in
casing damage
proportion of wells with
casing damage risk
pressure increasing rate
in early stage of
chemical flooding
inject-pro pressure
difference in the middle
and later stages of
chemical flooding
injection rate of
chemical flooding

quantity

10

Spearman correlation coefficient method was adopted to calculate the correlation

coefficient among alternative indicators. If the correlation coefficient between the two
alternative indicators is greater than 0.4, the correlation coefficient between the two
alternative indicators and the casing loss rate should be referred to, and the one with the
larger first correlation coefficient should be selected as the stability evaluation index. If
the correlation coefficient between the two alternative indicators is less than 0.4, the two
alternative indicators are retained as stability evaluation indicators.

According to the above screening methods, eight evaluation indexes that are strongly
correlated with the occurrence of centralized casing loss and relatively independent of
each other are obtained, which constitute the evaluation index system of the stability of
the casing loss area (see Table 3).

3.2 Threshold of Stability Evaluation Index

An example is taken to illustrate the determination process of indicator thresholds by
the ratio of water unloading wells to immersion wells. Firstly, the scatter relationship
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Table 3. Optimized results of the evaluation index

Classification Index Unit | Definition
trend change area variation rate change of % the ratio of the area
casing damage area difference between the
current and the
previous year to the
damaged area zone in
the previous year
wells variation rate of casing % the proportion of
damage found newly discovered
during jobs casing damage wells
to the number of jobs
annual casing loss | % the proportion of
rate of N_2 bottom newly discovered
layer damage wells of N_2
bottom layer to the
total number of the
year
Degree variation rate change of inner | % the proportion of
diameter of casing changes in the inner
diameter of casing
damaged compared to
the original average
inner diameter
inducing factors | risk of water proportion of water | % the proportion of wells
immersion immersion risk that are scrapped and
wells not completely
renewed and have a
cementing quality less
than 60% in the total
number of water
injection wells
ratio of water 1 the ratio of the number
unloading wells to of reperforated
immersion wells producers and those
with casing leap to the
number of injectors
with casing leap
abnormal risk level of block |/ risk level of casing
development indexes | in casing damage loss in block
proportion of wells | % the proportion of

with casing
damage risk

injectors with casing
loss risk in the number
of injectors
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between index data and the casing loss rate was established. The casing loss rate of
3% was taken as the threshold, and the horizontal coordinate was divided into several
intervals with 0.4 step length (see Fig. 3). The proportion of blocks with casing loss
rate greater than 3% in different intervals was calculated, and the value corresponding
to the obvious inflection point on the curve was selected as the threshold of the index
(see Fig. 4). According to the above practices, the limits of other 7 evaluation indicators
are determined (see Table 4), which are mainly divided into two types: the first are
positive indicators, which the bigger the better; the second are reverse indicators, which
the smaller the better.
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Fig. 4. The proportion of blocks with casing damage rate > 3% in each well ratio interval

3.3 A Set of Stability Evaluation Methods

Grading Standards of Stabilities. According to the definition of casing loss zone
stability evaluation, the stability of casing loss zone is divided into three levels: stable,
understable and unstable.
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Table 4. Thresholds and controlling range of the index for stability evaluation

Classification Index Unit | Control range
trend change change of area change rate of casing % [0, 1.0]
damage area
change of wells rate of casing damage % [0, 3.5]
found during job
annual casing loss rate of | % [0, 1.0]
N_2 bottom layer
change of degree change rate of inner % [0, 9.0]
diameter of casing
inducing factors | risk of water immersion | proportion of water % [0, 5.0]
immersion risk wells
ratio of unloading wells 1 (0.8, o0]
to water immersion wells
abnormal development | risk level of block in / medium to low
indexes casing damage
proportion of wells with | % [0,9.0]
casing damage risk

Stability Classification of Historical Damage Area. According to the stability evalu-
ation index data of the area after the occurrence of centralized casing loss, the stability
grade of the casing loss area over the years is divided according to the stability grade
standard of the casing loss area in Table 5.

Spearman correlation analysis algorithm is used to calculate the correlation among
different levels. The weaker the correlation is, the clearer the classification is. If the
correlation between the two levels is strong (correlation coefficient greater than 0.4), the
block stability is regraded, until the correlation between grades is weak or no correlation
(correlation coefficient less than 0.4), in Fig. 5.
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Fig. 5. Correlation calculation results before and after adjustment
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Optimization of Stability Evaluation Methods. 75% of the casing loss area data
was taken as sample data and 25% as verification data. A variety of big data analysis
methods were used to carry out deep learning on the sample data respectively, forming
the evaluation model of each method, calculating the respective and the verification
coincidence rate, and selecting the method model with the model coincidence rate of
over 90% and the highest verification coincidence rate of over 80% as the optimal
evaluation model. In the end, the coincidence rate of 7 algorithms reached more than
90%. After the comparison and verification of the coincidence rate, the gradient lifting
algorithm was selected as the evaluation method for the stability of the casing loss area
(see Table 5).

Table 5. Comparison of coincidence rates of various evaluation methods

Evalution Model Compliance Rate (%) Verification Compliance Rate (%)

Methods Stable | Understable | Instable | Overall | Stable | Understable | Instable | Overall
stochastic 79.6 |75.0 89.7 81.5 84.0 |62.5 92.3 79.6
gradient

descent

ridge 68.4 |76.0 83.3 75 72.4 150.0 84.6 70.4
regression

logistic 100 190.5 92.5 94.4 909 | 64.7 86.7 81.5
regression

decision tree | 100 100 100 100 90.9 |54.6 90.0 75.9
extra trees 100 100 100 100 952 |54.6 81.8 75.9
random 913 917 90.5 91.1 955 |64.7 80.0 81.5
forest

gradient 955 1927 97.4 95.2 909 |684 92.3 83.3
boosting

adaboost 813 674 96.7 79.8 90.9 | 59.1 90.0 77.8
classification

support 100 100 100 100 100 30.0 0.0 35.2
vector

machine

naive_bayes |71.8 |41.7 60.7 60.5 85.7 357 53.9 57.4
neural 954 1929 100 96.0 955 |65.0 91.7 83.3
networks
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4 Adjustment Measures for Stability

According to the principle of one countermeasure for one index, 12 personalized adjust-
ment measures are formulated according to the adjustable factors affecting the stability
of the damage zone, two risk factors of water immersion into N_2 bottom layer and
abnormal development, combined with the common injection and production adjust-
ment measures on the production site. In terms of immersion risk, the main way is to
reduce the water immersion area and prevent the water immersion area from further
expanding by the combination method of plugging and dredging. In the aspect of abnor-
mal development risk, the abnormal single well with casing loss risk can be restored
to the limit of casing loss warning by adjusting the formation plane and the pressure
difference between layers and treating them, according to Table 6.

Table 6. Stability adjustment measures of casing damage area

Classification Adjustment Measure

risk of water immersion | water immersion control cementing quality reevaluation
and channeling plugging, injection
interval adjustment

plugging of incompletely
abandoned well or shut down the
replacement well

packer seal inspection

discharge storage perforating of the production well

maintaining production with
casing leap

abnormal development | pressure differential adjustment | adjustment of injection and
production parameters for regions,
well patterns, and well groups

abnormal well treatment adjust production indexes to a
reasonable range, conduct
inspection, leak detection

5 Method Application

X67 damage zone has an oil-bearing area of 20.6 km? and geological reserves of 43.4
million tons. Concentrated damage occurred in the N_2 bottom of the tender in 2015.
By the end of July 2021, 137 wells and 18.7% of wells were lost. The well opening rate
was only 57.8%, the daily water injection accumulation decreased by 69.9%, and the
injection-production ratio was only 0.50, with an annual decline rate of 0.97%.

The above method was used to evaluate the stability, and the results showed that
the stability was unstable. In the aspect of sheath damage, it was found that the sheath
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loss rate of the N_2 bottom was higher. In terms of inducing factors of casing loss,
the main factors are the hidden danger of water channeling caused by a large number
of incomplete abandoned wells, and the high risk of secondary casing loss caused by
low injection-production ratio, continuous reduction of formation pressure and large
pressure difference.

In order to improve the stability of the casing damage zone, 49 adjustments were
implemented according to the principle of overall planning, coordination and classifica-
tion, aiming at the risk of water immersion into the N_2 bottom layer and the unstable
factors that could easily exacerbate the casing damage in terms of development, from the
perspective of improving the overall stability of the casing damage zone. Since it was
implemented for more than half a year, the risk of water immersion has been effectively
controlled, the difference of plane and inter-layer pressure has been reduced, no testing
and operation anomalies have occurred during this period, the casing damage situation
has been significantly improved, and the stability of the casing damage area has been
improved to a certain extent.

6 Conclusion

From the two aspects, the situation of the damage zone and the control of inducing factors,
the stability evaluation index is designed and optimized to quantitatively characterize
the current situation of the damage zone and the potential risks in the future, which can
realize the scientific and comprehensive evaluation of the stability of the damage zone,
and provide a method to scientifically guide the comprehensive treatment of the damage
zone, determine the reasonable treatment time, and avoid the secondary concentrated
damage after treatment.

In view of the unstable factors of the casing loss area, timely adjustment measures
can effectively improve the stability of the casing loss area, shorten the treatment period,
and restore the production contribution as soon as possible.
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Abstract. The objective of this study is to analyze dominant controlling factors
of the EUR of shale gas wells and then to forecast the EUR precisely by employing
knowledge graph and automated machine learning techniques. First, an ontology
knowledge representation model and a set of classification system for shale gas
production are constructed, which include 13 shale gas objects such as basin,
shale gas play, shale gas field, shale gas reservoir, and shale gas well, and their
112 geological, engineering and production parameters, such as mineral brittle-
ness, fracturing section length, sanding intensity, and first-year production, and
so on. Subsequently, structured data from existing databases are transformed, and
loaded into the knowledge base. Large amount of unstructured data from papers,
presentations, professional books are extracted and loaded by using various natu-
ral language processing (NLP) tools. The final shale gas knowledge base contains
56 shale gas plays and more than 1,000 shale gas wells worldwide. Based on
the shale gas knowledge base, the graph embedding algorithm is used to convert
the graph into a vector in order to train the machine learning models. Various
automated machine learning frameworks such as TPOT, H20, Auto-Sklearn, and
AutoGluon are implemented and the performances are compared. According to
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the model with best performance, the main controlling factors of the EUR of shale
gas wells are high-quality bed thickness, fracturing section length, and fracturing
fluid volume, etc., which are consistent with shale gas production practices. The
MSE and MAE of the best model on the testing dataset are 0.06 and 0.19, respec-
tively. The approach of knowledge base construction and application developed
in this paper can be extended to the entire life cycle of E&P process, which can
make full use of various documents, data and knowledge accumulated in the oil
and gas industry to conduct decision support.

Keywords: Knowledge Graph - Shale Gas Production - EUR Prediction -
Automated Machine Learning

1 Introduction

Shale gas has become an increasingly important source of energy, and its production has
seen significant growth over the past decade. However, the production of shale gas wells
can be challenging to forecast due to the complex geological structures, engineering, and
production characteristics of shale formations. In recent years, many studies on shale
gas production forecasting have been carried out and there have been developed various
methods to forecast the production of the shale gas, which can be divided into three
categories, empirical formulas, analytical models, and numerical formulas [12]. Each
method has its advantage and can be applicable for a few shale gas wells in specific
areas. Therefore, new methods are needed in order to predict the production of shale gas
effectively and efficiently with high performance.

Knowledge graph and machine learning techniques have emerged as powerful tools
for collecting more data from both structured and unstructured data sources, analyz-
ing large amounts of data, and making accurate predictions. In this paper, we will
explore how these techniques can be used to forecast the production of shale gas wells.
Knowledge Graphs (KGs) have emerged as a compelling abstraction for organizing
the world’s structured knowledge, and to integrate information extracted from multiple
data sources. Knowledge graphs have started to play a central role in representing the
information extracted using natural language processing and computer vision. Domain
knowledge expressed in KGs is being input into machine learning models to produce
better predictions [3].

2 Shale Gas Knowledge Base Construction

2.1 Ontology Construction of Shale Gas Knowledge Base

First of all, it is necessary to construct a comprehensive shale gas knowledge base to
store production parameters and data such as shale gas geology, structure, drilling and
acid fracturing. The process can be divided into two steps. The first step is to create
shale gas ontologies, and the second step is to fill in shale gas entities according to the
structure of ontologies using various data sources. Ontology is an abstraction or concept
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of things in the real world. It usually refers to a collection of entities with the same char-
acteristics. To be specific, business experts abstract the process of shale gas exploration,
development, and production to identify shale gas ontologies such as basins, shale plays,
shale gas fields, shale gas reservoirs, shale gas wells, wellbores, and fracturing stages.
These objects contain many attributes or features. For example, a basin can be described
by attributes such as basin name, structure type, country to which the basin belongs,
maximum heat flow, minimum heat flow, oldest age of the basin, sedimentary thickness,
age of the stratum, and oil and gas prospects of the basin, while the attributes of shale gas
play include zone area, zone location, average reservoir burial depth, zone type, reserve
abundance, recovery factor, depositional environment, brittle mineral content, pressure
coefficient, reservoir thickness, permeability, porosity, ratio of adsorbed gas, gas con-
tent, TOC, gas saturation, etc. At the same time, there are various relationships between
each ontology in the shale gas knowledge base. For example, a basin may contain shale
gas plays, a shale gas well is located in a shale gas play, and a shale gas well includes
latitude, longitude, well type, fracturing formation, surface elevation, bushing elevation,
spud date, completion depth, completion date, completion formation, completion type,
depth of maximum well deviation, fracturing section length, effective porosity, mineral
brittleness, pressure coefficient, formation temperature, lateral length, cluster spacing,
fracturing fluid strength, sanding strength, TOC and other properties (see Fig. 1).
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Fig. 1. A schematic diagram of shale gas ontologies, illustrating the attributes and relationships
of the ontologies.

Using knowledge graph technology to model shale gas development and production
process, compared with traditional relational database, the biggest advantage is the flex-
ibility and usability, which means shale gas professionals do not need to consider all of
entities, attributes, and the relationship among them in advance. The data model of the
knowledge graph can be maintained or updated at any time according to actual business
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requirements, and the application based on the database has little impact. According to
the actual business situation, the study sorts out and creates 13 types of ontologies with
112 attributes (see Fig. 1).

After the shale gas ontologies have been constructed, the shale gas entity can be
filled in. Entity refers to something that is distinguishable and exists independently in
the world. For example, Permian Basin, Eagle Ford Shale Play, MIP 3H Well, and so on
are entities in the field of shale gas exploration and production. Everything in the world
is composed of specific objects, that is, entities. Entities are the most basic elements
in knowledge graphs, and different entities have different relationships. Every entity
belongs to a specific ontology. For example, Permian Basin is a basin, which means the
entity of the Permian Basin belongs to the ontology of basin. This entity has various
attributes defined by the ontology, such as basin name, structure type, country to which
the basin belongs, maximum heat flow, basin, minimum heat flow, the oldest age of the
basin, sedimentary thickness, etc. Various shale gas entities, attributes, and relationships
between entities constitute the shale gas knowledge base.

2.2 Entity Extraction from Shale Gas Knowledge Base

Once the ontology of the shale gas knowledge base is constructed, it is necessary to collect
various types of data to fill in the knowledge base in order to expand the scale of the
knowledge base. Entity extraction includes steps such as entity extraction, relationship
extraction, and attribute extraction. This study collected a large amount of data, which
can be divided into structured data, semi-structured data, and unstructured data in terms
of data source types. Structured data refers to data that can be logically expressed in
two-dimensional tables, such as Excel data tables, tables in databases, etc.

Semi-structured data is a form of structured data that does not conform to the data
model structure associated with relational databases or other data tables, but contains
relevant tags to separate semantic elements and to classify records and fields. Layer, the
structure and content of the data are mixed, there is no obvious distinction, therefore, it is
also called a self-describing structure, simply speaking, semi-structured data is between
fully structured data and completely unstructured data. For example, HTML documents,
JSON, XML and some NoSQL databases are semi-structured data. Unstructured data
is data without a fixed structure, including various formats of office documents, text,
pictures, various reports, images, and audio/video information.

For structured data, the column name of the structured data is mapped to the attribute
name of the graph database entity through Mapping, and the value of the column name
is filled into the attribute value of the knowledge base entity. For unstructured data,
we used a rule-based, natural language model combined with manual review to extract
shale gas entities, relationships, and attribute values. The task of entity extraction is to
find named entities from unstructured documents. In this study, entities such as basins,
shale gas zones, shale gas reservoirs, shale gas wells, wellbores, and fracturing sec-
tions are mainly extracted. For example, the system uses the preset regular expression
“[AZ].{2,20}Shale[]{0,1}[Gas]{0,1}[]1{0,1}[Play]{0,1}” will identify and extract “Ea-
gle Ford Shale Play”, “Bakken Shale Play”, “Barnett Shale”, “Fayetteville Shale”, “Hay-
nesville Shale”, “Marcellus Shale”, “SiChuan Shale” and other shale gas plays; for the
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relationship between entities, attributes and attribute values, this paper extracts knowl-
edge from unstructured documents through manual annotation. Shale gas professionals
marked the 7 types of shale gas entities, relationships, attributes and attribute values
involved in this research through the annotation tools (see Fig. 2). The marked results
can be directly imported into the shale gas knowledge base to form shale gas knowl-
edge triples. Meanwhile, it provides training corpus for the natural language processing
extraction model. Based on the annotation results, this study trains the Bert-BiLSTM-
CRF natural language processing extraction model [5, 9], and fine-tunes the parameters
according to the characteristics of the shale gas corpus. After the training is completed,
the accuracy rate of shale gas entity extraction on the testing dataset reaches 86%, and
the recall rate is 79%. The trained model can be applied to new shale gas documents
to extract entities, relationships, attributes, and attribute values automatically or semi-
automatically, which can be loaded into the shale gas knowledge base after manual
reviewing.

Through the study of organic matter enrichment, hydrocarbon generation and accumulation process of black shale of the Cretaceous
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Qingshankou Formation in the Songliao Basin, the enrichment mechanism of Gulong shale oil and the of unce al
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oil are revealed.

The Songliao Basin is a huge interior lake basin formed in the Early Cretaceous under the control of the subduction and retreat of the western
Pacific plate and the massive horizontal displacement of the Tanlu Fault Zone in Northeast China.
During the deposition of the Qingshankou Formation, strong terrestrial hydrological cycle led to the lake level rise of the ancient Songliao Basin and
the input of & large amount of nutrients, resulting in planktonic bacteria and algae flourish.

! Intermittent seawater intrusion events p the ion of salini i and anoxic in the lake, which were beneficial
to the enrichment of organic matters.
Biomarkers analysis confirms that the biogenic organic matter of planktonic bacteria and algae modified by microorganisms plays an important role
in the formation of high-quality source rocks with high oil generation capability.
There are four favorable conditions for the enrichment of light shale oil in the Qingshankou Formation of the Gulong Sag, Songliao Basin: the
moderate organic matter abundance and high oil potential provide sufficient material basis for oil enrichment; high degree of thermal evolution
makes shale oil have high GOR and good mobility; low hydrocarbon expulsion efficiency leads to a high content of retained hydrocarbons in the
source rock; and the confinement effect of intra-layer cement in the high maturity stage induces the efficient accumulation of light shale oil
The restoration of hydrocarbon accumulation process suggests that liquid hydrocarbons generated in the early (low-medium maturity) stage of the
Qingshankou Formation source rocks accumulated in placanticline and slope after long-distance secondary migration, forming high-quality
conventional and tight oil reservoirs.
Lignt oil generated in the late (medium-high maturity) stage accumulated in situ, forming about 15 billion tons of Gulong shale oil resources, which
finally enabled the orderly ion of U tional oils that are and superp! vertically within the
basin, showing a complete pattern of ‘whole petroleum system" with conventional oil, tight oil and shale oil in sequence.

Fig. 2. A figure of shale gas knowledge annotation process, showing the annotated entities.

2.3 Knowledge Fusion of Shale Gas Database

There are many data sources in the shale gas knowledge base, including experimental
analysis data and reports, papers, databases, and shale gas production data and research
reports, in which the naming rules, units and languages may be inconsistent. In order
to reduce the ambiguity of the knowledge base, we refer to the industrial shale gas
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Fig. 3. General knowledge fusion process from both ontology and entity layers.

exploration and development data standards to realize the integration of knowledge
extracted from various data sources. The process is called knowledge fusion. The fusion
of shale gas knowledge includes the fusion of ontology layer and physical layer (see
Fig. 3). The fusion of concept layer is mainly based on the knowledge expansion of
shale gas recognition ontology, and the fusion of physical layer adopts entity linking
technology. Firstly, based on the shale gas system knowledge formed by knowledge
system classification, candidate entities are selected from various data sources through
search engines. Subsequently, the supervised learning method is applied to train the
candidate entity ranking model by manually labeling the training set, and the candidate
entities are sorted. Finally, the fusion of the entity layer is completed through the entity
similarity algorithm [6]. Knowledge fusion results need to be reviewed manually before
entering the shale gas knowledge base.

After the steps of ontology construction, knowledge extraction and knowledge
fusion, the shale gas knowledge base can be constructed. Compared with traditional
knowledge bases, shale gas professionals can easily retrieve and view shale gas-related
entities, attributes and relationships, and analyze them through visual and user-friendly
interface (see Fig. 4).

Fig. 4. A diagram of shale gas knowledge database with an interactive interface.
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3 Application of the Shale Gas Knowledge Base

After the construction of shale gas knowledge base, various intelligent applications such
as knowledge question-answering, search and recommendation systems can be imple-
mented. Knowledge base question answering (KBQA) is one of the typical applications
of knowledge base. It analyzes natural language problems, uses the knowledge base
for querying and reasoning, and finally generates answers (see Fig. 5). Comparing with
the current popular ChatGPT’s generative question answering system, the answers from
the KBQA system are more accurate since they come from the knowledge base. More
importantly, there is no ChatGPT’s incorrect or nonsensical answers to unknown ques-
tions. Reliability is usually the cornerstone of industrial question answering systems, so
a knowledge base can verify and supplement the answers generated by ChatGPT.
Based on the knowledge base, graph machine learning can also be performed. Graph
machine learning is similar to machine learning and can be used for tasks such as node
classification, relationship prediction, clustering, and regression [8]. However, conven-
tional machine learning and deep learning algorithms are not suitable for graph data,
so graph representation learning can be used to convert graphs into feature vectors for
traditional machine learning such as regression and classification. Common graph rep-
resentation learning algorithms include node2vec and GCN. This research takes shale
gas wells as the research object, and uses the feature engineering method to query
the attributes and related nodes of shale gas wells, forming the data of the subsequent
machine learning algorithm. Taking shale gas wells as the starting node, this paper sorts
out 424 shale gas wells with 32 attributes available in the shale gas knowledge base. The
Pearson correlation coefficient algorithm is used to generate the thermal diagram of shale
gas well productivity factors (Fig. 6). From the figure, it can see that the EUR of shale gas
wells is strongly correlated with the first-year production rate, the testing production,
fracturing section length, lateral length, and fracturing fluid volume. The correlation
coefficients on the five factors reach 0.91, 0.82, 0.54, 0.49 and 0.48, respectively.

3.1 EUR Predictions of Shale Gas Well

Based on the shale gas knowledge base, this study uses automated machine learning
algorithms to predict the EUR of shale gas wells. The real EUR values were calculated by
RTA (rate transient analysis), which is a modern tool to better understand the production
and reserves of a reservoir or a well. Automated Machine Learning (Auto-ML) has
become a trending topic in industry and academic artificial intelligence (AI) research in
recent years. AutoML shows great promise in providing solutions for Al in regulated
industries in providing explainable and reproducible results. AutoML allows for greater
access to Al development for those without the theoretical background currently needed
for role in data science. Every step in the current prototypical data science pipeline, such
as data preprocessing, feature engineering, and hyperparameter optimization, can done
automatically by AutoML.

In this study, we employ AutoML frameworks such as AutoGluon, TPOT, H20,
and Auto-Sklearn to conduct EUR prediction. Using AutoML for prediction tasks is
a common approach to streamline and automate the machine learning pipeline. These
frameworks provide automated solutions for various stages of the machine learning
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The Qingshankou Formation is the most important hydrocarbon source rocks of
the Songliao Basin. The basin formation and organic matter enrichment are from
the interactions among paleo-tectonic, paleo-climate, paleobiological organisms,
and paleo-lacustrine environment

What's the feature of the Qingshankou shale?

The thickness of the Qingshankou in the Gulong Sag is 100-150 m. The lithology is
mainly composed of organic-rich black shale with high content of clay minerals, mixed
with thin layers of shell imestone, siltstone, and dolomite at the millimeter to centimeter
scale. TOC values of the shale are 19%-6%, with an average value of about 2%, indicating
a moderate OM abundance. Its original hydrocarbon generation potential is much higher
and reaches 600-900 mglg. The correlation between the hydrogen index (HI) and the
maximum pyrolysis temperature (Tmax) reveals that OM of the QingShankou shale is
mainly Type | and Type Il
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Fig. 5. Question-answering system based on shale gas knowledge base, showing the top 20
countries with potential for unconventional oil recoverable resources.

process, including feature engineering, model selection, hyperparameter optimization,
and model evaluation.

The AutoGluon is an open-source AutoML framework from Amazon, which requires
only a single line of Python to train highly accurate machine learning models on an
unprocessed tabular dataset [10]. TPOT (Tree-based Pipeline Optimization Tool) is a
popular open-source Auto-ML library in Python. It uses genetic programming to evolve
an optimal pipeline of pre-processing techniques and machine learning models [11]. H20
is an open source, in-memory, and scalable machine learning and predictive analytics
platform that allows users to build machine learning models on big data and provides easy
productionalization of those models in an enterprise environment [7]. Auto-Sklearn is an
open source AutoML toolkit, which includes latest research on automatically configuring
the AutoML system itself and contains a multitude of improvements which speed up the
fitting the AutoML system. It automatically sets the Model selection, decides whether
it can use the efficient bandit strategy Successive Halving and uses meta-feature free
Portfolios for efficient meta-learning.

The production data of 424 shale gas wells are split into training and testing datasets
by a ratio of 0.85:0.15, which means there are 64 wells in the testing dataset. The
training data of 360 wells are used to train the AutoML models. The performances of
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Fig. 6. Thermal diagram of correlation coefficient of shale gas well productivity factors

these AutoML frameworks for the testing dataset are listed in the table below, which
shows the evaluation metrics of mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), Mean Absolute Percentage Error (MAPE), and
the best model from each framework. The best model from TPOT, Auto-Sklearn and
H20 is ExtraTreesRegressor. The study chooses the TPOT model as the best suitable
algorithm for EUR prediction regression task after comprehensive comparison.

Table 1. The performance table of the four AutoML frameworks.

AutoML Framework | MSE RMSE |MAE MAPE Best Model

TPOT 0.0604 0.2459 | 0.1846 | 22.7571 ExtraTreesRegressor

Auto-Sklearn 0.0685 0.2617 |0.1811 20.4362 | ExtraTreesRegressor

AutoGluon 0.1078 10.3283 1 0.2454 |33.6250 | StackedEnsemble

H20 0.0670 | 0.2589 |0.2012 |33.7756 | ExtraTreesRegressor
4 Results

The ExtraTreesRegressor model from TPOT is employed to conduct training and testing
on the shale gas well data. The ratio of training and testing data is 0.85:0.15. TPOT tries
to fit the training data using a few algorithm models like LightGBM, RandomForest,
NeuralNetFast and so on. Meanwhile, it interpolates the missing values in the shale gas
well data and optimizes kinds of parameters for different models. The EURs calculated
by RTA and predicted from TPOT on both training and testing data are shown in Fig. 7.
The MSE and MAE on the testing data are 0.0604 and 0.1846, while the MSE and MAE
on the training data are 0.007 and 0.06, which implies somehow overfitting.
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Fig. 7. EUR predictions of shale gas wells, showing the predictions on training and testing data

In addition, ExtraTreesRegressor can compute the importance of features to the EUR
shale gas wells. A feature’s importance score represents the performance drop that results
when the model makes predictions on a perturbed copy of the data where this feature’s
values have been randomly shuffled across rows. A feature score of 0.01 would indicate
that the predictive performance dropped by 0.01 when the feature was randomly shuffled.
The higher the score a feature has, the more important it is to the model’s performance.
If a feature has a negative score, this means that the feature is likely harmful to the final
model, and a model trained with the feature removed would be expected to achieve a
better predictive performance. The top 5 most important factors to the EUR are high-
quality bed thickness, fracturing section length, fracturing fluid volume, Fragile mineral
content, Well Depth, respectively (see Fig. 8), which matches experts’ experiences in
shale gas well production very well.

In conclusion, the knowledge graph technology can be used to construct the database
of shale gas exploration and production, which will be able to extract data and knowledge
from various unstructured, semi-structured and structured data sources and then form
a comprehensive shale gas knowledge base. Intelligent applications such as question-
answering, search engine, EUR prediction can be subsequently built up based on the
knowledge base. The procedure and experience on knowledge base construction and
application by using cutting-edge technologies could be rolled out to other areas.
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Abstract. Based on the engineering technology data in the ultra-deep oil & gas
fields, this paper utilizes data insight tool to identify and extract information from
various types of data stored in documents with text or tables, which meets the needs
of data governance project. If the document information is about text content, the
natural language processing (NLP) method is directly selected for recognition;
If the document information is a table, it is necessary to convert the table into a
heterogeneous data table with Date-Frame format first by Python language, and
then recognize and extract it. These two processing methods can successfully
convert unstructured data to structured data, solving the problem of low accu-
racy and low timeliness of extracting information from different documents. The
NumPy & Pandas learning with Python language and other algorithms/functions
play an important role in building metadata models, labeling fields, and training
backend algorithms of data insight tool structure. The target trained extraction
model is very crucial to the identification and extraction of various information.
Relying on this and later, the qualified data generated after steps of extraction
of target documents, selection of matching data for review and multi-level audit
evaluation will be marked with “EDG”, which is the main data source of vari-
ous professional databases of Tari Oilfield and the guarantee of the capacity and
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quality of the data lake. Examples show that the data insight tool has strong adapt-
ability, obvious optimization effects, and superior performance compared to other
extraction tools. The development and application of data insight tool have sig-
nificantly improved the identification and extraction ability for engineering data
of ultra-deep oil & gas fields, improved the identification accuracy and extraction
speed, and met the needs of data governance.

Keywords: Data insight tool - Information extraction and metadata

1 Introduction

With the development of computer technologies such as cloud computing and big data,
people from all works of life are gradually realizing the value of data. In the process
of ultra-deep oil & gas exploration and production, there is also a large amount of
data, which is generated in different ways at different times and stored in the form of
documents. There are not only geophysical, drilling and logging data, but also gas testing,
geological structure, and downhole operation data, as well as scientific research report
data. For documents from the same data source, there are also storage differences such
as text, horizontal tables, vertical tables, and two-dimensional tables. Overall, it appears
as a long collection and survival time, discontinuous, and mixed with other data, diverse
storage types, complex document structure, and large and disorderly data volume.

In order to make full use of these data, it is necessary to treat them as a whole
and convert all unstructured data into structured data, so as better serve the engineering
technology data governance project of ultra-deep oil & gas fields, which has practical
significance [1, 2].

Unstructured data refers to data with irregular or incomplete structure, no prede-
fined data model, and inconvenient to be represented by the two-dimensional logical
tables of the database, including office documents, text, images, HTML, reports, images,
and audio/video information in various formats, while structured data, also known as
row data, refers to data logically expressed and realized through the two-dimensional
table structure. It strictly follows data format and length specifications, mainly utilizing
relational databases for storage and management.

The conventional data structuring is achieved by constructing an information extrac-
tion model. The specific method is to manually mark the information to be extracted
in the sample to obtain the training sample set, then select the appropriate supervised
learning algorithm, train the model with the training sample set, and finally obtain the
model for information extraction.

This method may not always be effective. For example, the sample and text to be
extracted are in a fixed format, such as ID cards and invoices. When the format of
the text to be extracted is very consistent with the sample, this method can obtain a
model with high extraction accuracy. When there are differences in format between,
the accuracy of model extraction decreases, and the larger the difference, the lower
the accuracy. Although the accuracy of the model can be improved by increasing the
number of samples, but an increase in the number of samples often means an increase
in training difficulty. In the oil and gas industry, the processes of oil and gas exploration



Optimization of Data Insight Tool Based on Engineering Technology 57

and production are complex, and the documents generated by different periods/methods
may have significant differences. Even increasing the number of samples cannot achieve
the accuracy value required for practical applications [3].

Data insight is a method that can efficiently extract information, the tool equipped
with corresponding devices and storage media, especially suitable for environments
where there are differences in the format of samples and documents to be extracted,
significantly improving the accuracy of information extraction models.

2 Features of Data Document in Ultra-deep Oil & Gas Fields

At the initial stage of data insight tool development, the unstructured data of engineering
technology in ultra-deep oil & gas fields was briefly classified according to the type of
data documents, and the following rules were summarized:

(1) The same type of data documents of different wells in different oilfields may have
large differences, and similarly, documents of different data types also have different
structures; (2) Within the same document, there may be both text and table content,
and table documents of the same type may also contain horizontal, vertical, or two-
dimensional tables; (3) The probability that data simultaneously exists in three types of
text, table, and image in a data document is high. Among the total data of all types of
documents, table data accounts for the largest proportion, reaching over 90%. The image
data is about 8%, and text data less than 2%. (4) Table documents mainly include basic
table, cross page table, two-dimensional table, and transposition table. Among them,
cross page table accounts for the largest proportion, reaching over 60% of the total table
documents. Transposition table is about 15%, while basic tables and two-dimensional
tables are about 20% and 5%, respectively.

In response to the features of data document in the ultra-deep oil & gas fields, the
key task of the data insight tool primarily solves the problem of extracting information
from table data documents, followed by image and text information extraction.

3 Integral Development of the Data Insight Tool

The data insight tool typically consists of two parts: hardware and software. The hardware
includes mechanical and electronic apparatus /devices or storage media used to support
data conversion, storage, transmission, and communication responses such as comput-
ers, circuit boards, memories, and transceivers; The software includes corresponding
networks, algorithms, sample sets, training models, databases, and data communication
and control.

3.1 Hardware Composition and Network Architecture of the Data Insight Tool

Specifically, the data insight tool includes three functional blocks: data processing center,
database, and user terminal. Each function block contains hardware and software to
complete all functions one by one, that is, trigger user information extraction requests,
generate metadata and target documents, collect and call training sample sets, generate
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Fig. 1. Hardware composition and network architecture diagram of the data insight tool

information extraction models for target training, and extract the values of target fields.
The hardware composition and network architecture diagram shown in Fig. 1.

The user terminal (shown as client in Fig. 1) is the port where users make requests
and receive responses, and is the response center for data processing center exchange
with the outside world. It is equipped with information extraction application software,
which is used to receive information extraction requests triggered by users. Users can
access the operation interface of the client or enter the website to extract web pages,
sending information extraction requests to the data processing center.

The database (shown as database in Fig. 1) is the storage center of structured data,
target documents and training samples/training sample sets. The data processing center
calls the training samples from the database to form a training sample set according to
the user’s information extraction request.

The data processing center (shown as computer in Fig. 1) is the center for data
reception and transmission, algorithm collection, training models, and communication
control. It mainly includes various algorithms for constructing metadata models, training
sample sets for completing data recognition and extraction, and executing instructions.
It is the most core part of the data insight architecture.

The data processing center adopts a modular design concept and is divided into
modules such as reception, training, determination, conversion, and acquisition. Briefly,
the receiving module receives extraction requests to form initial metadata and target
documents; The determination module obtains the training sample set corresponding to
the initial metadata; The training module generates a target initial information extraction
model and trains it to generate a target trained extraction model corresponding to the
initial metadata model; The conversion module is used to determine and convert the file
format of training samples; The acquisition module extracts target fields from the target
document using an information extraction model based on target training.
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3.2 Procedure of Information Extraction

The procedure of information extraction for data insight sequentially involves the
following steps:

(1) Receive user triggered information extraction requests, generate target fields to
be extracted based on their needs and selections, record the target documents to
which these target fields belong, their document types, and document locations, and
construct an initial metadata model.

(2) Select training sample documents that meet the conditions and convert their format
into a unified and recognizable format. Collect them together to form a training
sample set, and label the target fields and field values of all documents in the sample
set.

(3) Referring the metadata model and initial information of the target to build a target
initial extraction model, and configure the parameters in the model.

(4) Extract the labeled target fields and field values from each training sample in the
training sample set, and use them to train the target initial extraction model.

(5) Set the threshold for extraction recall and extraction accuracy. If the target initial
extraction model does not reach the threshold for extraction recall or extraction
accuracy, adjust the model parameters and keep training with the sample set until
these two thresholds are exceeded.

(6) Now the target initial extraction model can be considered as a target trained
information extraction model and shines upon the corresponding metadata model.

(7) Using the target trained information extraction model to extract the target fields in
the target document, the values of the target fields can be obtained.

4 Data Insight Analysis and Strategies

In order to accurately and quickly complete information extraction, specific analysis
and testing were conducted on each process and step, and corresponding strategies were
summarized.

Metadata and Training Sample Set Selection Strategy

A few of metadata and corresponding training sample sets are preconfigured in the
database, so that documents of different structural types correspond to different metadata.
When a user requests information extraction, appropriate metadata and training sample
sets are filtered out, and the types of samples are then distinguished. During the training
process of the target trained information extraction model, there is no need to filter the
training samples anymore, just learn all the samples in the selected training sample set.
Therefore, the target trained extraction model can have a high accuracy, and requires a
small number of samples, resulting in fast extraction speed.

Format Transformation Strategy for Training Sample Documents

Check the file header flag to clarify the format of the training sample. If the sample
is in PDF format, use common format conversion tools to directly convert the sample
format to Excel format; If it is a Word document, first convert the format of the Word
document to PDF format, and then convert it to Excel format. This strategy can unify
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the document format of training samples and ensure that the content in the document
will not be disordered after format conversion. Meanwhile, compared to other methods
such as converting each page of the sample document into images and then performing
image recognition, format conversion can improve the speed of model training and usage,
especially when the number of pages in the document is large, the speed improvement
is more significant.

Extraction Strategies for Text and Table Documents

Using NumPy and Pandas in Python language, convert all data in the document into
Date-Frame format data, and separate the text content and table content in each training
sample by presetting the data length of heterogeneous data tables.

Various algorithms are set in the target initial information extraction model, such as
N-gram language model for table name query, cosine similarity algorithm for obtaining
similar table names, OCR for obtaining information in pictures, named entity recogni-
tion, short-term memory LSTM, conditional random field CRF and Glove algorithm,
etc. for DataGrid Cell segmentation.

If it is text content, use natural language processing NLP to extract text content.
Sequentially perform extraction methods and strategies such as word segmentation, word
embedding, and named entity recognition, mark the extraction relationship between the
target field and its field values, and extract the feature values of the target field. If it
is a table content, use the concatenation function to concatenate the row data in the
worksheet into a string, use the judgment function to determine whether the tables in
each worksheet are continuation tables, and use the preset deletion function to delete
unmarked irrelevant items and items without data in the table.

These algorithms and functions have improved the efficiency of learning and training,
reducing the probability of errors.

Difference Sample Determination and Strategy
When there are difference samples in a training sample set, specific analysis pointing at
the target fields of the difference samples is necessary.

If the difference is only about in the text feature values of the difference target
field, it indicates that an error may have occurred during the text label process, and the
difference target field in the difference sample needs to be discarded. If the differences
happened both in position and contextual feature values, it indicates that the position of
the target field in the difference sample may be different from that in the other samples.
The feature values of the difference target field can be stored as the second feature values
of the target field in the target initial information extraction model, and keep going on
extracting target field and its field values from the training sample. This strategy can
store multiple feature values for the same target field, and then calculate the feature
value by the way of weight average or linear regression, which has a significant impact
on sample reinforcement. If the differences simultaneously appear in position, text, and
contextual feature values, it indicates that there may be errors in the selection of training
samples and the difference sample need to be discarded.

These strategies above could ensure that during the training process, the initial target
information extraction model has fewer training samples and the most types, making it
more accurate and faster.
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S Application Examples

In order to verify the advantages of data insight tool in governance time, the data insight
tool and other popular extraction tools were selected to synchronously extract logging
data of ultra deep oil fields with “inclination” as the target field. The comparison of
extraction effects is shown in Fig. 2 and Fig. 3. 50 Wells are selected in Fig. 2, while 500
Wells selected in Fig. 3 to demonstrate the extraction capability in more details. Here
are three extraction tools, namely: Data Insight Extraction in the first row, Baidu Table
Analysis Extraction in the second row, and Manual Extraction in the third row. In Fig. 2
and Fig. 3, blue represents the time for labeling samples, orange represents the training
time, and gray represents the extraction (governance) time. The horizontally distributed
numbers “07, “200”, “400”, “600”, “800”, as well as “0”, “2000”, “4000”, and “6000”
in the figures represent the time expenditure for governance, in minutes. Their specific
values are related to the size of the “Inclination” data.

Comparison of time spent on synchronous governance of 5¢ Wells
using three extraction methods with "Inclination" as the Target Field

Baidu Table Analysis Extraction _

Manual Extraction

400 S00 600 700 (muns)

= labeling time
= training time
extracting (goverence) time

Fig. 2. The data insight tool and other popular extraction tools were selected to synchronously
governance the logging data of 50 Wells in ultra deep oil fields, with “Inclination” as a target field

From Fig. 2 we can see that when the number of Wells is small, such as less than 50
wells, the Manual Extraction is the fastest method due to the time expenditure for data
insights and other extraction tools to label samples. As the number of Wells increases,
such as 500 wells shown in Fig. 3, the advantages of artificial intelligence are reflected.
In Fig. 3, the governance time using Data Insight Extraction is the shortest, only half
of the time used by Baidu Table Analysis Extraction, and 1/5-1/6 of the time used by
Manual Extraction.
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Comparison of time spent on synchronous governance of 500 Wells
using three extraction methods with "Inclination" as the Target Field

Data Insight Extraction -
Baidu Table Analysis Extraction _
it
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Fig. 3. The data insight tool and other popular extraction tools were selected to synchronously
governance the logging data of 500 Wells in ultra deep oil fields, with “Inclination” as a target

field.

It can be foreseen that for the huge amount of data in the ultra-deep oil fields, data
insight tool will have significant advantages in governance time.

Comparison of accuracy of three governance methods

120%

100%

50 Wells 100 Wells 200 Wells 400Wells 600Wells 1000 Wells

=~ Manual Extraction
~—— Baidu Table Analysis Extraction
~= Data Insight Extraction

Fig. 4. The data insight tool and other popular extraction tools were selected to synchronously
governance the same number of Wells of the logging data in ultra deep oil fields, with “Inclination”
as a target field.

For the sake of verifying the advantages of data insight tool in governance accuracy,
data insight tool and other popular extraction tools were also selected to synchronously
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extract data in the same number of Wells in the logging data of ultra deep oil fields
with “Inclination” as a target field. The comparison of extraction effects is shown in
Fig. 4. Here the blue line represents extraction accuracy of Manual Extraction, orange
line represents extraction accuracy of Baidu Table Analysis Extraction, and gray line
represents the accuracy of Data Insight Extraction. The horizontal characters “50 wells”,
“100 wells”, “200 wells”, “400 wells”, “600 wells”, and “1000 wells” in the figure
represent the number of governance Wells, while the vertical characters represent a
sketch map of accuracy percentage. Likewise, their specific values are related to the size
of the “Inclination” data.

From Fig. 4 we can see that both Data Insight Extraction and Manual Extraction have
an ideal information extraction accuracy (as shown by the gray and blue lines) of over
90%, regardless of whether the number of Wells is small (such as 50 Wells) or large (such
as 1000 Wells). However, as the number of Wells, meaning the amount of governance
data increases, the extraction accuracy of Manual Extraction (as shown by the blue line)
slightly decreases. While using Baidu Table Analysis Extraction, regardless the number
of governance Wells large or small, the extraction accuracy (orange line) is below 50%.

The above examples indicate that the data insight tool has high extraction accu-
racy and fast extraction speed, and their information extraction ability far exceeds that
of other common products on the market, meeting the audit requirements of business
departments.

6 Conclusion

(1) The metadata of data insight tools covers a wide range, including different target
fields that will be extracted, different documents storing these target fields, and their
respective types and locations. These documents are all technical data generated
during the ultradeep oil & gas exploration and production. When users trigger infor-
mation extraction requests, multiple metadata can be generated simultaneously for
backup. The target trained model is trained using a training sample set, and the type
of samples in the training sample set is the same as that of the target document. All
training samples are labeled with the target fields and their field values. Therefore,
there is not much difference between the format of the target document and the
format of the samples, and a high accuracy information extraction model can be
quickly obtained.

(2) The data insight tool converts unstructured data into structured data by means of
establishing metadata models, marking fields, background algorithm training etc.,
which plays a key role in the construction of various professional databases in ultra
deep oil & gas fields. Qualified data generated after the steps such as extracting target
documents, selecting matching data for review and multi-level audit and evaluation
will be marked with “EDG”, which is the main source of the database of ultra deep
oil & gas fields and the guarantee of the capacity and quality of the data lake [4].

(3) The example verification shows that both the accuracy and speed of data insight
tool used for information extraction remain at a high level, which can meet the audit
requirements of business departments. It has strong adaptability, obvious optimiza-
tion effects, and superior performance, far surpassing other common extraction tools
in the market.
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(4) From design to development, the data insight tool absolutely conforms to the current
situation of technical data of ultra deep oil fields, and its accuracy and governance
speed meet the requirements of practical application. It is of great significance to
promote the implementation of engineering technology data governance project of
Ultra Deep Oil & Gas Fields.
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Abstract. The quality of cement bond is related to the safety of oil and gas well
production and the service life of casing. At present, acoustic variable density
logging (VDL) is the most widely used method for evaluating cementing quality
in oil fields. The data interpretation of VDL still needs to rely on manpower, and
the accuracy of interpretation results is restricted by human factors, and the work-
load is heavy. Oilfields have accumulated a large number of practically verified
VDL interpretation results. It is of great research value and application potential
to sort out these historical data and mine them with the help of deep learning
technology, and establish an intelligent analysis method instead of humans to
explain the cementing quality. In this study, the VDL cementing quality evalua-
tion reports of several oil wells were collected. Through data preprocessing, the
acoustic variable density images were standardized and segmented along the bore-
hole direction. The cementation conditions of the first interface and the second
interface corresponding to each segment of the acoustic variable density image
were marked, and a sample set for cement bond quality evaluation was established.
The cementing quality evaluation problem is transformed into an image classifi-
cation problem, and the convolutional neural network method is introduced. On
the basis of LeNet5, AlexNet and other classic image recognition architectures,
considering the characteristics of acoustic variable density images, a personal-
ized convolutional neural network (CBQNet) for cementing quality evaluation
is designed, including 28 layers and more than 32 million learnable parameters.
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Using historical cementing quality evaluation samples to train and analyze the
performance of convolutional neural network, the results show that: CBQNet has
a training accuracy rate of 95.9% and a verification accuracy rate of 95.4% in
the first interface cementing quality evaluation. In the cementing quality evalu-
ation of the second interface, the training accuracy rate reached 90.8%, and the
verification accuracy rate reached 88.1%. It shows that the convolutional neural
network realizes efficient and accurate interpretation of cementing quality by min-
ing and learning the interpretation results of historical VDL data, and provides a
new method for cementing quality evaluation.

Keywords: Cement Bond Quality Evaluation - Convolutional Neural Network -
VDL Logging - Pattern Recognition

Nomenclature

ay Output of the kth sample;

C Cross-entropy loss function;

i,j Number of neurons;

j Total number of neurons of layer;
k Number of sample;

n Total number of samples;

relu;(x) ReLLU function,;
softmax;(x) Softmax function;

x Vector of parameters for each neuron in a neural network layer;
Xi, Xj Parameter for the ith and jth neurons;

y Label value;

Yk Label value of the kth sample

1 Introduction

Cementing is a key technology in the process of oil and gas field development, and
the quality of cement bond has a direct impact on the life and productivity of the well.
During the cementing process, it is difficult to ensure good cementing quality in the
entire well section due to the properties of the medium in the well, the cementing opera-
tion environment and various factors during the construction process [1-3]. Unqualified
cementing quality may lead to reduced well life and oil layer pollution. How to evalu-
ate the cementing quality reasonably, locate unqualified well sections in time, and give
reasonable remedial measures has become an important task of cementing.

Cementing quality evaluation is mainly based on the analysis of the cementation
of the two interfaces. Interface I is the cemented interface between the casing and the
cement sheath, and interface II is the cemented interface between the cement sheath
and the formation. No matter whether the cementation quality of the interface I or the
interface Il does not meet the standard, it is easy to cause downhole oil-water channeling,
and even destroy the regional geostress balance, resulting in casing damage [4-6].
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In the 1970s, acoustic variable density logging (VDL) technology was developed
for cement bond evaluation. The VDL logging tool adopts the single-send and double-
receive mode. The sound wave is emitted from the transmitter, and the sound wave passes
through various interfaces in the well and is finally received by the receiver. There are
two source distances for receivers. The 3ft source distance receiver is used to measure
the casing wave sound amplitude, which is used for the evaluation of the interface I.
The 5ft source distance receiver is used to measure the full wave of the sound wave,
and the acoustic variable density image is obtained after processing, which can reflect
the cement bonding of the interface I and interface II. VDL logging technology has
become more and more mature and has become the most widely used cementing quality
evaluation technology. However, at present, the data interpretation of VDL still needs
to rely on manpower, and the accuracy of interpretation results is restricted by human
factors, and the workload is heavy [7-9].

Big data and deep learning technology are causing a new round of technological
revolution. Breakthroughs have been made in many fields such as image recognition,
voice processing, and unmanned driving [10]. Petroleum companies are also actively
introducing artificial intelligence technology to promote intelligent transformation and
upgrading [11, 12]. At present, the oil field has accumulated a large number of practically
verified VDL interpretation results. It is of great research to sort out these historical data
and mine them with the help of deep learning technology, so that it can replace humans in
cementing quality interpretation. This has great research value and application potential.

In this study, we propose to apply convolutional neural network to the problem
of cementing quality evaluation. Firstly, a sample set of cementing quality evaluation
will be prepared based on the historical VDL data and the corresponding cementing
quality interpretation results. After that, a cement bond quality evaluation model will be
established based on convolutional neural network. The sample set will be mined and
learned, and the performance of the model will be analyzed.

The paper is structured as follows: Sect. 2 provides an description of the preparation
process for the cementing quality evaluation sample set. Section 3 discusses the design
concept and outcomes of the convolutional neural network architecture for cementing
quality evaluation. Section 4 presents the training process and performance analysis
results of the neural network for cementing quality evaluation. Finally, Sect. 5 concludes
the paper.

2 Preparation of Cement Bond Quality Evaluation Sample Set

2.1 VDL Logging Interpretation Image

VDL is a commonly used cementing quality detection method in the field. The principle
is to reflect the bonding quality between cement and casing, and between casing and
formation by using the large difference in acoustic impedance between cement and mud
(or water) on the attenuation of sound waves propagating along the axial direction of the
casing [2].

The VDL tool adopts the single-send and double-receive mode. The sound wave
is emitted from the transmitter, and the sound wave passes through various interfaces
in the well and is finally received by the receiver. There are two source distances for
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receivers. The 3ft source-distance receiver measures the sound amplitude of the casing
wave, which is used for the evaluation of the first interface of cementing. The receiver
with a source distance of 5ft is used to measure the full wave train of the sound wave, and
then the components and amplitude of the first arrival wave are extracted through data
processing, and the sound wave variable density map is obtained, which can reflect the
cement cementation of the interface I and interface II. There are black and white strips
on the acoustic variable density image, and the intensity of the signal is represented by
the color of the strips. In the acoustic variable density image, combined with geological
information and cementing slurry information, the cementing quality analysis can be
carried out according to the clarity of the full wave train strips [13].

Figure 1 illustrates a typical image of cementing quality interpretation results. The
figure presents six types of logging information, namely natural gamma ray logging
(GR), caliper logging (CAL), acoustic amplitude logging (AC), acoustic time difference
logging (CBL), magnetic positioning logging (CCL), and acoustic variable density log-
ging (VDL). Additionally, the image displays the cementing quality analysis results of
two interfaces, namely interface I and interface II, on the left side. The different tiles in
the image correspond to different cementing qualities, including five distinct interpreta-
tion results, namely good cementation, moderate cementation, poor cementation, mixed
mud zone, and mud zone.
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Fig. 1. A typical image of cementing quality interpretation results.
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2.2 Sample Set Preparation

Cementing quality interpretation result images from oil fields were collected. The entire
interpretation result image was segmented along the borehole direction with a width of
Im, results many independent images for each meter, each with a size of 1886 x 41
pixels.

Each meter of the interpretation result image was further cropped to intercept the
VDL image part, the interpretation result part of the interface I, and the interpretation
result part of the interface II. Specifically, the VDL image part was cropped to a size
of 511 x 41 pixels, while the interpretation result parts of the first and second interface
sections were cropped to sizes of 73 x 41 pixels each. An example of resulting images
is presented in Fig. 2.

Fig. 2. An example of resulting images cropped from an interpretation result image. (a) VDL
image part. (b) interface I interpretation result part. (c) interface II interpretation result part.

The VDL image in Fig. 2(a) is a black and white image that can be transformed into
a matrix of size 511 x 41, where each element in the matrix takes a value of either O
or 1. In this matrix, O represents a white pixel and 1 represents a black pixel. Similarly,
the images in Fig. 2(b) and Fig. 2(c) are black and white and represent the interpretation
results of the first and second interfaces. During the preparation of the sample set, the
interpretation results of the wellbore interfaces were transformed into vectors using the
one-hot encoding method, as shown in Table 1.

Table 1. Interpretation results and corresponding one-hot code.

Image of interpretation results  Description of interpretation results One-hot code
I- good cementation [10000]
IH' moderate cementation [01000]
poor cementation [00100]
mixed mud zone [00010]
mud zone [00001]




70 X. Wang et al.

The cement bond quality evaluation sample set was obtained by processing the
interpreted image for each meter of each well. A total of 3351 samples were prepared
in this study. Each sample contains an input image, and two labels representing the
cementing quality of the first interface and the second interface, respectively.

3 Architecture Design of Convolutional Neural Network
for Cementing Quality Evaluation

Given that the input for evaluating cement bond quality is the VDL image, a convolutional
neural network (CNN) with robust image feature learning and classification abilities was
chosen. CNN is the leading algorithm in computer vision research, especially in image
recognition, and has demonstrated a range of successful applications [14]. As a deep
learning algorithm, CNN is inspired by the visual cortex structure in animals that adap-
tively extracts spatial hierarchical information from images through layers of various
visual neurons. CNN typically includes three kinds of layers, namely, convolutional lay-
ers, pooling layers, and fully connected layers. The convolutional and pooling layers are
utilized for image feature extraction, where the former leverages different convolutional
kernels to scan the feature maps for extracting features from diverse perspectives, and
the latter reduces the dimensionality of the features. The fully connected layer maps the
extracted features to the final output.

For different problems, the number and logical relationship of convolutional layer,
pooling layer and fully connected layer are different, that is, the design of convolutional
neural network architecture is different. Due to the inexplicability of neural network
algorithms, the current neural network architecture design still lacks general standards
and specifications, and relies more on experience and trial and error. According to the
characteristics of the cementing quality evaluation problem, combined with the classic
network architectures such as LeNet-5, AlexNet, VGGNet, GoogleNet and ResNet in
the image recognition field [15], the architecture of the convolutional neural network
for cementing quality evaluation is designed and named as CBQNet. Its architecture
parameters are shown in Table 2.

The designed convolutional neural network, CBQNet, for evaluating the quality of
cementing contains a total of 28 layers, including 6 convolutional layers that all utilize
3 x 3 small convolutional kernels and 3 pooling layers that all use 2 x 2 maximum
pooling method. With the exception of the Softmax activation function used before
the classification output, all intermediate layers use the ReLU activation function. The
formulas of Softmax and ReL.U activation functions are:

softmaxi(x) = - (i=1,2,3,---,J)

J C:

Lo (1)

J=1

relu;(x) = max(0,e%) (i=1,2,3,---,J) 2)

The CBQNet has a total of over 32 million learnable parameters. To avoid issues
related to overfitting and lengthy training times, five dropout layers were added. Dur-
ing training, the dropout layers randomly select a certain proportion of neurons to stop



Table 2. Architecture parameters of CBQNet.
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Layer No. | Layer Type Settings Dimensions Learnable Parameters
1 Image Input 511 x 41 x 1
2 Conv2D Size:3 x 3 509 x 39 x 32 | Weights: 3 x 3 x 1 x
No.: 32 32
Stride: 1 x 1 Bias: 1 x 1 x 32
Activation Function: ReLU 509 x 39 x 32
4 Conv2D Size:3 x 3 507 x 37 x 32 | Weights: 3 x 3 x 1 x
No.: 32 32
Stride: 1 x 1 Bias: 1 x 1 x 32
Activation Function: ReLU 507 x 37 x 32
Pooling Type: Max Pooling | 254 x 19 x 32
Size: 2 x 2
Stride: 2 x 2
7 Dropout Ratio: 5% 254 x 19 x 32
Conv2D Size:3 x 3 252 x 17 x 64 | Weights: 3 x 3 x 32
No.: 64 X 64
Stride: 1 x 1 Bias: 1 x 1 x 64
9 Activation Function: ReLU 252 x 17 x 64
10 Conv2D Size:3 x 3 250 x 15 x 64 | Weights: 3 x 3 x 64
No.: 64 X 64
Stride: 1 x 1 Bias: 1 x 1 x 64
11 Activation Function: ReLU 250 x 15 x 64
12 Pooling Type: Max Pooling | 125 x 8 x 64
Size:2 x 2
Stride: 2 x 2
13 Dropout Ratio: 5% 125 x 8 x 64
14 Conv2D Size:3 x 3 123 x 6 x 128 | Weights: 3 x 3 x 64
No.: 128 x 128
Stride: 1 x 1 Bias: 1 x 1 x 128
15 Activation Function: ReLU 123 x 6 x 128
16 Conv2D Size: 3 x 3 121 x 4 x 128 | Weights: 3 x 3 x 128
No.: 128 x 128
Stride: 1 x 1 Bias: 1 x 1 x 128
17 Activation Function: ReLU 121 x 4 x 128
18 Pooling Type: Max Pooling | 61 x 2 x 128
Size: 2 x 2
Stride: 2 x 2
19 Dropout Ratio: 5% 61 x 2 x 128

(continued)
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Table 2. (continued)

Layer No. | Layer Type Settings Dimensions Learnable Parameters

20 Fully Connected | No.: 2 048 1 x1x2048 | Weights: 2048 x
15616
Bias: 2048 x 1

21 Activation Function: ReLU 1 x1x2048

22 Dropout Ratio: 5% 1 x1x2048

23 Fully Connected | No.: 512 1 x1x512 Weights: 512 x 2048
Bias: 512 x 1

24 Activation Function: ReLU 1x1x512

25 Dropout Ratio: 25% 1x1x512

26 Fully Connected | No.: 5 I x1x5 Weights: 5 x 512
Bias: 5 x 1

27 Activation Function: Softmax |1 x 1 x5

28 Output 1x1x5 28

participating in computations. This not only reduces computation time, but also trans-
forms a single large-scale model into a collection of relatively smaller models, which
effectively improves the model’s ability to generalize.

4 Neural Network Training and Performance Analysis

4.1 Training Parameter Setting

Neural network training is the process of finding the weights between the convolutional
kernels in the convolutional layers and the neurons in the fully connected layers, with
the aim of minimizing the difference between the calculated output of the output layer
and the true label given in the sample set. The selection and setting of the loss function
and optimizer play a critical role in neural network training. First, the data samples are
input into the neural network, then the current model performance is evaluated through
the forward propagation process and the loss function. Next, the optimizer updates the
weights of the learnable parameters in the neural network based on the size of the loss,
using the backward propagation process.

The loss function used for training CBQNet is the cross-entropy loss function, which
measures the distance between two probability distributions. Its expression is as follows:

1 n
==Y [y + (1 =y In(l - ap)] ®)
k=1
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In this study, the optimizer used is Adadelta, an improved and extended version
of the Adagrad algorithm. Compared with Adagrad, Adadelta no longer accumulates
all past gradients, but adjusts the learning rate based on the moving window updated
by the gradient, making it more robust. The main parameters for setting the Adadelta
algorithm include a learning rate of 1.0, a decay rate of 0.95 for the moving average of
gradient squares, a blur factor of 1 x 107, and a learning rate decay value of O after
each parameter update.

During the training process, 20% of the samples were randomly selected as the
validation set, and the remaining 80% of the samples were used as training data. The
total number of training epochs was set to 30, and 100 samples were fed into the neural
network for each training iteration. The training environment was set up using Keras and
TensorFlow. The workstation was equipped with an Intel Xeon E5-2673 v3 12C/24T
2.40 GHz processor and 64 G 2 400 MHz DDR4 ECC memory.

As each input image in the wellbore cementing quality evaluation sample set corre-
sponds to two labels, representing the cementing quality of the first and second interfaces,
respectively, two training processes are required during neural network training. The first
training process uses the cementing quality of the first interface as the output, resulting
in the CBQNet-1 neural network model for analyzing the quality of the first interface.
The second training process uses the cementing quality of the second interface as the
output, resulting in the CBQNet-2 neural network model for analyzing the quality of the
second interface.

4.2 Performance Analysis

The accuracy and loss of CBQNet-1 during training are shown in Fig. 3 and Fig. 4. It can
be seen from Fig. 3 that after the first training epoch, the model’s training accuracy and
validation accuracy were 78.5% and 84.2%, respectively, with a significant gap between
them, indicating that the training was not sufficient. With the increase of training epochs,
the training accuracy of the model showed a stable upward trend, with a fast-then-slow
increase rate, and the training accuracy had exceeded 99% after 20 epochs. The upward
trend of validation accuracy was consistent with that of training accuracy before the
12th epoch, and then validation accuracy showed some fluctuations without significant
improvement. After 12 epochs of training, the training accuracy and validation accuracy
of the model were 95.9% and 95.4%, respectively. Although further training could still
improve the training accuracy, the validation accuracy no longer improved significantly,
and the gap between the two began to increase, indicating that further training would
lead the model to overfitting. From Fig. 4 we can see that the trend of the training loss
and validation loss during training was basically the same as that of the accuracy, further
indicating that the ideal effect could be achieved after 12 epochs of training.

The accuracy and loss of CBQNet-2 during training are shown in Fig. 5 and Fig. 6.
It can be observed from Fig. 5 that after the completion of the first epoch, the model’s
training accuracy and validation accuracy were 40.3% and 46.7%, respectively, which
were relatively low, indicating that a single round of training was insufficient for the
neural network to fully grasp the rules between sample inputs and outputs. Similar to
CBQNet-1, the model’s training accuracy increased rapidly at first and then slowed
down as the number of training epochs increased. After 20 epochs, the training accuracy
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Fig. 4. The loss of CBQNet-1 during training.

exceeded 99%. The trend of the validation accuracy was consistent with that of the
training accuracy before the 12th epoch. However, the validation accuracy showed a
certain degree of fluctuation thereafter, with no significant improvement. After 12 epochs
of training, the model’s training accuracy and validation accuracy were 90.8% and 88.1%,
respectively. From Fig. 6 we can see that the trend of the model’s training loss and
validation loss with respect to the number of training epochs was similar to the trend
of the accuracy, which further indicates that the desired effect can be achieved after 12
epochs of training.

Overall, the accuracy of CBQNet-2 is lower than that of CBQNet-1, indicating that
the analysis of the second interface bonding quality is more difficult than the analysis of
the first interface bonding quality, which is consistent with the traditional understanding
of manual analysis.
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Fig. 6. The loss of CBQNet-2 during training.

The training time of CBQNet-1 and CBQNet-2 is shown in Fig. 7. From the figure, it
can be observed that the training time of the two neural networks follows a similar trend.
When the number of training epochs is small, the fluctuation in training time is stronger.
However, with the increase in the number of training epochs, the training time of each
epoch becomes more stable. The average training time per epoch is 188 s, indicating
that the model’s training efficiency is relatively high. If more samples are added in the
future, it is possible to complete the training of a new model in a relatively short time.

Overall, the trained CBQNet-1 and CBQNet-2 can achieve high accuracy and auto-
mated analysis of the first and second interface cementing quality. They can save a lot
of time spent on manual analysis, freeing petroleum engineers from simple and com-
plicated work and allowing them to devote more energy to higher-level intelligent tasks
such as operation management and anomaly handling.
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5 Conclusion

A batch of historical cementing interpretation result images of oilfields were collected,
and the images were standardized to establish a cement bond quality evaluation sample
set. The sample set contains a total of 3351 samples, and each sample contains two labels
of the cementing quality of the first interface and the second interface.

Combined with the characteristics of the cementing quality evaluation problem, the
convolutional neural network was selected to carry out the personalized design of the
network architecture, and a CBQNet with 28 layers and more than 32 million learnable
parameters was constructed. After setting reasonable learning parameters, the CBQNet
was trained with the ementing quality evaluation sample set, resulting in two models:
CBQNet-1 for the cementing quality evaluation of the first interface and CBQNet-2 for
the cementing quality evaluation of the second interface, with validation accuracy rates
of 95.4% and 88.1%, respectively.

Future work will focus on expanding the cementing quality evaluation sample set,
addressing the problem of uneven sample distribution, introducing more evaluation
indicators, and further improving model accuracy.
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Abstract. China is rich in tight oil resources, with a wide distribution range and
a large amount of resources, making it one of the key areas for strategic replace-
ment of future oil reserves and production. In response to issues such as strong
heterogeneity of terrestrial tight oil reservoirs, difficulty in drilling high-quality oil
layers, large production differences, and unclear main control factors for produc-
tion capacity, a detailed analysis of dynamic and static data of production wells
was conducted to analyze production performance and decline patterns. Produc-
tion wells were classified according to production characteristics, and development
indicators at different stages were statistically analyzed based on actual production
days. Using a combination of principal component analysis and Pearson corre-
lation coefficient, based on multiple dynamic and static data such as geological
factors, fracturing factors, and development factors, and analyzing the correlation
between different single and combined factors and cumulative oil production at
different stages, the main control factors for different production stages of tight
oil were obtained. A production capacity prediction model for tight oil fracturing
horizontal wells was established based on machine learning intelligent algorithms,
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A production capacity evaluation and prediction technology for tight oil fracturing
horizontal wells has been developed. By comparing with actual production data,
the accuracy of the predicted results can meet production needs, providing a strong
technical foundation for precise prediction and guidance of tight oil production in
China.

Keywords: Tight oil - Production forecast - Data analysis - Analysis of main
control factors - Intelligent algorithms

1 Introduction

Rich tight oil resources have been discovered in terrestrial sedimentary reservoirs of
multiple basins in China, with a total resource volume exceeding 11 billion tons, mak-
ing tight oil a major development replacement field and a new strategic growth point for
crude oil production in China. Compared with North American marine tight oil, Chinese
terrestrial tight oil has the characteristics of “multiple types, low porosity, low fluidity,
and relatively poor oil properties”. The geological conditions of terrestrial tight oil in
China are complex, with multiple types and complex resource composition. The distri-
bution of sand bodies is scattered, the vertical and horizontal continuity of reservoirs is
poor, the reservoirs are dense and heterogeneous, and there are significant differences
in single well drilling rates. The source reservoir relationship is mainly dominated by
the intra source type, accounting for approximately 77.7%, the sub source type account-
ing for 18.2%, and the above source type accounting for 4.1%. The lithology is mainly
composed of sandstone, accounting for about 69%, carbonate rock accounting for about
29.8%, and sedimentary volcanic rock accounting for about 1.3%. The pressure coeffi-
cient is mainly high pressure, 64.8% of which is >1.2, 29.3% of which is 0.8-1.2, and
22% of which is <0.8. The physical properties of crude oil are mainly low viscosity
crude oil, with 41.2% having a viscosity of <2 mPa.s, 31.7% having a viscosity of 2—10
mPa.s, and 27.1% having a viscosity of >10 mPa.s.

Through the analysis of development effectiveness, domestic tight oil development
currently faces two challenges in terms of production and efficiency: firstly, the large
difference in single well production capacity, rapid decline, and low EUR of tight oil,
which poses challenges to the effective utilization of tight oil. The second is the high cost
and poor efficiency of using horizontal wells and volume fracturing for development.
In the current context of low oil prices, how to reduce costs and improve development
efficiency faces serious challenges. Through research, it has been found that the strong
heterogeneity of the physical properties and oil-bearing properties of tight oil reservoirs
is the fundamental reason for the significant productivity differences in horizontal wells.
The significant difference in the effectiveness of tight oil fracturing is an important factor
affecting production capacity. The production of tight oil in a single well depends on
the production of each fracturing section, which is mainly controlled by the oil-bearing,
physical properties, fluid properties, and fracturing effect of the reservoir; The organic
matching of high-quality reservoir drilling rate and effective fracturing interval number
is the main controlling factor for single well productivity. The strong heterogeneity of
the reservoir is an important factor affecting the drilling rate. The low drilling rate and
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low saturation of movable fluids in Class I high-quality reservoirs are the fundamental
reasons for the failure to achieve the expected production of horizontal wells.

In order to effectively predict the decline law of tight oil production, analytical
and numerical calculation methods are currently mainly used. Among them, analytical
calculation methods mainly include Arps decline curve method, typical decline curve
chart method, relative permeability curve method, etc. Numerical calculation methods
mainly refer to reservoir numerical simulation methods. However, each of these two
methods has its advantages and disadvantages: the analytical calculation method has a
fast calculation speed and can quickly provide a rough curve trend pattern. However, the
decline pattern of tight oil is complex, and a single decline pattern formula is difficult to
describe the overall decline process, and the calculation accuracy is not very accurate.
However, the reservoir numerical simulation method can accurately calculate numerical
solutions, but generally takes a long time and has high calculation costs.

With the gradual rise of artificial intelligence technology and the significant improve-
ment of computer computing power, artificial intelligence prediction technology has
emerged. From the perspective of big data analysis, this technology considers more
influencing factors and is more comprehensive compared to traditional analytical meth-
ods. At the same time, compared to reservoir numerical simulation methods, it does not
require global direct numerical simulation of the flow field values at each time step,
greatly improving the calculation speed. Hamid Rahmanifard [1] made a detailed com-
parative analysis of the performance of ML algorithms and statistical methods, and then
used two statistical methods (exponential smoothing and seasonal autoregressive com-
prehensive moving average) to make a comparative study of six kinds of modern ML
networks, including multilayer perceptron (MLP), long short-term memory (LSTM),
bidirectional LSTM (BiLSTM), convolutional neural network (CNN), long-term recur-
sive convolutional network (LRCN) and gated recursive unit (GRU). In order to deter-
mine the relationship between static and dynamic data of some development units in the
oilfield and the decline rate of oil production, Zhang Yan [2] used data-driven methods to
identify the correlation between post fracturing production and production influencing
factors by analyzing the geological properties and fracturing construction parameters of
tight sandstone in Changqing Oilfield. Elastic networks, decision tree regression, support
vector regression have been used to establish prediction models from reservoir proper-
ties and fracturing construction parameters to production. Liang Tao [3] established an
initial cumulative oil production mixing model for Multi Fractured Horizontal Wells
(MFHWs) that considers both geological and volumetric fracturing factors. Based on
big data, a multi-level evaluation system has been established using Analytic Hierarchy
Process. Calculate the weighting factor to reveal the key factors affecting the productivity
of MFHW . Using fuzzy logic method to calculate Euclidean distance and quantitatively
predict the production of any horizontal well. Zainab Al Ali Hussain Al Ali [4] used
two deep learning models, namely, Long short-term memory (LSTM) and N-BEATS,
to predict the oil recovery data of two wells in Norway’s Norne Oilfield. The use of pre-
trained N-BEATS models overcomes the shortcomings of LSTM models that previously
required feature selection and rich training history, and the performance of N-BEATS
meta learning methods is superior to LSTM models. The LSTM neural network model
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has been used multiple times to predict the trend of monthly oil production and water
content in high water cut old oilfield blocks [5—11].

The eXtreme Gradient Boosting (XGBoost) algorithm is a scalable distributed gradi-
ent boosting decision tree (GBDT) machine learning library. XGBoost provides parallel
tree enhancement function and is an advanced machine learning library for regression,
classification, and ranking problems. XGBoost was initially initiated as a research project
by Tianqgi Chen as part of the Distributed (Deep) Machine Learning Community (DMLC)
group. Itis an optimized distributed gradient enhancement library designed for efficiency,
flexibility, and portability. XGBoost is a tool for large-scale parallel boosting trees, which
is more than 10 times faster than common toolkits. In terms of large-scale data in the
industry, the distributed version of XGBoost has extensive portability, supporting run-
ning on various distributed environments such as Kubernetes, Hadoop, SGE, MPI, Dask,
etc., making it a good solution to the problem of large-scale data in the industry.

This paper adopts the XGBoost algorithm to establish a corresponding single well
production decline prediction model based on the characteristics of tight oil reservoirs
in China. Through practical application in a tight oil field in China, the superiority
and correctness of this method in predicting single well production capacity have been
confirmed, meeting the urgent needs of oilfield dynamic analysis, development planning,
and decision-making.

2 Analysis of the Declining Law of Tight Oil Production

Although the overall changes in production characteristics of horizontal wells in each
block are consistent, there are certain differences in the changes in daily liquid produc-
tion, daily oil production, water content, production casing pressure, and other char-
acteristics of each horizontal well based on the analysis of single well development
performance data. Through literature research, it was found that most tight oil reservoirs
are analyzed for production characteristics based on the variation of daily oil production
with mining time. Therefore, this article will classify and analyze the production and
mining characteristics of horizontal wells in the study area based on the variation of
daily oil production. According to the curve characteristics of the daily oil production
of a single well changing with mining time, the production and mining characteristics
of horizontal wells can be divided into four categories:

2.1 Type 1: Rapid Increase in Initial Production and Short Stable Production
Period

The overall performance is that the daily oil production capacity of horizontal wells
continues to increase in the initial stage of production, and reaches the highest daily
oil production level (10t—15t) within about 10 months. However, the stable production
period is relatively short, and after 1 year of production, the daily oil production begins
to decrease. After 2 and a half years, the daily oil production of a single well decreases to
about 5t; The change in daily liquid production is similar to that of daily oil production;
The water cut changes in the opposite direction and fluctuates within the range of 80% to
100%. The fracture network formed by horizontal well fracturing is the reason for high
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production in the initial stage of production, and the high production period is generally
maintained between the second month and the sixth month, after which it enters the
decreasing stage. The typical production curve is shown in Fig. 1(a).
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Fig. 1. Curve of Daily Oil Production of a Single Well Changing with Production Time.

2.2 Type 2: High Initial Production and Rapid Decline in Later Stages

The overall performance is that the horizontal well has a high daily oil production
capacity in the early stage of production, but the stable production period is extremely
short. Generally, the daily oil production level starts to decrease within one month,
and the daily oil production in the first three months drops to about 50% of the initial
production, with a very fast decline rate. Generally, the daily oil production of the well
drops to below 5t within 2-3 years of production. The changes in daily liquid production
and production casing pressure of horizontal wells are similar to daily oil production.
The typical production curve is shown in Fig. 1(b).
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2.3 Type 3: The Fluctuation of Production is Large and Showing Multiple
“Peaks”

The performance is that the daily oil production capacity of horizontal wells gradually
increases in the initial stage of production, but the stable production period is short.
During the production time, the daily oil production continuously fluctuates up and
down. Overall, the daily oil production level is the strongest in the initial stage, and
the daily production in the later stage shows a downward trend fluctuation. Generally,
the daily production of wells decreases to below 5t after 4-5 years of production. The
typical production curve is shown in Fig. 1(c).

2.4 Type 4: No Significant Fluctuations in Production and Maintaining Stable
Production

The performance is that the daily oil production capacity of horizontal wells gradually
increases in the initial stage of production, reaching its maximum in about 3 months,
and the daily oil production is relatively stable throughout the entire production period,
maintaining between 5-10t/d; The changes in water content and daily liquid production
are similar to the daily oil production. The maximum daily oil production of this type
of horizontal well is within the range of 5-10t/d, which is at a moderate level. At the
same time, the production time is relatively short, mostly within two years. The daily
production is still in a stable period, so there is no significant fluctuation and stable
production has been maintained. The typical production curve is shown in Fig. 1(d).

3 Introduction of XGBoost Algorithm

XGBoost, as one of the Boosting algorithms, is a lifting tree model that integrates many
tree models. By adding a regular term to the loss function, the complexity of the model
is controlled to prevent overfitting. It can achieve parallel processing, which has greatly
improved the speed compared to GBDT. XGBoost is essentially k decision trees (k is
a positive integer), and the output of the regression tree is a real number (continuous
variable). Boosting method is to combine multiple weak learners to give the final learning
results, and take the output results of each weak learner as continuous values. The purpose
of this is to accumulate the results of each weak learner, and better use the loss function
to optimize the model.

Let f(x;) is the output result of the t-round weak learner, y;” it is the output result
of the model, y; it is the actual output result, and the expression is as follows:

NO

3O =3" e =30+ (M

The objective function, that is, the loss function, builds the optimal model by min-
imizing the loss function. The loss function should add a regular term representing the
complexity of the model, and the model corresponding to XGBoost contains multiple
CART trees. Therefore, the objective function of the model is:

obj(®) = Y Ly 3") + 2, @frt o] @
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The above formula is the regularization loss function. The first part on the right side
of the equation is the training error of the model, and the second part is the regularization
term. The regularization term here is the sum of the regularization terms of k trees. The
specific form is:

1
2t )| = yT + Shwl? )

where: T is the number of leaf nodes, ||w|| is the modulus of the leaf node vector, y it
indicates the difficulty of node segmentation, indicates L2 regularization coefficient.

According to the expansion rule of the second derivative of the Taylor formula, the
training error is further deduced and expanded to obtain:

T 1
obj ()" = Zj:l |:Gjo + E(Hj + k)wj{| +yT )

where: G; represents the sum of the first derivative of all input samples mapped as leaf
node j, H; represents the sum of second derivative of all input samples mapped to leaf
node j.

In summary, we have introduced the main algorithms of XGBoost, which lays a
theoretical foundation for subsequent prediction applications.

4 Workflow

For the prediction of well production in tight oil fields, first of all, data collection and pre-
processing should be carried out, including the static and dynamic data of the reservoir,
and the corresponding sample database should be established. Then, closely combining
with the field data of the oilfield, and making full use of geological, engineering and
development data, based on the production performance analysis and production decline
law analysis in the study area, Identify the relevant influencing factors that affect the
production capacity of horizontal wells for volume fracturing in tight oil reservoirs, cal-
culate the partial correlation coefficient between the two factors, screen out independent
influencing factors, and conduct single factor and multiple combination factor analysis
from three aspects: geological parameters, engineering parameters, and development fac-
tors. Through Principal Component Analysis (PCA) & Pearson Correlation Coefficient
Analysis method (PCCA) methods, comprehensively analyze multiple/single factors to
screen out the main controlling factors for production capacity; Establish a prediction
model based on XGBoost, which requires training and tuning the model to ultimately
form the optimal XGBoost tight oil field well production prediction model. The specific
process is shown in Fig. 2.
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Fig. 2. Technical workflow.

4.1 Data Collection and Preprocessing

Collection and Organization of Data. The production of a single well in a tight oil field
is influenced by various factors, mainly including reservoir parameter data, fracturing
engineering parameter data, and development and production parameter data. In terms
of reservoir parameter data, it also includes block basic data, drilling data, horizontal
section logging display data, horizontal section drilling rate data, horizontal section
reservoir evaluation data, geological reserve parameter data, etc. The specific relevant
parameters are shown in Table 1.
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Table 1. Collected dynamic and static parameters.

Data classification

Related parameters

Reservoir parameter data

Block basic data

a)

Block, well number, horizon,
sublayer, reference well,
interpretation layer, effective
thickness of each sublayer,
designed production capacity,
designed well depth, and
designed horizontal section
length

Drilling data

b

=~

First drilling time, completion
time, year of production,
completion method, cycle,
well depth, artificial bottom
hole, oblique depth of point A
during actual drilling, vertical
depth of point A during actual
drilling, length of horizontal
section, length of horizontal
section used

Horizontal logging display data

The length of sandstone
encountered in horizontal
section logging, the length of
oil layer encountered in
horizontal section logging, the
drilling rate of sandstone
encountered in horizontal
section logging, the drilling
rate of oil layer encountered
in horizontal section logging,
the oil immersion length of
horizontal section logging, the
length of oil spot in horizontal
section logging, the length of
oil stains in horizontal section
logging, the fluorescence
length of horizontal section
logging, and the total length
of horizontal section logging

(continued)
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Data classification

Related parameters

Horizontal logging drilling rate
data

d) The length of sandstone
encountered during horizontal
logging, the length of oil layer
encountered during horizontal
logging, the drilling rate of
sand-stone encountered
during horizontal logging, and
the drilling rate of oil layer
encountered during horizontal

logging

Horizontal reservoir evaluation
data

Horizontal Section I Reservoir
Length, Horizontal Section II
Reservoir Length, Horizontal
Section III Reservoir Length,
Horizontal Section IV
Reservoir Length, Horizontal
Well Classification Evaluation
Category, Horizontal Well
Classification Evaluation
Index

~

€

Geological reserve parameter
data

f) Production thickness, fracture
length, porosity, average
saturation, density, volume
coefficient, controlled
reserves, production reserves

Fracturing engineering parameter data

~

Fracturing completion
structure, number of
fracturing segments, number
of fracturing clusters, average
interval spacing, average
cluster spacing, total
fracturing fluid volume, total
fracturing sand volume, fluid
intensity, sand intensity,
single stage fluid volume,
single stage sand volume,
fracturing completion time,
soaking time after fracturing,
single cluster fluid volume,
single cluster sand volume

g

(continued)
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Table 1. (continued)

Data classification Related parameters

Develop production parameter data h) Block, well number, well
pattern type, production time,
oil production method, pump
diameter, oil pressure, casing
pressure, dynamic liquid
level, production days,
cumulative production days,
monthly oil production,
monthly water production,
verification of monthly oil
production, verification of
monthly water production,
verification of cumulative oil
production, verification of
cumulative liquid production,
number of wells opened, daily
liquid production capacity,
daily oil production capacity,
water content, verification of
daily liquid production
capacity, verification of daily
oil production capacity, depth
of middle oil layer, flow
pressure, storage and
production coefficient Return
rate, deficit, recovery degree,
upward pumping time, and
number of months of
self-production

In addition to the single factor mentioned above, in order to highlight the impact
of different factors and have a greater correlation with production capacity, the follow-
ing multiple factors have been added according to the needs of the research problem,
including:

Among them, the effective length of the horizontal well L.y, is

Lep = ayLoi + a2Losp + a3Lost+a4Lf )
And the oil-bearing S, is
Lep

Sob = (6)
¢ Loi + Losp + Lot + Lf

where: L,; stands for the length of oil immersion, m; L, stands for the length of il spot,
m; Los stands for the length of oil stains, m; Ly stands for the length of fluorescence, m;
ai,i =1, 2,3, 4 stands for the weight.
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Table 2. Added multiple factor parameters.

Data classification Related parameters

Reservoir parameter multiple data a) Oil-bearing

b) Effective length of horizontal well

¢) Permeability x Thickness used

d) Permeability x Thickness used x Effective
length of horizontal well

e) Utilized reserves x Permeability

f) Utilized reserves x Permeability/Viscosity

g) Oil-bearing x Production reserves x
Permeability/Viscosity

h) Reservoir quality x Oil-bearing x Produced
reserves x Permeability/Viscosity

Multiple data of fracturing engineering | a) Liquid strength x Sand strength

b) Liquid strength x Sand strength x Number of
segments

¢) Liquid strength x Sand strength x Number of
segments x Effective length of horizontal well

d) The amount of liquid added in single stage x
Effective length of horizontal well

e) The amount of sand added in single stage x
Effective length of horizontal well

Note: Liquid strength equals to the amount of total liquid/Utilized reserves. Sand strength equals
to the amount of total sand/Utilized reserves

Data Preprocessing. For different types of data in tight oil well areas, data cleaning is
carried out based on their data volume, data type, data quality, etc., eliminating duplicate
well information, completing missing data, data integration, data transformation, and
other processes, and corresponding preprocessing is carried out for each data item.

(1) Correction of flowback period data: After fracturing construction, the production
during the flowback period is very low, which is not a normal industrial oil flow.
Therefore, it is necessary to remove the time period of the flowback period and the
oil production below a certain amount. The specific quantitative values vary from
different oilfields;

(2) Reorganize production data based on differences: Due to the cleaning of flowback
period data and time periods, it is necessary to recalculate the cumulative oil produc-
tion, cumulative liquid production, and water content for different production time
periods;

(3) Removal of abnormal well data: Based on expert experience and data analysis, iden-
tify wells with abnormally high or low production by drawing charts, and eliminate
them according to specific circumstances;

(4) Pre processing of specific data tables:

(a) Reservoir static data: porosity, formation pressure, and other data, with fixed
values for each block. Based on the collected data, these types of data are
supplemented in the data table.
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(b) Developing dynamic data: Dynamic data such as extraction degree and dynamic
liquid level vary, varies with production time, and need to be recalculated and
organized based on expert experience and specific formulas.

(c) The combination of dynamic and static data: Through difference calculation, the
production dynamic data has been reorganized and calculated. Merge the newly
generated development dynamic data into a static data table according to the
well name.

4.2 Data Correlation Analysis

After sorting out the influencing factors of production capacity and preprocessing the
data, it is necessary to conduct correlation analysis between the influencing factors and
production capacity, and screen out the main controlling factors of production capacity.
This article adopts a combination of principal component analysis (PCA) and Pearson
correlation coefficient, the method of combining PCA and Pearson is adopted.

Principal Component Analysis (PCA). The principal component analysis method is
to transform multiple existing indicators into a few well representative comprehensive
indicators, which can reflect most of the information of the original indicators and main-
tain independence between each indicator to avoid overlapping information. Principal
component analysis mainly plays a role in reducing dimensionality and simplifying data
structures.

(a) Standardize indicator data, collect p-dimensional random vectors X, n samples,
T .
XlZ{XllaX127'-’le} 7(l=1723"-7n) (7)

Construct a sample matrix and perform standardized transformation on the
sample matrix;

Zj="""T (i=12,....mj=12,....p) ®)

(b) Calculate correlation coefficient matrix based on standardized matrix;

7Tz
n—1

R = [rij]pxp = 9
(c) Solve the characteristic equation of the sample correlation matrix R, obtain p
characteristic roots, and determine the principal components;

Uj=zb.(G=12....m (10)

(d) Convert the standardized indicator variables into main components;

(e) Perform a comprehensive evaluation of m principal components, sum them with
weights, and obtain the final evaluation value. The weight is the variance contribution
rate of each principal component.
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Pearson Correlation Coefficient Analysis Method (PCCA). Pearson correlation
coefficient analysis is a method used to measure the degree of correlation between two
variables X and Y, with values between — 1 and + 1. Defined as the quotient of covariance

and standard deviation between two variables.

i (Xi - X)(¥i —Y)

Px,y =

\/Z?zl (Xi - ?ﬂz\/ﬂll (Y, = 7)’

(1)

By using the above method, the correlation coefficients between the factors in
Tables 1 and 2 and the cumulative oil production at different stages were obtained,

as shown in Table 3.

Table 3. Correlation analysis results of various factors and oil production.

Influence factor

Correlation coefficient (Weight)

Effective length of horizontal section 0.304
Oil-bearing 0.212
Thickness used 0.152
Controlled reserves 0.152
Permeability x Thickness used 0.05

Controlled reserves x Permeability/Viscosity 0.05

Permeability x Thickness used /Viscosity 0.015
Number of fracturing segments 0.222
The amount of sand added in single cluster 0.14

Liquid strength 0.098
The amount of liquid added in single stage 0.091
Storage and production correlation coefficient 0.08

The amount of sand added in single cluster 0.079
Post-pressure soaking time 0.07

Total amount of sand added 0.05

Production pressure difference 0.048
Return rate before oil breakthrough 0.035
Sanding strength 0.023
Liquid strength x Sand strength 0.017
Number of fracturing clusters 0.017

(continued)
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Table 3. (continued)

Influence factor Correlation coefficient (Weight)
Bottom hole pressure 0.012

The amount of sand added in single stage 0.01

Total amount of liquid added 0.005

Water displacement before oil exposure 0.002

4.3 Selecting Main Controlling Factors for Tight Oil Production

Through the above data analysis and combined with expert experience, the following
parameters were ultimately selected as the main control factors (Table 4):

Table 4. Results of main control factors for tight oil production.

Classification Main control factors
Main control factors for geology a) Effective length of horizontal
section

b) Oil-bearing

¢) Thickness used

d) Controlled reserves x
Permeability/Viscosity

Main control factors for fracturing and development | e) Number of fracturing segments

f) The amount of sand added in single
cluster

g) Liquid strength

h) The amount of liquid added in
single stage

i) The amount of liquid added in single
cluster

j) Total amount of sand added

k) Production pressure difference

4.4 Constructing a Typical Well Production Sample Library

Combining professional knowledge and expert experience, based on correlation analysis
results and combined with cumulative production data from different stages, a sample
library reflecting the changes in single well production was established. Through the
sample library, expert experience was reflected.
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4.5 Establishing a Multi Parameter Prediction Model for Well Production

Model Construction. Due to the fact that this article only involves three blocks of an
oil field with a small sample size, it belongs to the small sample problem. Therefore, in
the design of the prediction model, the concept of cyclic input is considered, which is to
establish production prediction models according to different stages. When predicting
the current stage of production, the cumulative output value of the previous production
stage is input, as follows (Table 5):

Table 5. Prediction model input and output values.

No. Input values Output value
1 Main control factors o1

2 Main control factors, Q1 03

3 Main control factors, Q;, O3 Oe

4 Main control factors, Q1, 03, Q¢ Q9

5 Main control factors, 03, Qg, Qg 012

6 Main control factors, Qg, Q9, Q12 013

7 Main control factors, Qg, Q12, Q18 0

8 Main control factors, Q12, Q18, Ooa 036

9 Main control factors, Q18, @24, Q36 Qa3

Note: Q; stands for the accumulated oil production until the i month.

As shown in the above table, this article adopts the concept of “equal dimensional
replenishment”, which refers to the dimension of input data. Except for the initial three
stages as the initiation stage, all other stages use fixed four dimensional data input,
always using the latest stage production data as the input of the model, and establishing
a mapping relationship with the accumulated oil production in the next stage.

Model Training. Configure algorithm parameters and conduct model training.

(1) Max_depth: The maximum depth of each tree. When establishing each tree, achiev-
ing the expected accuracy or maximum depth will proceed to the next tree model
construction. The default value is 6.

(2) Learning rate: learning rate is one of the most important hyperparameter. After
each new tree model is established, the prediction results of the new model are
given based on the previous prediction results and the interaction between the leaf
output and the learning rate calculated this time. For different problems, the ideal
learning rate will fluctuate between 0.05 and 0.3.

(3) Booster model: There are two models to choose: gbtree and gblinear. Gbtree uses
a tree based model for lifting calculations, while gblinear uses a linear model for
lifting calculations. The default is gbtree.

(4) Gamma: The minimum “loss reduction” required for further splitting at leaf nodes,
with a default of 0.
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(5) Min_child_weight: It can be understood as the minimum number of samples for
leaf nodes, with a default of 1.

(6) Subsample: The sampling ratio of the training set. Before fitting a tree, this sampling
step will be performed, with a value range of (0, 1]. The default is 1.

(7) Colsample_bytree: Before fitting a tree each time, determine how many features to
use, with a value range of [0, 1], and the default value is 1.

(8) Reg_alpha: Tuning of regularization parameters. The alpha parameter can reduce
the complexity of the model, thereby improving its performance.

(9) Reg_lambda: Tuning regularization parameters. Lambda parameters can reduce
the complexity of the model and improve its performance.

(10) Random_State: Random seed, 0 by default.

Model Evaluation. Based on parameters such as the error and root mean square error
between the predicted and actual data of the model, model optimization is carried out
to provide the optimal model for predicting single well oil production. The calculation
method for model accuracy is:

(1) Calculate the data of individual well oil production over time for each well sample
in the test set;

(2) Calculate the average absolute percentage error between all predicted data points
and actual data points, which is the model prediction accuracy.

During the calculation process, the following error calculations were used [12-18].
Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE):

1
MAE = ;Z; A (10)
MAPE = Z 'yl il (11)

Coefficient Determination (R?):

S i — )2
S (i =)

R*=1- (12)

4.6 Using Optimal Intelligent Models for Indicator Prediction

In response to the problem of predicting single well oil production, the optimized and
trained XGBoost prediction model for single well oil production was used to carry out
prediction work, obtaining future trends of single well oil production that can be used to
guide actual production and conform to production laws. This plays a positive guiding
role in production operation scheduling and adjustment of work systems.
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5 Calculation Results and Analysis

5.1 Overview of FY Oilfield Work Area

The FY oil layer is the earliest discovered, most abundant, and widely distributed oil layer
in the southern part of the SL Basin. The FY oil layer is distributed in the CL depression,
HG terrace, and western region of the FX uplift zone in the central depression area. FY
oilfield includes three blocks: Q block, R1 block, and R2 block.

5.2 Establishing a Multi Parameter Intelligent Prediction Model for Single Well
Indicators

Model Construction. The XGBoost model for predicting single well oil production in
tight oil fields was constructed using the XGBoost model introduced in the previous
section. Establish models for different production stages.

Model Training. According to the basic content of the model training parameters men-
tioned in the previous section, parameter tuning tests were conducted with the accuracy
of the test set as the evaluation label. There are a total of 84 wells in the sample set,
with a ratio of 8:2 for training + validation sets, and testing set. This means that there
are a total of 67 wells in the training + validation set, and 17 wells in the testing set.
Compared through testing, max_depth is 15, learning rate is 0.1, boost model is gbtree,
gamma is 0, min_child_weight is 1, subsample is 1, colsample_bytree is 1, reg_alpha is
0, reg_lambda is 1, random_state is 0.

Model Evaluation. The prediction model is constructed based on different sample
types, and the final 12 to 48 months prediction model R? has an average accuracy of
86%, an average MAPE value of 13%, and an average MAE value of 351t.

5.3 Model Prediction Results and Analysis Discussion

Based on the optimal oil production prediction model in this article, relevant prediction
work was carried out for 17 wells in three blocks of FY Qilfield. The comparison between
the predicted results and actual production data of four wells is listed below, as shown
in Figs. 3 and 4.

Figure 3 shows the predicted results of cumulative oil production at different produc-
tion stages of wells WQ1 and WQ2. It can be seen that at the beginning of production,
the predicted results are in good agreement with the actual production curve. During the
production period of 20 to 48 months, the predicted values were slightly higher than the
actual production data. The predicted value of WQ2 well in the mid-term production
stage is slightly lower than the actual production data, and then the predicted value and
production value continue to increase by the same magnitude.

Figure 4 shows the results of cumulative oil production predictions for WQ3 and
WQ4 wells at different production stages. It can be seen that the predicted value of WQ3
well is generally lower than the actual production value, but the difference is relatively
small. However, in the early stage of production, the predicted value of WQ4 well
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Fig. 3. Comparison between the predicted and real cumulative oil production with wells WQ1
and WQ2.
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Fig. 4. Comparison between the predicted and real cumulative oil production with wells WQ3
and WQ4.

increases alternately with the actual production data, and remains basically consistent
after 25 months of production.

From the comparison between the predicted results in Figs. 3 and 4 and the actual
production curve trend, as well as the model error evaluation results, it can be seen
that the prediction accuracy of the model in this paper is relatively high in predicting
the cumulative oil production over 48 months. This indicates that the prediction model
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established through a series of methods and techniques introduced in this article is more
effective in predicting the cumulative production of a single well, thus achieving multi-
dimensional tight oil single well production prediction, This provides a strong technical
foundation for precise prediction and reasonable optimization of tight oil production in
China.

6 Conclusion

Based on the XGBoost model, a typical tight oil well production sample library was con-
structed through data collection, organization, and preprocessing. Correlation analysis
of influencing factors was conducted, and a multi-parameter intelligent prediction model
for single well oil production indicators was established. The development indicators
were predicted, and the conclusion is as follows:

(1) Established a complete and effective method for predicting development indicators
of tight oil fields based on XGBoost model;

(2) The XGBoost cumulative oil production prediction model established is suitable for
predicting the trend of cumulative oil production in tight oil fields, and the established
model has a high accuracy in predicting single well production;

(3) The methods and techniques introduced in this article are not only limited to tight
oil fields, but can also be applied to the production prediction of unconventional oil
and gas fields.

In summary, the artificial intelligence model established in this article has achieved
multi-dimensional prediction of single well tight oil production, improved the dynamic
management level of oil well production, improved the accuracy of single well measure
decision-making, and improved the ultimate oil recovery rate and production efficiency
of the oilfield. This provides a strong technical foundation for precise prediction of tight
oil production and reasonable optimization of production allocation in China.
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1 Introduction

The Ultra-deep (>7000 m) Permian marine carbonate formation is a prospective conven-
tional gas exploration and development domain in Sichuan Basin, China, and in recent
years, significant breakthrough have been made in some appraisal wells with testing
gas rates above 1.0 MMm?>/D from Middle Permian QX gas reservoir in Sichuan Basin,
China (hereinafter referred to as QX reservoir). To meet market needs for clean energy,
the full development of this reservoir is put on agenda.

The QX reservoir is structurally located at the Longmen Mountain buried thrust front
zone, and contains many NE-SW trending faulted anticline and faulted nosing structures,
and currently, 6 NE-SW trending tectonic high belts have been defined through seismic
and a rough structure map is given in Fig. 1. Due to limited drillings and complex
structure, the extension of faults, communication between each belt and gas and water
distribution in QX reservoir are still uncertain, which reduce feasibility for a full reservoir
modeling and simulation.

0 4 8 12km

D

Legend

well location  fault contour
@

high structural belt
structure belt  trap number

Fig. 1. Top structure map of Permian QX reservoir, SYS Block, Sichuan Basin

Current drilling, geology and geophysics studies show that QX reservoir is featured
with ultra-deep buried depth (7200-7800 m), high pressure (>93 MPa), low porosity
(3.9% in average) and thin layer (average pay zone thickness 20 m). Due to uneven
development of natural fractures and vugs, heterogeneity exists in this reservoir with
permeability ranging among 0.01-10 mD. The uncertainty and heterogeneity in this ultra-
deep, thin layered and low porosity reservoir pose risks in cost-effective development,
to lower risks in initiating exploitation activities, proper Development Index (DI) for



Development Index Prediction Through Big Data Analysis 101

guiding the commercial and steady development of the new findings are the key concerns
of management.

Usually, in Field Development Plan (FDP), full reservoir modeling and simulation
will be performed to predict DI which consists of a series of parameters including
Field Annual Production Rate (FAPR), Field Plateau Period (FPP) at certain FAPR,
Well Spacing Density (WSD), Well Average Daily Production (WADP) during FPP,
and field Ultimate Recovery Factor (URF). And these key index will direct operators to
make drilling plan and development policies. But this common approach is less reliable
in QX reservoir due to uncertainties in reservoir characterization. Recently, big data
analysis technique (Safavian et al., 1991; Quinlan, 1986; Rao et al., 2019; Franco-
Lopez et al., 2001; Gou et al., 2019; Thierry et al., 2019; Burges et al., 1998; Chapelle
et al., 1999; Janik et al., 2006; Torkaman et al., 2015) provides novel, efficient and
economical tools for reservoir engineering and has been proved to be a powerful tool
in production forecast. Some researchers use big data technology to build proxy model
by correlating the complex, non-linear relationship among parameters to forecast flow
rates and hydrocarbon recoveries (Panja et al., 2017; Zhong et al., 2020; Ng et al., 2021;
Li et al., 2021; Shen et al., 2022; Zha et al., 2021; Zhou et al., 2014), and in some
literatures, big data technology have been utilized to facilitate reservoir simulation in
saving run time and cost, or improving accuracy in history matching (Ke et al., 2017;
Cheng et al., 2019; Luciana et al., 2020; Feng et al., 2019), and some researchers use
big data technology to guide stimulation design by correlating the fracturing parameters
into post stimulation oil production prediction model (Zhu et al., 2015).

But less literature is presented to forecast overall DI for a raw gas reservoir with
big data analysis technique. The purpose of this paper lies in the point that how we
utilized the geology and production history data in developed reservoirs to facilitate the
exploitation of new findings. Geology, dynamic and DI data from 30 mature gas fields
are collected and processed, and 13 parameters are selected to represent geological fea-
tures, deliverability and DI of individual reservoir. Through BP Neural Network, proxy
models are established to correlate DI with geology and deliverability data. Moreover,
the stability of the predicted results are also considered, to avoid randomness in a single
experiment, Bagging method (Eugene et al., 2022) is used to make the results more stable
for cases with limited samples. With the established models, overall DI for QX reservoir
are then given based on current drilling and testing information, and risks caused by
heterogeneity are also discussed. The results can serve as a criteria for directing the
successful development of this ultra-deep marginal pools.

2 Data Acquisition and Processing

Geology, deliverability and DI data of 30 major mature gas reservoirs from different
gas-bearing basins in China are reviewed. With per capita porosity among 3.4%—28.6%
and per capita dynamic permeability (Kdynamic, permeability from well test interpre-
tation) ranging from 0.1-38.5 mD, these reservoirs contain sandstones and carbonate
rocks with or without natural fractures. Based on post FDP implementation evaluation
of DI, these reservoirs, with 15-691 10° m? in OGIP and 0.3-10.7 10° m*/a in actual
plateau gas production, are all believed to be successfully developed reservoirs. In data
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preparation, logging and dynamic data of 1500* wells in these reservoirs are reviewed
to better understand the productivity and its dominating factors of individual reservoir.
And 13 parameters are selected and listed in Table 1 to represent geological features,
deliverability and DI of individual reservoir. To make sure that these parameters fully
represent reservoir characteristics, a lot of reservoir engineering study are conducted,
especially in the selection of productivity related parameters, such as permeability and
well AOF. We have two sets of reservoir permeability, which are matrix permeability
(Kmatrix) obtained in well logging interpretations or core testing and dynamic perme-
ability (K dynamic) calculated in well test interpretation. The correlations of permeability
(both K matrix and K dynamic) vs porosity, and K gynamic VS Kmatrix sShown in Fig. 2 indicate
that the porosity for most reservoirs are quite low (<10%), but the permeability varies
considerably, and inconsistency exists between K gynamic and Kmauix due to the devel-
opment of natural fractures. Figure 3 indicates that one of the DI parameters—FPR is
more dependent on K gynamic than Kyagix, and it can be seen in Fig. 4 that K gynamic also
dominate well deliverability (AOFP).

Table 1. Geology, deliverability and DI parameters for individual reservoir

Parameter type | No. of parameters | parameters scope of values in | Values in QX
30 reservoir reservoir
samples
Geology 6 reservoir depth, | 910-6800 7500
m
reservoir 9.8-115.5 96
pressure, MPa
pressure 0.85-2.12 1.28
coefficient,
MPa/100 m
reserves 0.1-5.9 0.32
abundance,
109m3/km?
average porosity, | 3.4-28.6 3.7
%
average Kmagix, | 0.01-37.3 0.51
mD

Deliverability 2 average 0.1-38.5 2.0
Kdynamic, mD
well average 68-9695 1420
AOFP, 10°m?/d

(continued)
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Table 1. (continued)

Parameter type | No. of parameters | parameters scope of values in | Values in QX
30 reservoir reservoir
samples

DI 5 Field Annual 0.18-4.11 2.5

Production Rate
(FAPR), %
Field Plateau 5-20 9-11
Period (FPP), a
Well Spacing 0.4-10.5 5-6
Density (WSD),
km?/well
Ultimate 37.4-75.0 62
Recovery Factor
(URF), %
Well Average 4-1907 280-300
Daily
Production,
103m3/d
100 100
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3 BP Neural Network Algorithms

The BP (Back Propagation) neural network is a data mining technique in developing
correlation models between input variables and output variables in big data analysis. In
the following we would briefly describe the main algorithms.

The BP neural network, a concept introduced by scientists in 1986, is a multilayer
feed-forward neural network trained according to an error back propagation algorithm
and is one of the most widely used neural network models (Burks et al., 2000, Meinel
et al., 2010). Currently, the vast majority of neural network models used in the practical
application of artificial neural networks are in the form of BP networks and variations
of it.

The BP algorithm consists of two processes: the forward propagation of the signal and
the backward propagation of the error (Hecht-Nielsen, 1989). In forward propagation,
the input samples are passed in from the input layer, processed in turn by the hidden
layer and then passed to the output layer. If the actual output of the output layer does
not match the desired output, it moves to the back propagation of error stage. The BP
network consists of an input layer, an output layer and a hidden layer, and the structure
of the BP neural network is as follows (Fig. 5).
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Fig. 5. Structure of BP neural network

The specific steps are: let the input vector is X = (x1, x2, ..., Xy), the input vector
of the hidden layer is hi = (hiy, hip, ..., hip), the output vector of the hidden layer is ko
= (ho1, hoa, ..., hop), the input vector of the output layer is yi = (yi1, yi2, ..., yig), the
output vector of the output layer is yo = (yo1, yoa, ..., yoq), the desired output vector is
do =(d1, d>, ..., dg).

The input and output of each neuron in the hidden layer are calculated by randomly
selecting the kth input sample.

hink) =Y waxiK) = by h=1,2, ., p (1)
hon(k) = f (hin(k)) h=1,2, .., p @)
viohk) = Y Wighon(k) —b, 0=1,2, ... 3)
Yoo(k) =f(yio(k)) o=1,2, ... ¢ “4)

where wyy, is the connection weight of the input layer to the middle layer, wy, is the
connection weight of the hidden layer to the output layer, by, is the threshold of each
neuron in the hidden layer, and b, is the threshold of each neuron in the output layer, ()
is the activation function.

Initialize the error function with arandom number within (—1, 1) and set the precision
&. With a maximum number of iterations M, the error function is

1
=D (dolh) = yoo(k))” 5)

Calculate the partial derivatives of the error function with respect to each neuron in
the output layer and calculate the parameters of each layer with following equation:

de  de dyip

= = §,(k)hop(k 6
B Byl Owng o(K)hop (k) (6)
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de _ (30, @) — yoo k)’

i iy
= —(da(k) = y0,(k))yo,, (k) - ie(do (k) — yoo (k))f (vio(k)) = 8o(k)  (7)

0yio(k) _ (32, wahon(k) = by)
MW MW

= hoy(k) ®)

Calculate the partial derivatives of the error function for each neuron in the hidden
layer, the connection weights that follow, and the input values for that layer,

de q ;o _
i =~ (Do 0w ) Gin(k)) = 348 ©)
Wun®) _ ik (10)
Owip
de
= Sn(k)x; (k) (11
Wih

Use (6) (7) (8) to correct the output layer connection weights,

de
Awpo(k) = —p

F udo(k)hop (k) (12)
Who

Wit = il 4 18, (k)hoy (k) (13)

Use (9) (10) (11) to correct the hidden layer connection weights,

de de  hip(k)
Awip (k) = — =— = 8p(k)x;(k 14
wink) = —pg = —pges = = dn(kmih) (14)
wh = w4 8, (k)i (k) (15)
Finally, calculate the global error,
1 m q 2
E=2) D, o) = yok) (16)

4 Bagging

Bagging is a parallel method of ensemble learning, where data is sampled and the
results are voted on. For a given data set containing multiple samples, we randomly
select one sample into the sampling set and put that sample back into the initial data set,
making it still possible for it to be selected for the next sampling. Combining Bagging
with BP neural network. The model is trained several times to get the average of the
predicted values. It can improve the accuracy and stability of prediction while avoiding
the over-fitting phenomenon.
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5 DI Prediction Proxy Model Development Through Big Data
Analysis

5.1 Correlation Coefficient Calculation

As we want to build DI prediction model through big data analysis, geology and deliver-
ability parameters listed in Table 1 are categorized as characteristic data and DI param-
eters in the table are defined as target output variables. In proxy model development,
initially, the coefficient of correlation » (Bookbinder et al., 1987) between characteristic
data and target output data are calculated and those characteristic data with high abso-
lute r values are selected as input parameters. Table 2 presents the calculated r values
between characteristics data and DI, and those characteristic data with underlined values
are selected as inputs.

Table 2. Calculated r values between Characteristic Data and DI

DI Depth | Pressure | Pressure Reserves | Kmatrix | Porosity | Kqynamic | AOFP
parameters Coefficient | Abundance

URF 0.358 0.333 | 0.204 0.298 0.273 | —-0.176 | 0.401 0.522
FPP —0.006 | 0.146 | 0.247 0.065 0.168 | 0.139 —0.127 |0.136
FAPR —0.023 | 0.12F9 | 0.334 0.385 0.190 |0.204 ]0.392 0.416
WSD 0.223 ]0.225 0.101 —0.318 -0.091 | —0.450 |0.123 0.167
WADP 0.326 | 0.494 0.624 0.735 0.745 | —0.007 |0.388 0.948

Note:those characteristic data with underlined values are selected as inputs

5.2 Proxy Model Development

In proxy model development, BP Neural Network is used to establish the relationship
between input variables and output variables. We design different combinations of corre-
lated variables as input models. For example, we design four input models for predicting
UFR and three input models for predicting FPR, as shown in Tables 3 and 4 respectively.

Table 3. Combinations of correlated variables as inputs for predicting URF

Input models Depth Pressure K dynamic AOFP
Model 1 1 1 1
Model 2 1 0 1 1
Model 3 0 1 1 1
Model 4 0 0 1 1

Note:1 means the variable is used, 0 means it is not used
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Table 4. Combinations of correlated variables as inputs for predicting FAPR from gas fields

Input models Reserves Abundance Kdynamic AOFP
Model 1 1 1 1
Model 2 0 1 1
Model 3 1 0 1

Note:1 means the variable is used, 0 means it is not used

As limited sample data may introduce randomness and occasionality in model devel-
opment, thus weaken model credibility, to avoid these disadvantages, samples data are
disordered in each training with 80% and 20% being selected randomly for model training
and model validating respectively. For fixed inputs and outputs, the risks of occasionality
caused by limited sample data also exist if only single numerical test is conducted, to
tackle this problem, 2000 numerical tests are performed and those models with high
coefficient of determination (R?) of test set are selected as best fit models. All best fit
models are used to predict the DI value, and then the average is calculated to obtain the
final prediction result. R? is generally used in regression models to evaluate the degree
of conformity between predicted values and actual values, and R? is defined as follows:

ZL] i _j}i)2
i i = y)?

where: ¥ denotes the average of the true target values. The higher the score of the R?,
the closer the predicted value of the sample is to the true value.

In summary, we calculate the correlation coefficients between the predictor variables
and other variables, find the most relevant variables to the predictor variables. Then use
the bagging-based BP Neural Network to establish the relationship between the predictor
variables and the relevant variables. Finally, the training effect is evaluated by R>. And
the final prediction value is obtained by averaging from the better prediction results.
Whole process of the algorithm is described in the Appendix, and Table 5 shows the
network parameter settings for WADP prediction experiments.

R*=1—

Table 5. Optimal values for each parameter in the predicted WADP

Parameters Setting

Units 10, 64, 128,256 ..., 64, 1
Epochs Period: 500

activation Relu

optimizer Adam

Figure 6 shows, as an example, the prediction results of the two experiments with
higher R? in 2000 prediction experiments of WADP. As depicted in Fig. 6, sound fitting
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can be observed between prediction and actual values. The predicted value in Fig. 6(a)
is basically consistent with the measured value, while the predicted value in Fig. 6(b)
is slightly deviated from the measured value, but the error is still small in the case of
a small amount of data. Experimental results show that the bagging-based BP neural
network has high precision in DI prediction. In addition, this analysis method is easily
scalable with the addition of the latest machine learning methods.

400 1000
—&— actual
—8— predicted 800 atual
< 300 | f r —&— predicted
e =
£ 2 600 |
200 F S
& o
2 g 400
= 100 g
= 200
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Fig. 6. WADP prediction models validation. (a) and (b) represent different models with different
numerical testing samples

5.3 DI Prediction for QX Reservoir

Current drilling, geology and well testing data in QX reservoir are reviewed, and charac-
teristic parameters including geology and deliverability data are evaluated based on our
understanding of the reservoir. The quantifying of these parameters will be discuss below
and their values are presented in Table 1. Reservoir mid-depth based on drilling wells
is 7500m with initial reservoir pressure of 96 MPa and pressure gradient 1.28 MPa/100
m; reservoir porosity from both core analysis and logging interpretations are among
2.0%—6.0%, with 3.7% in average; K mauix from core analysis range from 0.01 mD to 53
mD, and 0.51 mD in mean; K gynamic obtained through 9 wells’ test interpretations are
ranging in the scope of 0.1-10 mD, with 2.0 mD in average, reflecting the improvement
of mobility with the development of natural fractures; AOFP from both horizontal wells
and vertical wells are among 0.15-3.85 10 m3/d, with average 1.42 10° m3/d; based on
logging and pressure data, average reserve abundance is evaluated as 0.32 10° m3/km?.

DI for QX reservoir are predicted through our proxy models with input parameters
given in Table 1, and the output results shown in Table 1 are as follow: FAPR 2.5%,
WSD 5-6 km?/well, WADP during FPP 280-300 10° m*/d and URF 62%. Heterogeneity
caused by lithology change or uneven development of natural fractures can be evidenced
from both core samples and deliverability data, as in the low part of structure, well
dynamic permeability are in the magnitude of 0.1mD. The influence of heterogeneity on
FAPR and URF are also predicted in the proxy models, and results presented in Fig. 7
show that in the “tight” part of the reservoir, the feasible FAPR decreases from 2.5% to
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1.5%, and URF declines from 62% to 50%, so economic risk exist in the development of
QX reservoir. The effects of horizontal drilling on FAPR and URF are also evaluated and
depicted in Fig. 7, and it can be seen that compared with vertical drilling (with average
AOFP 1.0MMm?/d), horizontal drilling (with average AOFP 1.4MMm?>/d) show limited
enhancement in both FAPR and URF.
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Fig. 7. Predicted PR and URF vs. K gynamic With different AOFP

It should be note the proxy model are based on data from 30 mature, successfully
developed major reservoirs, and the DI of these reservoirs contain certain development
policies followed currently by the operators. So the predicted DI for QX reservoir can
serve as a criteria for directing the successful development of this ultra-deep marginal
pools.

6 Conclusions

1. DI prediction models for raw gas reservoirs are established through big data analysis
approach. Geology and dynamic data from 30 mature gas reservoirs are reviewed,
and 12 parameters are selected to represent geology, deliverability and DI data for
individual reservoir, then proxy model are built through bagging-based BP neural
network to correlated DI with geology and deliverability data.

2. Experimental results show that the bagging-based BP neural network has high
precision in DI prediction in the case of limited sample data.

3. Based on geology and dynamic data, the DI for QX reservoir are predicted in the proxy
model with results as following: FAPR 2.5%, FPP 9-11 years, URF 62%, WSD 5-6
km?/well, WADP during FPP 280-300 10° m3/d. Sensitivity analysis showed that
for relative “tight” area, 1.5% of FAPR with UFR of 50% are expected.

4. Through big data analysis, the development polices formed in mature gas fields can
provide valuable knowledge in the development of ultra-deep raw gas fields, thus
mitigating risks due to uncertainties in reservoir characterization.

Funding. This study was supported by the Scientific and Technology Research Program Funded
by CNPC, China (Project No. 2021DJ1505 and 2022KT0905).
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Appendix

Algorithm for Prediction Model Devlopment

Input: Select variable combination models as input
Initialize training data and set test number

repeat
k<« k+1
for j=1 to N do in parallel

V< M,(X,y)
Calculate R* value c;,getset S, ={y,c}

end for

N
Select y, €S, where j correspondsto c; ZAverage(ch)
j=1

until k=K
5= dverage(Y y,)

return )
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Abstract. Mud logging serves as the “eyes” of exploration and development,
acting as a counselor for drilling safety, the center of information transmission,
and holding the first-hand data on oil and gas exploration and development. With
the rapid development of informatization, digitization, intelligence, and remote
support systems, the demand for high-quality mud logging data has continuously
risen, where sensor calibration and calibration technology serve as the foundation
for ensuring accuracy and reliability. This paper proposes an artificial intelligence-
based comprehensive mud logging instrument sensor calibration and calibration
technology, targeting the issues of prolonged service life, low precision, and low
inspection rate of traditional mud logging instruments. The technology primarily
involves collecting and pre-processing sensor output data such as filtering, sam-
pling to eliminate noise, and improve the dataset’s quality. Mathematical models
of sensors were constructed using machine learning or deep learning algorithms
to analyze the relationship between sensor outputs and actual values, which could
also compute sensor errors and uncertainties. Algorithm optimization methods
such as wavelet transform and adaptive filtering were used to process and ana-
lyze sensor data for different types of sensors and environmental conditions. The
adaptive control algorithm was then utilized based on the predicted model results
and actual measurement results to calibrate the sensor, ultimately helping to avoid

Copyright 2023, IFEDC Organizing Committee.

This paper was prepared for presentation at the 2023 International Field Exploration and
Development Conference in Wuhan, China, 20-22 September 2023.

This paper was selected for presentation by the IFEDC Committee following review of information
contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not
been reviewed by the IFEDC Technical Team and are subject to correction by the author(s). The
material does not necessarily reflect any position of the IFEDC Technical Committee its members.
Papers presented at the Conference are subject to publication review by Professional Team of
IFEDC Technical Committee. Electronic reproduction, distribution, or storage of any part of this
paper for commercial purposes without the written consent of IFEDC Organizing Committee
is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300
words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment
of IFEDC. Contact email: paper @ifedc.org.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Lin (Ed.): IFEDC 2023, SSGG, pp. 113-123, 2024.
https://doi.org/10.1007/978-981-97-0272-5_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0272-5_9&domain=pdf
mailto:paper@ifedc.org
https://doi.org/10.1007/978-981-97-0272-5_9

114 C. Wu et al.

errors and uncertainty in the traditional manual calibration process. Experimental
results show that this technology has higher accuracy and reliability than tradi-
tional calibration techniques while maintaining simple operation, fast speed, and
cost-effectiveness. This technology improves the level of detection and evaluation
technology of comprehensive mud logging instruments, Standardizes mud log-
ging equipment management, and plays an essential role in timely discovering,
evaluating oil and gas layers, and optimizing drilling construction safety.

Keywords: Artificial Intelligence - Mud Logging - Sensors - Calibration
Technology

1 Introduction

Informationization, digitization, intelligentization, and remote support systems require
high-quality mud logging data. The comprehensive mud logging instrument is the main
technical equipment on-site for mud logging, responsible for data collection, process-
ing, analysis, and transmission. It monitors engineering parameters and drilling fluid
parameters in real-time during the drilling process, analyzes various gas contents in the
drilling fluid. The accuracy and reliability of mud logging data directly affect the quality
and safety of drilling projects. It is the basis for timely discovering and evaluating oil
and gas layers and optimizing drilling construction safety. Currently, there are several
factors that affect the quality of mud logging data.

(1) The harsh installation and usage conditions of the mud logging sensors may cause
reduced accuracy, malfunctions, and damages (as shown in Fig. 1).

(2) Mechanical vibration and impact caused by frequent lifting and long-distance trans-
portation can damage equipment in the instrument room. Chipsets and electronic
components will have degraded performance as their service time increases, which
can lead to abnormal data channels or reduced conversion accuracy.

(3) The performance of the gas analysis system will decrease with production and
operation time.

(4) Similar to drilling operations, mud logging operations are located in remote loca-
tions with difficult-to-control environmental conditions. Existing indoor testing and
assessment devices have low integration and large size and weight, which can-
not meet on-site testing needs, resulting in delayed and incomplete testing and
assessment.

(5) Comprehensive mud logging instruments of different brands and periods have sig-
nificant differences in quality, configuration, performance, etc. Many instruments
have been in service for more than 10 years.

(6) Most mud logging companies mainly focus on individual testing, calibration, and
verification, lacking a unified and systematic comprehensive mud logging instrument
testing and evaluation device and technical specifications.

Therefore, major petroleum companies at home and abroad attach great importance
to mud logging work, regarding improving mud logging equipment performance and
ensuring mud logging data quality as the basis for improving mud logging quality and
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engineering technical data quality. In order to eliminate the impact of the above unfavor-
able factors, research on comprehensive mud logging instrument testing and evaluation
technology and equipment has been conducted, forming a set of complete technical
specifications for comprehensive mud logging instrument testing and evaluation, and
developing a comprehensive mud logging instrument testing and evaluation device that
can adapt to fieldwork.

Fig. 1. Partial sensors of comprehensive mud logging instrument

Significant progress has been made in recent years with the application of artificial
intelligence technology. Many researchers apply Al to sensor-based health and sports
biomechanics [1-7], while others utilize it for intelligent industrial manufacturing [8—
10]. In the area of using artificial intelligence for sensor calibration, many scholars have
also conducted extensive research and achieved significant progress [11-16].

2 Performance Testing, Data Acquisition and Preprocessing
of Sensor

2.1 Performance Testing of the Sensors

Sensor performance testing and data acquisition and preprocessing form the foundation
of artificial intelligence-based calibration technology for comprehensive logging instru-
ment sensors. A complete set of sensor performance testing equipment was developed
using a Siemens 16-bit high-precision PLC, high-precision pressure source, high and
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low-temperature constant temperature water tank, standard current generator, and sup-
porting coils and high-precision resistors, and an accompanying system was programmed
in C#.

Sensor performance testing: Standard testing equipment is used to test the perfor-
mance of the logging sensors and record measurement results and error data. Sensor
performance testing usually includes the following indicators: sensitivity, resolution,
accuracy, and response time. The performance of the sensor is determined by testing it
through methods such as adding a known quantity to the sensor or directly placing it in
a changing environment and collecting feedback signals. After completing the sensor
performance testing, the sensor is evaluated against specific application requirements.
In short, sensor performance testing is an important step in ensuring data accuracy and
reliability.

2.2 Data Collection and Preprocessing

The data collection system is used to collect the data obtained from the above tests
and preprocess it for feature extraction by machine learning algorithms. Different signal
acquisition methods, either analog or digital, are employed depending on the type of
sensor. Then, the collected data must be preprocessed to remove noise, artifacts, and
other unwanted signals.

Filtering is a common data preprocessing technique that can separate useful signals
from noisy signals by applying filters. Depending on the filtering method, it can be
classified into various types such as low-pass filtering, high-pass filtering, and band pass
filtering. Sampling refers to the process of discretizing raw data by converting continuous
analog signals into discrete digital signals, making them easier to store and process.

Filtering is a process that removes or retains certain components of a signal via filters.
Its mathematical principles are based on signal processing theory. Common filtering
methods include moving average filtering, median filtering, IIR low-pass filtering, FIR
low-pass filtering, and frequency domain filtering. For logging sensor signal filtering,
FIR low-pass filtering is used.

The mathematical formula for FIR low-pass filter can be expressed as:

v =Y hkxn — k) 1)

where x(n) represents the original signal, y(n) represents the filtered signal, and h(k)
represents the coefficients of the filter. The order of the filter is denoted by M.

A linear phase FIR filter is adopted, and the specific formula for calculating its
coefficients is as follows:

e k=14
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In the above formula, #(k) represents the coefficients of the filter, M is the order of the
filter, and f is the cutoff frequency of the filter. After calculating the filter coefficients
using the aforementioned formula, they can be applied to convolution operations to filter
the original signal and obtain the filtered results.

After applying the standard excitation signal generated by the high-precision standard
source to the logging sensor, an analog current signal will be generated by the sensor,
which is generally located between 4-20 mA. With the developed signal acquisition
instrument, the current signal can be read and converted into corresponding physical
quantities to complete the calibration of the sensor. Figure 2 shows the sensor sig-
nal acquisition instrument, and Fig. 3 shows the working of the electric torque sensor
calibration device.
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Fig. 2. SDA-01 Sensor Data Acquisition Instrument

Fig. 3. Calibration of electric torque sensors



Fig. 4. Interface of the calibration system for comprehensive logging instrument sensors

3 Model Establishment Based on Bayesian Optimization

After obtaining the raw data of mud logging sensors, the optimal model structure and
hyperparameter combination are searched through Bayesian optimization to obtain a
better theoretical curve.

Bayesian optimization is a black-box function optimization method commonly used
in scenarios where a target function needs to be maximized or minimized. When con-
structing a Bayesian optimization model, we need to define a Gaussian process to
describe the overall trend and uncertainty information of the target function. We also
need to define a surrogate function to approximate the target function and optimize the
surrogate function to find the optimal solution of the target function.

Specifically, the following steps are taken to construct the Bayesian optimization
model:

(1) Define the prior distribution of the Gaussian process. In this step, we need to define
a mean function and a covariance function for the Gaussian process. The mean
function is used to describe the average value of the target function at different input
values, while the covariance function is used to describe the correlation between
different input values. The typically chosen Gaussian process prior distribution is
the zero-mean Gaussian process.

(2) Update the posterior distribution of the Gaussian process based on the existing
data. In this step, we need to update the mean function and covariance function of
the Gaussian process based on the existing sample data to obtain a more accurate
function approximation.

(3) Calculate the next sampling point based on the surrogate function. In this step,
we need to use the current Gaussian process to fit the target function, construct a
surrogate function, and select the next sampling point by optimizing the surrogate
function. Common optimization methods include greedy algorithm and coordinate
axis optimization.

(4) Update the posterior distribution of the Gaussian process based on the new sampling
point. After obtaining the new sampling point, it can be added to the existing samples,
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and these data can be used to update the mean function and covariance function of
the Gaussian process.
(5) Repeat steps 3 and 4 until the preset stopping conditions are met.

The entire process of Bayesian optimization can be mathematically expressed as
follows:

Xip1 = argmaxEl (x|Dy) = argmax(u(x) — £0(x) 3)
X X

In the equation, x4 represents the next sampling point chosen in the iteration,
EI(x|Dy) is the expected improvement metric, representing the expected increase in
target function value over the current best known value, given x as input under Gaussian
process fitting. u;(x) and o;(x) represent the mean and standard deviation of the current
Gaussian process at X, respectively. £ is a hyperparameter that controls the balance
between exploration and exploitation and is commonly set to 2 or 3”.

4 Model Training and Experimental Verification

4.1 Model Training

Neural networks are models composed of neurons that utilize components such as
weights, biases, and activation functions to facilitate information transmission and pro-
cessing. These models possess remarkable fitting and expressive abilities, making them
suitable for solving various machine learning and deep learning tasks. Therefore, in this
study, the neural networks were used to train the sensor calibration data. Simultaneously,
the Cross Entropy loss function and the Stochastic Gradient Descent (SGD) optimizer
was selected as key components of the neural network and combined to train a more
accurate and efficient model.

Model Training: Using a large-scale dataset to train the model, constantly updating
the model parameters to improve prediction accuracy and robust performance.

To train the model with a large-scale dataset, the following steps are required:

(1) Data collection and preparation: First, it is necessary to obtain enough data to train
the model, and the data should be representative and able to cover various possible
situations. Then, the data needs to be cleaned, transformed, and normalized, so that
the model can better understand and process it.

(2) Model selection and design: Based on the application scenario and data character-
istics, select an appropriate model structure and determine the parameters that need
to be optimized.

(3) Loss function and optimizer selection: Depending on the task of the model, select an
appropriate loss function and optimizer to evaluate the model and adjust the model
parameters.

(4) Batch training: Since the dataset is too large to be loaded into memory for training
at once, the data needs to be divided into equally-sized batches, and the stochastic
gradient descent algorithm (SGD) is used to update the model parameters batch by
batch.
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(5) Batch normalization and regularization: Performing batch normalization before or
after each batch can reduce the bias and variance of input features, thereby improving
the model’s prediction accuracy and robustness. In addition, methods such as L1 or
L2 regularization can constrain the size and number of model parameters, avoiding
overfitting and underfitting.

(6) Model evaluation and fine-tuning: Evaluate the model through the training and test-
ing sets to determine the model’s prediction accuracy and robust performance. If
problems are found in the model, fine-tuning is needed, such as changing the model
structure, adjusting the loss function or optimizer, etc.

Through these steps, the model can be trained using a large-scale dataset, constantly
updating the model parameters to improve prediction accuracy and robust performance.

When choosing the appropriate network architecture, number of layers, and number
of nodes to establish the ANN model and initialize weights, several steps usually need
to be performed:

The problem type is determined by firstly clarifying whether a classification problem
or a regression problem is faced. This will help determine the network structure and
activation function.

Input and output are determined by specifying the number and type of input feature
vectors and output predicted values.

An appropriate activation function is chosen based on the problem type, such as
sigmoid or ReLU.

The network structure is designed by selecting a network structure that includes
determining the range of the number of nodes in each hidden layer, whether to use
dropout techniques, and so on.

Weights are initialized by selecting appropriate weight initial values, such as Xavier
initialization, etc.

The model is trained by using the training dataset, and parameters are adjusted based
on the validation set results.

The model is evaluated by examining its performance using the testing set.

When selecting the network structure and number of nodes, the principle of Occam’s
Razor should be followed. That is to say, the model structure should be made as sim-
ple as possible with reduced node numbers to prevent overfitting. At the same time,
when designing the model, common deep learning frameworks such as TensorFlow and
PyTorch can be considered. They provide a series of optimized structures, numbers
of layers, and nodes, as well as pre-trained weights, which can reduce some manual
parameter tuning work.

Taking the casing pressure sensor as an example, with a measuring range of 0 ~
70MPa, it should be calibrated using a standard pressure pump source calibrated by the
Beijing Institute of Metrology and Measurement. The training samples are shown in the
table below.
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Table 1. Training sample for calibration of casing pressure sensor.

Input Output Result

OMPa 4.00 mA Pass the calibration

OMPa 4.01 mA Pass the calibration

OMPa 4.02 mA Pass the calibration

OMPa 4.03 mA Pass the calibration

OMPa 4.08 mA Pass the calibration

OMPa 4.09 mA Failure to pass the calibration
8.75 MPa 6.00 mA Pass the calibration

8.75 MPa 6.01 mA Pass the calibration

8.75 MPa 6.02 mA Pass the calibration

8.75 MPa 6.03 mA Pass the calibration

8.75 MPa 6.04 mA Pass the calibration

8.75 MPa 6.04 mA Pass the calibration

8.75 MPa 6.12 mA Pass the calibration

8.75 MPa 6.13 mA Failure to pass the calibration

4.2 Experimental Verification and Data Visualization

Test the model, compare the experimental data with the predicted data, evaluate the
reliability and accuracy of the model, and adjust and improve it accordingly.

Based on the experimental test results, present the data in the form of charts and
analyze the sources and trends of errors to provide visual support for sensor calibration
and testing.

As can be seen from the figure below, the data predicted by Al technology is in very
good agreement with experimental data, with a maximum error of only 0.15%, thereby
proving the effectiveness of this method.

Using the above technical solution, it is possible to utilize artificial intelligence
technology for the calibration of logging tool sensors in order to improve testing accuracy
and efficiency, reduce human error and testing costs, and provide strong support for the
drilling engineering in the oil and gas industry.



Fig. 5. Experimental Verification and Data Visualization

5 Conclusion

(1) The application of artificial intelligence in mud logging sensors can greatly improve
the accuracy and reliability of the measurement results.

(2) The use of machine learning algorithms artificial neural networks (ANNs) can effec-
tively address the problem of nonlinearity and complex interference in mud logging
data.

(3) The calibration technology based on these algorithms has been successfully applied
to real drilling engineering, achieving excellent results. The study improves the
quality of mud logging data and provides a theoretical basis and practical guidance
for the further promotion and development of intelligent mud logging technology.

Acknowledgments. The project is supported by China National Petroleum Corporation Research
and Development Project "Research on Tracing and Transmission Technology of Oil and Gas
Production Values" (Number 2021DJ2901).

References

1. Balarabe, J.S., Abubakar, [.A., Nuhu, S.A., et al.: Artificial intelligence, sensors and vital
health signs: a review. Appli. Sci. 12(22) (2022)

2. Zhang, C., Cheng, K.: Accurate detection of intelligent running posture based on artificial
intelligence sensor. J. Sensors (2022)

3. Chen, Y., Chen, Q.: Gymnastics action recognition and training posture analysis based on
artificial intelligence sensor. J. Sensors (2022)

4. Li, K.: Tennis technology recognition and training attitude analysis based on artificial
intelligence sensor. J. Sensors (2022)



10.

11.

13.

14.

16.

Calibration Technology and Application of Mud Logging Sensors 123

Song, Z., Tian, C.: Influence of the athlete’s training physical state test based on the principle
of artificial intelligence sensor. Mobile Inform. Syst. (2022)

. Michael, P.,, Douglas, B., Wayne, D., et al.: Artificial intelligence, sensors, robots, and trans-

portation systems drive an innovative future for poultry broiler and breeder management.
Animal Front. Rev. Mag. Animal Agricul. 12(2) (2022)

Zeng, A., Yu, T., Song S., et al.: Multiview self-supervised deep learning for 6D pose estima-
tion in the amazon picking challenge. In: 2017 IEEE International Conference on Robotics
and Automation (CRAIEEE), pp. 386-383 (2016)

Zeng, A., Song, S., Yu, K.T., et al.: Robotic pick-and place of novel objects in clutter with
multi affordance grasping and cross-domain image matching. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1-8 (2018)

. Ewerton M. Neumann G. Lioutikov Ral. Learning multiple collaborative tasks with amixture

of interaction primitives C . EEE International Conference on Robotics & Automation]EEE
2015. 1535-1542

Jingsha, Z., Yan, Z.: Research on automatic control of laser sensors based on artificial
intelligence. Laser J. 43(11), 199-203 (2022)

Hongwei, S., Na, L.: Automatic correction of ranging error of laser displacement sensors
using artificial intelligence technology. Laser J. 42(10), 167-170 (2021)

. Xuetong, R.: Research on sensor technology based on artificial intelligence. Mod. Indust.

Econ Inform. 10(05), 60-61 (2020)

Zhiwu, W.: Fault diagnosis technology of sensors based on artificial intelligence methods.
Rocket Propulsion 05, 59-62 (2005)

Beizhan, P., Lin Dejie, O., Jincheng.: Application of artificial intelligence in the field of
sensors. Sensor Technology 03, 5-7 (2002)

. Yan, S., Lei, H., Yan, R.: Design of an automatic calibration system for temperature sensors

based on robots. Electronic Measure. Technol. 44(09), 56-65 (2021)
Xianghua, H., Feng, J., Shuiwang, Y., et al.: Application of artificial intelligence in field
dynamic calibration of vector thrust. Aerospace Measurem, Technol. 39(03), 51-57 (2019)



q

Check for
updates

Sensitivity Analysis of Influencing Factors
of Production for Fractured Horizontal Wells
in Shale Reservoir

Wei Liu!>®9, Xiao-peng Cao!, Zi-yan Cheng', and Yan Liu!

1 Exploration and Development Research Institute, Sinopec Shengli Oilfield Company,
Dongying 257099, Shandong, China
1lwsg93@126.com
2 Postdoctoral Scientific Research Working Station, Sinopec Shengli Oilfield Company,
Dongying 257099, Shandong, China

Abstract. Major productivity breakthroughs have been achieved in key produc-
tion layers of Jiyang shale, such as lower Es3 and upper Es4 producing layer of
Shahejie Formation, and remarkable development have been gained. However,
it is also limited by short production time, large production difference of single
well, and unclear of production influencing factors. Comprehensive analysis of the
main controlling factors of production for horizontal shale oil wells has become
the research focuses. Field production data was taken to clarify the influence of
various factors on the production of horizontal wells. Grep correlation analysis and
principal component analysis were used to quantitatively analyze the sensitivity
of 90-day average oil production, 180-day average oil production, and 270-day
average oil production to the influencing factors, such as the amount of fluid used
and the sand added. Research indicates that the amount of fluid used, the amount of
sand added and the number of fracture events are the main engineering parameters
affecting the production, while the content of gray matter, TOC and shale porosity
are the main geological parameters affecting the production. The influence of geo-
logical factors on production gradually increase, while that of engineering factors
on the production is gradually weakened in the late flowing production stag. The
main controlling factors and variation rules of the production are preliminarily
identified, which could provide guidance for the deployment of shale oil wells
and fracturing design.

Keywords: Shale oil and gas - horizontal well production - influencing factors
analysis - grey correlation theory - principal component analysis

1 Introduction

With the increasing energy demand, shale oil has gradually become a hot spot in oil and
gas exploration and development. China’s shale oil resources are abundant and have a
broad prospect for exploration and development. As a typical Cenozoic oil-rich terrestrial
fault basin in eastern China, the Jiyang Depression has a high potential and abundance of
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shale oil resources, which has a high extraction value [1]. Compared with shale oil from
other regions at home and abroad, Jiyang shale oil is very different in terms of formation
environment, shale characteristics, degree of evolution and shale oil properties. It is
a unique type of shale oil with strong non-homogeneity and large differences in oil
content. The exploration and development of Jiyang shale oil has gone through three
stages, namely exploration incidental, active exploration and innovative breakthrough,
and has achieved significant capacity breakthroughs in several layers and types. The
peak oil volume of many shale oil wells that have been put into production exceeds 100
tons, and the cumulative oil in six months exceeds 10,000 tons, demonstrating the good
prospect of Jiyang shale oil exploration and development [2].

In the development process of Jiyang Shale Oil using horizontal well volume frac-
turing, it is affected by multiple factors of reservoir characteristics, fracture modification
and other geological engineering, and there are many factors affecting production and
the situation is complicated, which shows the problem of large variation of single well
production and the main control factor of production capacity is still unclear in pro-
duction. In this regard, there is an urgent need to carry out research on the analysis
methods of the main control factors of the post-pressure production of Jiyang shale oil
horizontal wells, clarify the influence of each factor on the production, and optimize the
development technology countermeasures to guide the development of Jiyang shale oil
in a cost-effective way [3].

For the analysis of factors affecting production, scholars at home and abroad mainly
use multiple linear regression [4, 5], neural networks [6, 7] and other methods to quan-
titatively analyze the influence of reservoir quality parameters, engineering quality and
other parameters of shale oil on production [8—13]. Luo [6] et al. used artificial neu-
ral network to analyze the influence of geological feature parameters and completion
parameters on the cumulative production in the first year, which provided important
guidance for the development of reasonable fracturing construction parameters in the
study block. Guo Jiancheng[7]et al. analyzed the factors influencing the flowback rate
and production capacity of shale gas wells in the Longmaxi Formation based on a neu-
ral network approach, and established a capacity prediction plat for the block to guide
production prediction and decision making. Kim [8] conducted a quantitative analysis
of reservoir quality and completion quality to quantify the influence of each factor on
production. Zhang et al. [40] analyzed the main factors affecting production by estab-
lishing a production prediction model for horizontal shale gas wells. Wu Linhong et al.
[13] established a single-well capacity model for fractured horizontal wells by consid-
ering geological factors and fracturing parameters, and analyzed the influence weight of
each factor on production by comparing the defined influence factors. Due to the strong
non-homogeneity of domestic onshore phase, the results of shale oil production analysis
in different fields are somewhat different [14—17]. The results of the current study are
not all applicable to Jiyang shale oil because of its diverse types and low maturity.

In order to clarify the main control factors of Jiyang shale oil production, the cor-
relation between initial production capacity and shale physical parameters, fracturing
parameters during shale oil development is studied from the perspective of geological
engineering integration using gray correlation analysis, and the degree of influence of
each factor on initial production capacity is clarified. To verify the reliability of the
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method, principal component analysis was used to further validate the results of the
analysis of production master control factors. At the same time, the influence of each
factor on the production at different production stages was quantitatively analyzed to
reveal the main controlling factors at different production stages, so as to provide support
for the formulation of reasonable development plan and effective development of shale
oil [18].

2 Analysis Method of Production Influencing Factors

2.1 Grey Relation Analysis

Grey correlation analysis is one of the main contents of grey correlation system theory,
which has been widely used in reservoir evaluation in particular [3]. Grey correlation
analysis can be used to quantitatively analyze the degree of correlation between output
and various influencing factors, so as to realize the screening of main controlling factors
of productivity [19, 20]. The specific process includes selecting reference sequence and
comparison sequence, then calculating correlation coefficient and correlation degree,
and finally determining the main influencing factors of productivity.

2.1.1 Determine the Reference and Comparison Sequences

This paper focuses on analyzing the influence of shale oil geological parameters, fractur-
ing parameters and other factors on production through gray correlation. In this regard,
production is determined as the reference sequence Xo(k)(k = 1,2, 3, - - - , n), produc-
tion influencing factors as a comparative series X;(k)(i = 1,2, 3, --- , m), n indicates
the number of elements in each series, m denotes the number of influencing factors, 1
indicates the serial number of the influencing factor. The production data, geological
and engineering data of Jiyang shale oil Wells are collected and the analysis matrix in
the following form is constructed:

Xo(1) X1 (1) - - Xpn(1)
X0(2) X1(2) --- Xin(2)

(X()vX]’-"aXm): (1)

Xo(n) X1(n) -+ - Xp(n)

2.1.2 Dimensionless Processing of Data

Considering that the difference in order of magnitude between the original series will

affect the calculation results of correlation degree, dimensionless processing should be

carried out for these original series. The specific calculation formula is as follows::
Xi(k) — min(X;)

Xir(k) = max(X;) — min(X;) @

where, X;/(k) is the kth parameter value of the ith influencing factor, max(X;) is the
maximum value of the i sequence of influencing factors X;, min(X;) is the minimum
value of the i sequence of influencing factors X;.
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2.1.3 Calculation of Correlation Coefficient

According to the definition of correlation coefficient (3), the correlation coefficient
between influence factor series and production reference series is calculated separately.

"'.l " m n
min min|x; (k) — xo (k)| + p % malx r]?aiqxi(k) — xo (k)|
— i=1 k=

o0i (k) = == —
i (k) = xo(k)| + p x max max x; (k) — xo (k)|

3)

where, p indicates the discrimination factor, the range of values is [0, 1], op;(k)
denotes the number of correlation coefficients between the ith influencing factor and
oil production at the kth value.

2.1.4 Calculation of Correlation Degree

The correlation between production and influence factors is calculated by averaging
the correlation coefficients between each sequence of influence factors and the corre-
sponding elements of the production reference sequence, and calculating the correlation
between prodcuiton and influence factors sequentially according to Eq. (4).

1 n
i=- (), (=1,2,..., 4
7o n/;ovo()(l m) “4)

where, rp; denotes the correlation degree between the ith influencing factor and the
production, the range of values is [0,1].

In order to screen out the main control factors affecting the production, on the basis
of obtaining the correlation degree between production and variables, the weights of
each influencing factor are calculated based on Eq. (5). The factors are ranked according
to the weights so as to determine the main control factors of production capacity.

Foi

Z Yoi
i=1

Wi = x 100 (5)

where, W; indicates the weight of the ith influencing factor.

2.2 Principal Component Analysis

Principal Component Analysis (PCA) is acommon data analysis method [21, 22], which
transform the original data into a set of linearly independent representations by linear
transformation. And it can be used to extract the main feature components of the data.
The matrix of observed variables consisting of m influencing factors is expressed as X =
(X1, X2, ..., Xy) (see Eq. (6). The original influencing factor variables are regrouped
into a new set of mutually unrelated composite variables to replace the original variables
through principal component analysis. The first linear combination selected, i.e., the first
composite variable, is denoted as.
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If the first principal component is not sufficient to represent the information of the
original m variables, then consider selecting F2. In order to effectively reflect the original
information, the information already in F1 need not appear in F2 again, i.e., Cov(F1,F2)
= 0. By analogy, the third, fourth and mth principal components can be constructed,
which are calculated by the formula in Eq. (7).

X1(1) Xo(1) - - - Xin(1)

X1(2) X2(2) -+ Xin(2)
. . . =X, X2,..., Xn) (6)

X1(n) Xo(n) -+ Xp(n)
Fi=anXi +apX2+---+apmXy, j=1,2,---,m @)

where, a;; indicates the principal component coefficients, and the new variables and
coefficients for the principal component analysis are required to satisfy the following
conditions.

a. F; , Fj unrelated to each other (i #j;i,j =1,2,---,p).

b. The variance of Flis greater than the variance of F2, and so on.

C.ajz1 +a].22+~-~+a]2m =1

3 Applications

Jiyang shale oil is mainly developed through multi-stage fractured horizontal wells,
and the production generally shows a fast decreasing in the initial stage and a slow
decreasing in the later stage. However, the production of shale oil wells varies greatly
from depression to depression, and the production variation pattern varies among wells
in the same depression. In order to reveal the main control factors for high production
of Jiyang shale oil, the influence of geological and engineering factors on shale oil
production was quantitatively analyzed. A total of 17 specific geological and engineering
factors were considered, as shown in Table 1..

Table 1. Statistical of production influencing factors

Influencing factors | Parameters

Geological factors TOC, S1, GR, AC, CNL, DEN, ash content, clay content, sand content

Engineering factors | Fracturing fluid volume, sand added, CO2 volume, breaking pressure,
section length, stages, sand ratio, number of microseismic events

3.1 Initial Capacity Gray Relation Analysis

The geological, engineering and production data of the horizontal wells after fractur-
ing and were selected as the basis for analysis of production impact factors. The initial
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production (90-day average daily oil production) of each fracturing section is used as
the reference sequenceX0, the remaining 17 influencing factors are used as reference
sequences X;(i = 1,2,..., 17). The correlation between the initial production and influenc-
ing factors were calculated according to Eq. (4), and the results are shown in Tables 2.
and 3.. In order to clarify the primary and secondary relationships among the influ-
encing factors, the weights W;(i = 1,2,..., 18) of each influencing factor are further
calculated based on Eq. (5), as show in Fig. 1. It can be seen that the weight of fluid
used and sand addition is the largest among the factors, and the weight of TOC, AC and
ash content among the geological factors are all above 5.0. It indicates that fracturing
design is the main factor affecting the initial production, and oil content, pore space and
compressibility are the main geological factors affecting the initial production.

Table 2. Correlation between geological factors and initial production

Influencing | TOC | AC GR AC CNL |DEN |Ash Mud Sand
factors content |content |content

Correaltion |0.073 |0.032 |0.006 |0.064 |0.009 |0.011 |0.068 0.017 0.044
degree

Table 3. Correlation between engineering factors and initial production

Influencing | Fracturing | Sand | CO, volume | Breaking | Section | Stages | Sand | number of

factors fluid added pressure | length ratio | microseismic
volume events

Correaltion | 0.134 0.331 | 0.006 0.058 0.025 0.005 |0.105 |0.121

degree

To verify the reliability of the results of gray relation analysis, principal component
analysis was used to analyze the geological and engineering factors separately, and the
importance of the influencing factors was evaluated according to the coefficients of
each feature in the principal components. Firstly, the principal component analysis was
done for the geological factors, and the analysis results are shown in Table 4. From the
analysis results, we can see that the cumulative contribution of the variance of the first
5 principal components is 94%, that is, the first 5 principal components can explain
94% of the information of the 10 factors, so only the first 5 principal components are
needed to replace all the data information. The coefficients of each influence factor in
these 5 principal components are shown in Table 5, and the larger the absolute value
of the coefficients, the more information the principal component reflects about that
influence factor. From Table 5, it can be seen that the coefficients of TOC, AC, DEN and
ash content are relatively large and are the main geological parameters affecting yield,
which basically coincide with the results of gray correlation analysis.

The results of the principal component analysis of the engineering factors are shown
in Table 6. The first 4 principal components can represent 90% of the information of all
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Fig. 1. Bar chart of weight of production influencing factors

Table 4. Principal component contribution of geological factors

Index Component 1 | Component 2 | Component 3 | Component 4 | Component 5
Standard 0.47 0.27 0.07 0.05 0.04
deviation

Variance 0.49 0.28 0.08 0.05 0.04
contribution

Cumulative | 0.49 0.77 0.85 0.90 0.94
variance

contribution

8 engineering factors. The coefficients of each influencing factor in the first 4 principal
components are shown in Table 7, and it can be seen that the coefficients of fluid volume,
sand addition, sand ratio and microseismic events are relatively large, which are basically
consistent with the results of gray correlation analysis The results of the analysis of
production influencing factors based on gray correlation are more reliable and can be
used for the analysis of the main control factors of shale oil initial production.

3.2 Analysis of Production Influencing Factors at Different Production Stages

In order to reveal the degree of influence of geological and engineering factors on pro-
duction at different production stages, the average daily oil production data of horizontal
wells for 180 days and 270 days were used as the reference sequence X0. Based on gray
relation analysis, the correlation degree between the comparative sequence of influencing
factors and the reference sequence was calculated, and the weights of each influencing
factor when the reference sequence was the average daily oil production of 90 days,



Sensitivity Analysis of Influencing Factors of Production

131

Table 5. Distribution of principal component coefficients of geological factors

Influencing | Component 1 | Component 2 | Component 3 | Component 4 | Component 5
factors
TOC 0.64 —0.09 —0.05 0.19 —0.26
S1 0.01 —0.18 —0.36 —0.17 —0.23
GR —0.04 0.12 0.34 —0.37 0.02
AC —0.41 —0.16 —0.20 —0.14 0.41
CNL —0.10 0.36 0.13 —0.20 -0.27
DEN -0.08 0.12 -0.03 0.57 0.23
Ash content | 0.20 -0.27 0.61 0.17 -0.07
Mud —0.24 0.32 0.25 0.14 0.03
content
Sand 0.00 0.01 0.26 -0.46 0.07
content
Table 6. Principal component contribution of engineering factors
Index Component 1 | Component 2 | Component 3 | Component 4
Standard deviation 0.08 0.04 0.03 0.01
Variance contribution 0.43 0.24 0.18 0.05
Cumulative variance contribution | 0.43 0.67 0.84 0.90

Table 7. Distribution of principal component coefficients of engineering factors

Influencing factors Component I | Component 2 | Component 3 | Component 4
Fracturing fluid volume 0.92 0.78 0.03 0.03
Sand added 0.34 0.38 0.94 0.17
CO2 volume -0.26 0.17 0.03 0.10
Breaking pressure 0.45 0.16 0.28 -0.25
Sand ratio 0.08 0.01 0.03 0.20
Section length 0.05 0.36 0.17 0.05
Stages 0.63 0.75 0.09 0.12
Number of evets 0.32 0.52 0.30 0.81

180 days and 270 days respectively were counted, and the summary results are shown
in Table 8. From the analysis results, it can be seen that the influence of TOC, S1 and
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AC in geological factors on the 270-day average daily oil production is increased com-
pared with the 90-day and 180-day average daily oil production, and the weight of oil
content can reach 18.54. The influence of engineering factors of fluid usage and sand
addition on production gradually decreases with the extension of time. This is because
the production at the early stage of production mainly comes from the fracture fracture
network. Due to the strong stress sensitivity of shale oil, the formation pressure gradu-
ally decreases and the fracture conductivity gradually becomes worse as the subsequent
production proceeds, resulting in the influence of engineering factors on production
gradually weakening. As the pressure propagates from the vicinity of the wellbore to the
periphery, the reservoir matrix part gradually participates in the mobilization, and the
influence of geological factors on production gradually increases, which verifies with
the results of the analysis of production influence factors in different production stages.

Table 8. Weighting of factors influencing production at different production stages

Influencing 90-day average daily | 180-day average daily | 270-day average daily
factors oil production oil production oil production
TOC 6.65 8.96 11.56
S1 1.82 4.65 8.06
GR 0.52 0.66 1.05
AC 5.83 7.63 9.89
CNL 0.82 1.24 1.93
DEN 1.05 2.07 1.75
Ash content 6.22 5.97 6.04
Sand content 1.59 1.74 2.80
Mud content 4.05 3.24 3.59
Fracturing fluid | 12.20 12.03 9.81
volume

Sand added 30.11 24.98 22.15
CO2 volume 0.53 0.50 1.14
Breaking 5.30 5.14 3.77
pressure

Sand ratio 2.24 1.99 2.71
Section length 0.49 0.76 1.05
Stages 9.56 7.63 7.53
Number of evets | 11.02 10.79 5.17
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4 Conclusion

(1) The results of the main control factors of the initial production based on gray relation
analysis show that the initial production of volumetric fractured horizontal wells is
better correlated with engineering factors, and the fracturing design is the main factor
affecting the initial production.

(2) Analysis of the factors influencing production at different stages shows that the
influence of engineering factors on production gradually diminishes as production
proceeds, the influence of geological factors on production gradually increases, and
the oil in matrix gradually becomes involved in mobilization.

(3) According to the analysis of the production controlling factors of Jiyang shale oil,
the sweet spot with better oil content and porosity should be preferentially selected
for development, and the production of shale oil wells could be further improved by
optimizing the amount of fluid used and sand addition.

(4) In future research, it is necessary to further analyze the synergistic effects of influ-
encing factors on production to effectively guide the deployment of horizontal shale
oil wells and fracturing design.

Acknowledgments. The project is supported by Shandong Province Postdoctoral Innovation
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Abstract. In the development of oil and gas fields, the accurate measurement of
oil, gas and water production rate is the basis for calculating the key parameters
such as water cut (WCT) and gas-oil ratio (GOR), as well as the important basis for
formulating the stimulation measures and field development plans. The traditional
surface flowing test is mainly carried out with the help of three-phase Separator
or multiple phase flowmeters (MPFM), which is not only complicated operation
process and long operating duration time, but also cannot be implemented for
environmental protection reasons in some special location. In recent years, with the
acceleration of digital oilfield transformation, many wellhead digital multi-phase
flowmeters have appeared in the market. However, due to the interference of flow
rate, high water cut, high gas content and other factors, the measurement accuracy
of most three-phase flowmeters in the market is not good enough, which cannot
meet the actual requirement of the customers. In view of the above problems,
the design and development of a new on-line three-phase flowmeter is carried
out, and the hardware and software system of the flowmeter is upgraded with an
iterative and innovative method. Through large-scale field pilot tests to evaluate
the performance of equipment, find out the problems during the testing process,
and continuously improve the hardware design, software function and core model
of the product, so that the instrument can detect the gas and liquid production
rate online in real time, and realize real-time data collection and communication
through the deep integration with the Internet of Things technology. Present the
data to the user in a visual manner in the same time, thus, the whole field data
sharing can be realized. The product was put on line in a domestic oilfield after pilot
test. The application results show that the product has high stability and the ability
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to work under complex conditions, and can meet the needs of flow measurement
under high GOR and high water cut in the oilfield, and has the feasibility to widely
expand the application in domestic and foreign oil fields.

Keywords: three-phase flowmeter - online detection - The Internet of things -
iterative innovation - water content rate - error rate

1 Introduction

During oil and gas development, continuous monitoring of wells to obtain pressure,
temperature and production data is key to grasping well production status and analyzing
reservoir dynamics parameters. Among them, it is particularly important to accurately
measure the three-phase flow, which allows calculation of the well’s water cut and gas-
to-oil ratio. These parameters are a significant basis for formulating oil well stimulation
measures and development adjustment plans.

Oil, gas and water are multi-phase flows with complex flow patterns in the well, which
increases the difficulty of flow measurement. Normally, truck-mounted three-phase sep-
arators are typically used at the wellhead to separate and measure oil, gas and water rate.
In addition, stationary three-phase separators at oil and gas processing stations can also
be used to separate mixed phases and obtain information such as water cut. However,
these processes are laborious, expensive, and do not allow continuous metering. There is
an urgent need for reliable online three-phase metering devices for oilfield development
and production to reduce investment and improve metering efficiency.

By deploying three-phase flow meters in oil fields, it can realize online automatic
collection of oil, gas and water production data from single wells and clusters, optimize
the surface process of oil and gas field enterprises, reduce operation costs, improve the
accuracy and timeliness of production management and geological reservoir analysis,
and provide support for the digital transformation [1-4].

However, due to the oil, gas and water in different flow rates (liquid phase, gas
phase flow rate) and gas-liquid ratio to form a variety of flow patterns, the use of three-
phase flowmeter for multiphase flow testing is relatively complex [5, 6]. For cross-tube,
including laminar flow, bubble flow, segment plug flow, fog flow, etc., by many factors
and measurement difficulties, the measurement accuracy of three-phase flowmeter com-
pared with the traditional three-phase separator has a large error, which as a technical
bottleneck to limit the three-phase flowmeter large area applications [7, 8]. It is usually
conducts continuous field pilot tests on three-phase flowmeters, using iterative innova-
tion to continuously improve the measurement results, so that three-phase flowmeters
can more accurately obtain the flow of oil, gas and water to meet the requirements of
oilfield production management and reservoir dynamic analysis.
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2 Online Three-Phase Flowmeter Development Process
and Problems

2.1 The Test Platform and Development Process of the First Generation
Equipment

The online three-phase flowmeter in this study is developed in cooperation with the
top multi-phase flow laboratory in China according to the actual needs of the oilfield,
breaking the foreign technological monopoly [9-12] and achieving the completely inde-
pendent research, achieving the scientific goal of domestic replacement of all similar
products in the oilfield.

Fig. 1. Online three-phase flowmeter appearance structure diagram.

At the end of 2017, the first generation of online three-phase flowmeter product
prototype was successfully developed (as shown in Fig. 1). The product, based on a
compact integrated measurement solution with multiple sensors, has achieved complete
independent development and localization in software and hardware technology. With
many advantages such as green and radiation-free measurement process, safety, reliabil-
ity, high accuracy, modular design and low maintenance cost, it fills the gap of low-cost,
non-separated three-phase flow online measurement technology between China and west
developed countries in the world. In 2018, the product was completed testing and put
on line for the first field pilot test.

After the successful of the maiden voyage, five domestic oilfields were selected
for phase II testing at the same time. By deploying 100 sets of three-phase flowmeter
equipment in different scenarios such as single well wellhead, inter-meter backdown
metering and cluster wells metering, the production of oil, gas and water is automatically
collected online without separation, meanwhile, the accuracy of data meets the demand
of oilfield.
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2.2 Technology Principle

The new online three-phase flowmeter consists of four main modules: venturi mea-
surement module, microwave detection module, electro-laminar imaging module, data
processing and communication module.

(1) Venturi measurement module

Dual differential pressure venturi flow meters are used to measure the total flow
rate in the gas and liquid phases. The differential pressure flowmeter module consists
of a venturi with a differential pressure sensor, a pressure sensor and a temperature
sensor, connected to a data acquisition and processing module.

(2) Microwave moisture content detection module

The microwave water content module includes a number of microwave sensors
with different spatial position directions and angles, which consist of a transmission
line setinside a seal, a seal set inside an insulating medium, and an insulating medium
setinside a tube. The total circuit module uses the average value of microwave phases
to determine the water phase content in the three phases.

By combining the power attenuation and phase angle shift of the detected
microwaves in the fluid with a water cut calculation model, the water cut can be
calculated as per detected data. This method is more accurate and less influenced by
the mineralized content than traditional sensors with RF conductivity technology.

(3) Electromagnetic measurement imaging and display module

Based on the electro-layer imaging technique, the distribution is obtained by
applying electrical excitation to the mixed-phase fluid, detecting the boundary value
changes, and using mathematical means to invert the distribution of the electrical
characteristic parameters inside the mixed-phase fluid. The display module is con-
nected to the data acquisition and processing module and is used to display the results
of flow calculations from the output data acquisition and processing module.

(4) Data processing analysis and communication module.

The data processing module is used to receive the differential pressure signal of
homogeneous flow output by differential pressure flowmeter, and substitute it and
volume flow rate into multi-phase flow empirical model to calculate the average
density of homogeneous flow. At the same time, the working gas density can be
calculated from the pressure and temperature signals collected by the differential
pressure flowmeter and the gas component of the oil-gas-water three-phase flow.

In addition, The data processing module obtains the three-phase flow rates of oil,
gas and water by solving a linear system of equations for the interrelationship between
the average density, average dielectric constant and phase content of the homogeneous
flow, and uploads them to the system through the communication system for use by all
relevant departments in the oilfield for queries.

3 Performance Enhancement and Product Upgrade

By summarizing the technical problems of the first-generation machine, the researchers
conducted countermeasure research in different test bases with the idea of iterative
innovation. Through continuous improvement of the hardware design, software functions
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and core model of the product, the second generation of the product was formed, which
has been greatly improved in terms of environmental applicability, working stability and
performance index.

Table 1. Iterative innovation upgrade content of three-phase flowmeter

Items

Improvement content

Improvement effect

Hardware Design

Improved differential pressure
transmitter, using a new capillary
differential pressure transmitter to
replace the traditional pilot pressure
differential pressure transmitter

Improved the stability of equipment
working for a long time and the
consistency between different
equipment and different time
periods of the same equipment.
Improved the applicability to
frequently changing well conditions
and the feasibility of sensor data,
and enhances the robustness of the
model.

Avoided the problem of signal
distortion caused by occasional lead
pipe blockage

Improved environmental suitability
in terms of equipment differential
pressure sensors, interface piping
design, etc

The differential pressure transmitter
adopts professional capillary
pressure to replace the original
metal pipe pressure, which improves
the adaptability to low temperature.
Improved interface and piping
design to further reduce the
requirement for insulation work

Improved hardware design to
facilitate on-site maintenance

Reduced device size for easy
transportation, installation,
post-operation and maintenance.
Improved display to support instant
wake-up and reduce energy
consumption

JImproved enclosure design, added
keys and enhanced site protection

Improved the box design to reduce
the difficulty of opening the box for
maintenance by reducing the size.
Added buttons to facilitate user’s
on-site operation of inverted wells
and data inquiry.

Improved the effect of rainproof and
dustproof

(continued)
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Table 1. (continued)

Items Improvement content Improvement effect

Software Features | Support inverted well operation, The device added buttons to support
real-time data query, and historical | user field operation and reverse well
data query change, and also reserves interfaces

to support linkage with automatic
well change systems.

Supported real-time data and
historical data query, including
liquid, oil, gas, water, water content,
gas-oil ratio by day

Core Model Introduce a new algorithm Artificial intelligence-based deep
architecture of artificial intelligence | learning for real-time classification
+ classical model of flow patterns and flow regimes,

and data computation based on
classical fluid dynamics models.
Fully reuse the existing calibration
data of each well to support data
migration and assist in AI model
classification training.

On the basis of achieving
consistency among equipment, unify
models across ranges and equipment
areas to improve the applicability of
equipment to new well conditions
and significantly reduce error levels

The second-generation prototype was quickly entered several oilfield plays for field
testing and evaluation, targeting single-well metering and covering a wide range of
extraction methods, including natural flowing well, rod pump and ESP wells. Test well
conditions include high GOR and high water cut wells located in the Northwest field
with flow rates from 100 to 350 bbls/d, gas production rates of 0 to 15,000 m3 /day
and water cut from 50% to 99%; and low production and high water cut wells located
in the Northeast field with flow rates of 50 to 100 bbls/d. Through testing to verify the
applicability of the three-phase flowmeter in multiple production ranges, the product
supports the provision of second-level online flow data, which can help users more
effectively determine the trends and changes in oil and gas well production, providing a
reliable basis for oilfield production management.

4 Field Applications

After the new online three-phase flowmeter product was put on line, a pilot test was
conducted in a domestic E&P company of China National Petroleum Corporation, which
mainly included the following four purposes.
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(1) Verify the performance of real-time online three-phase flowmeter in oilfield
environment.

(2) Obtain data on the applicable working condition range and metering accuracy of the
real-time online three-phase flowmeter.

(3) Verify the stability of real-time online three-phase flowmeter under extreme
environmental conditions.

(4) Update and iterate on the equipment to meet the needs of each oilfield technology
promotion in response to the product usage effect.

Fifteen units are deployed for block metering and single well metering in the X field
owned by the exploration company, involving various well types such as pumping and
electric submersible pump wells, with liquid volumes ranging from 100-1500 bbls/day,
gas volumes ranging from 2000-10000 m3/day, and water cut ranging from 0-100%,
basically covering all metering scenarios and well conditions in the field.

Combined with the existing metering and verification vehicle, tipping bucket meter,
mass flow meter, vortex flowmeter and other equipment, the well station gas-liquid
two-phase accuracy comparison and verification in a flexible manner can be carried out.

Among the 12 devices used for liquid phase validation, five had relative errors below
3% and seven had relative errors below 5%. During the period, a one-month continu-
ous monitoring comparison was done in X-121, and the comparison data are shown in
Fig. 2. The daily production trends measured by the three-phase flowmeter and mass
flowmeter were basically the same, and the performance and stability of the equipment
were verified.

219-04.01
20190403
2019-04-05
2019-04-09
219.04-11
219-04-13
2019.-04-15
219-04-17
2019-04-19
2019-04-21
2019-04-23
2019.04-25
2019-04-27
219-04-29

——Three-phase flow meter — Mass flow meter

Fig. 2. Comparison of daily fluid production from wells at station X-121

The gas phase verification results of the 10 devices showed that the relative errors
of the devices were all less than 5%. Moreover, the water content validation of 8 of the
above devices showed good performance. Specifically, the absolute error of 6 devices
are less than 3%, and the absolute error of 2 devices is less than 5%.
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The test results show that the accuracy of the new three-phase flowmeter in the three
measurement indexes of liquid volume, gas volume and water content can meet the needs
of oilfield production, while combined with its higher stability can fully meet the actual
production needs of the oilfield.

5 Conclusions

(1) The new online three-phase flowmeter has a novel design and reliable performance,
and supports second-level real-time online access to oil, gas and water flow data
functions, which can help oilfield users more effectively determine the trend and
changes in oil and gas well production and provide a reliable basis for oilfield
production management.

(2) Three phase flowmeter through the continuous field test test, find the problem, put
forward solutions, and constantly improve the reliability and measurement accuracy
of the product, and gradually completed the upgrade from the first generation to
the second generation. Achieved a typical domestic oil field 0-100 tons / day flow
detection, comprehensive coverage from high gas content low water content to low
gas content high water content conditions, and the detection accuracy from 15%
error rate to within 10% of the error rate.

(3) Field accuracy verification results show that the new online three-phase flowmeter
can fully meet the demand of oilfield production in terms of the accuracy of liquid
volume, gas volume, water content and other parameters measurement. In addition,
the product has high stability and the ability to work under complex conditions, and
can complete the flow measurement in various conditions in the oilfield, which is
suitable for expanding applications in oil fields at home and abroad.
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Abstract. “Massive” logging data assets, due to their insufficient storage meth-
ods and normalization, cannot be quickly and accurately called up, become a
“data island”, so that their value has not been fully explored. The current appli-
cation scope of artificial intelligence is focused on single method research, with
few system applications. However, intelligent interpretation requires the use of a
large amount of logging data and related standard data. Based on a large num-
ber of documents related to large logging database and logging artificial intel-
ligence, starting with supervised, unsupervised and semi-supervised intelligent
algorithms, this paper expounds the application status quo and applicability of
intelligent logging interpretation technology through machine learning for con-
ventional logging lithology identification, automatic layering, sedimentary micro-
facies identification and reservoir identification. This paper briefly introduces the
application status quo of logging data governance and mining technology. This
paper summarizes the process of intelligent interpretation method, as well as the
intelligent logging interpretation method and system based on a physical model
under a standard big data platform. This paper discusses the existing problems
in intelligent logging interpretation and evaluation and the feasible development
direction of future research.

Keywords: Artificial intelligence - Algorithm - Lithology identification -
Intelligent logging interpretation

1 Introduction

Geophysical logging is a method to measure geophysical parameters by using geo-
physical characteristics such as electrochemical characteristics, electrical conductivity,
acoustic characteristics and radioactivity of rock strata. During oil drilling, logging must
be carried out after drilling to the designed well depth, so as to obtain various petroleum
geology data and engineering technical data as the original data for completion and
development of oilfields, which is called completion logging or open hole logging. All
logging after casing running in oil wells or during production are generally called pro-
duction logging. The development of logging has generally experienced four stages such
as analog logging, digital logging, numerical control logging and imaging logging.
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Logging data processing and interpretation needs interpretation experts with rich
regional geological experience, but even in the same area, the interpretation results of
different experts are different. With the continuous development of interpretation and
evaluation software, various logging interpretation software with complete functions has
emerged athome and abroad, which has improved the accuracy and level of logging inter-
pretation, promoted the progress of interpretation technology and solved some difficult
problems of logging interpretation and evaluation. With the rise of big data and artifi-
cial intelligence, faced with more and more complex reservoir interpretation problems,
industry experts have also realized the urgency of developing intelligent interpretation
and evaluation systems and began to explore and study in this field [1].

Major international oil companies and service companies are also adjusting their
development strategies, making continuous efforts in the fields of data science and arti-
ficial intelligence, and developing their own intelligent interpretation and evaluation
systems. For example, Schlumberger has built its own intelligent logging processing
and interpretation platform. Major oil companies and IT companies have cooperated in
the field of intelligent application, and formed joint strategic research teams such as Shell
+ Microsoft and ExxonMobil + Microsoft, thus making many beneficial explorations
in the construction of big data platform for oil and gas exploration and development,
the creation of ecological environment for data sharing, and the improvement of data
processing and interpretation quality, showing the great development potential of big
data and artificial intelligence technology in the oil and gas industry [2].

The information abundance of data interpretation determines the application depth
and breadth of logging technology, where the important link depends on the development
of interpretation methods and software. As the largest producer and user of logging
data in China, CNLC faces the problems such as diverse logging data types, strong
professionalism and complex data operation [3].

Since 2010, China National Logging Corporation has been committed to the con-
struction of a unified logging database with reference to the architecture of the CNPC’s
dream cloud platform for exploration and development. The construction of logging data
resources has gone through three stages such as data management, data sharing and data
application. CNLC has completed the centralized storage and management of scattered
data, data sharing for individual applications and data mining applications. This has pro-
vided the required data for all kinds of professional software, helped the interconnection
between systems and services, and supported the convenient sharing of data and results.
On the basis of predecessors’ research results, CNLC has established a data lake based
on standard big data platform, followed the road of integration of logging interpretation
software, realized the organic combination of three key elements: data, algorithm and
scenario, improved the efficiency of logging analysis, and promoted the transformation
of logging interpretation from single well interpretation to multi-well evaluation and
reservoir analysis [4-8].

2 Data Governance Based on Logging Big Data Platform

Geophysical logging, as the “eye” of deep formations, has the advantages such as many
methods, high resolution and large amount of information, and can provide continu-
ous and accurate in-situ physical parameters such as electrical, acoustic and nuclear
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parameters for reservoir evaluation. After the professional reorganization of CNLC, the
logging data of 16 oil and gas fields have many types and different standards, leading
to extremely complex logging data; in addition, these data cannot be directly applied,
forming an “island” of data, which urgently needs data governance. Focusing on three
major tasks: automatic logging data sorting technology, automatic data flow technol-
ogy of logging data: sorting-data governance-data warehousing and logging big data
analysis technology, CNLC has carried out logging data governance work to transform
unstructured data into structured data.

In order to reduce manual participation as much as possible and improve the degree
of automation in the process of data governance, a multi-source heterogeneous data
governance architecture based on semi-supervised learning algorithm is very suitable
for logging data governance (see Fig. 2). Its basic idea is to integrate heterogeneous data
describing the same entity in the real world from different data sources into structured
data. The specific process includes four parts such as information extraction, pattern
matching, data matching and data fusion (see Fig. 1).The actual results show that the
architecture can not only effectively solve the “data island” state, but also significantly
improve the data quality with as little manual participation as possible. After governance,
the data call is more convenient so as to meet the requirements of different logging
interpretation and geological application [14, 40—43].

Information . Pattern | Data Data fusion
extraction o matching matching

Fig.1. Multi source heterogeneous data governance scheme.

CNLC had formulated logging data warehousing specifications and logging data
management specifications respectively for new wells and old wells. They standardize
the storage file range, file format and file naming method of original logging data and
result data and fully consider the current situation of the original logging database, Based
on LEAD software, CNLC has developed a tool for automatically sorting, naming and
exporting data. With the goal of building the brand of logging companies CNLC has uni-
fied the drawing style and formulated complete sets of drawing templates, headers and
results table examples for conventional combination logging, imaging logging, produc-
tion logging and engineering logging, unified curve line type, name and section filling;
and standardized the symbols of logging interpretation conclusion and lithology. More-
over, CNLC has unified the mapping specifications and standardized the naming and
dimensions of logging original logging curves and result curves. CNLC has established
the standard name and used name, and directly managed the old well data in the original
logging database to the big data platform. The new well data generated in real time is
directly uploaded to the big data platform through the integrated application system.

The scope of logging data governance is defined in five logging types, which mainly
include well basic information, logging curve data, map type data and table type data.
It mainly evaluates the “six properties” of the data after governance, namely accuracy,
completeness, standardization, uniqueness, consistency and timeliness. In view of the
great differences in data storage formats of historical logging data, the non-uniform data
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Fig.2. Multi-source heterogeneous data governance architecture based on semi-supervised
learning (according to Wei-xiong Rao, et al.).
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Fig.3. Scope of logging data governance and evaluation of “six properties” after logging data
governance.

standards, and large data governance workload, there are 16 data formats and various
variants of logging data achievement files, and so on, relevant decompilation tools and
warehousing tools are correspondingly matched. At present, the governance of logging
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data of hundreds of thousands of wells has been completed, which has laid a data
foundation for artificial intelligence based logging interpretation (see Fig. 3).

3 Present Situation and Applicability of Intelligent Logging
Interpretation

The development of artificial intelligence has a long history, and it is a science based on
computer technology. In logging, most machine learning models are shallow learning,
such as linear classifier, BP neural network, logistic regression, K-Means clustering,
support vector machine, principal component analysis, Gaussian mixture model, gradient
thruster and so on. There is usually only one hidden layer in these shallow learning
structures, that is, only one nonlinear feature extraction layer. Shallow learning can only
be effective for some simple or limited problems in general, but it is obviously at a
disadvantage in the face of complex and huge data [9].

The intelligent logging interpretation method is mainly a deep learning algorithm.
Deep learning network is an extension of traditional artificial neural network. Because of
its multiple hidden layers, the deep learning network can realize the mapping transforma-
tion from low-dimensional space to high-dimensional space through multi-layer nonlin-
ear transformation, thus distinguishing complex input data features in high-dimensional
space and realizing the identification and classification of complex input information.
According to the characteristics of an algorithm learning task, it can be divided into
supervised learning, unsupervised learning and semi-supervised learning. According
to its function, supervised learning can be divided into regression and classification.
Regression is to predict the occurrence probability of an object, and classification is to
classify the pattern class attribution of an object. According to whether there are labels
in the input data, it can be divided into supervised learning and unsupervised learning.
Unsupervised algorithms, such as clustering algorithm and dimension reduction algo-
rithm, such as fisser discriminant method, are effective in identifying complex oil-water
layers. Logical regression, support vector machine, proximity regression and decision
tree algorithms in supervised algorithms have high accuracy in identifying complex
lithology. On the basis of computer algorithm, semi-supervised algorithm is added with
human experience, so that the clustering effect is significantly improved by using a small
amount of labeled data and a large amount of unlabeled data. The semi-supervised clas-
sification task combined with unsupervised learning dimension reduction method can
improve the classification effect of supervised learning under the condition of insuffi-
cient labels. Swarm intelligent optimization algorithm is an algorithm that combines the
behaviors of animals such as foraging and avoiding obstacles, including bat algorithm,
ant colony algorithm and firefly algorithm, and is used to study the wave impedance
inversion method [46-53].

Industry scholars have used vector machine, neural network, fuzzy recognition and
traditional decision tree methods to identify lithology, and achieved good application
results [10—-12].Wang Hua et al. deeply analyzed the applicability of applying artificial
intelligence in logging data processing and interpretation from the traditional data mod-
eling method and machine learning algorithm in geophysical logging field. Chen Xi et al.
expounded that artificial intelligence based logging interpretation is feasible from three
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cores such as data model, physical simulation algorithm and artificial intelligence based
logging ecology, which can help logging analysts solve deeper geological problems [1,
13].

4 Artificial Intelligence Based Interpretation of Logging Data

4.1 Lithology Identification

The existing lithologic identification method is mainly to calibrate the logging curve
through a small number of logging cores, and use the obtained logging curve data to
identify the lithology of the whole interval. Intelligent interpretation method is com-
bined with logging processing and interpretation to identify lithology. Its general idea
is to select logging curves sensitive to lithology identification as input curves based on
core data and lithology sensitivity analysis of logging curves, so as to realize lithology
identification based on intelligent algorithm.

Decision Tree Algorithm is a kind of supervised learning. According to the weight
of logging parameters in clastic rock research area in lithology identification model, the
sensitivity of each parameter to lithology change is determined, so as to identify lithology.
The decision tree method of C5.0 has effectively improved the accuracy of lithology
identification. Decision tree algorithm also has high accuracy in identifying complex
carbonate rocks. For the model with huge data, XGBoost algorithm can be applied,
which adopts multithreading and distributed computing methods, greatly shortening the
training time. It has a good recognition effect on limestones and dolomites, followed by
argillaceous limestones, dolomites and argillaceous dolomites, and the recognition rate
of calcareous dolomites is low. Boosting Tree algorithm can also effectively determine
the lithology of complex glutenites [15—18].

The random Forest Algorithm, which shows great advantages in thin layer identifica-
tion, has strong generalization ability, insensitivity to feature loss, fast training speed and
simple implementation. Based on the lithology sensitivity analysis of logging curves,
a suitable logging curve is selected as the input curve, and the lithology identification
model of complex carbonate rocks is established by using random forest algorithm,
which is accurate for lithology identification [10].

Another advantage of random forest algorithm is lithology identification of volcanic
rocks. The lithology of volcanic oil and gas reservoirs is changeable, so it is difficult
to identify them accurately by conventional methods. Different types of volcanic rocks
include volcanic breccia and fused breccia. Lava mainly includes basalt, andesite, dacite
and rhyolite. Due to their differences in chemical composition, mineral composition
and physical properties, there are some changes in their corresponding logging response
characteristics, thus identifying lithology [21].

Principal Component analysis (PCA) is one of unsupervised learning, and the key to
identification is to convert the comprehensive response characteristics of various logging
curves to the principal component of prominent lithology, so the identification accuracy
of alternate thin layers of volcanic rocks or shale with complex lithology is high [20, 22].
By combining BP neural network lithologic prediction model and Dropout mechanism,
Dropout-BP neural network combines conventional logging parameters, upgrading the
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conventional two-parameter crossplot to a multi-parameter neural network, and integrat-
ing the composition, structure and electrical properties of volcanic rocks to carry out
lithologic prediction, which is more effective [23].

Data mining method of logging lithology identification based on emergent self-
organizing mapping. Large-scale neurons and borderless torus mapping are used, visu-
alized by U matrix, and finally clustered and classified by manual interaction. This
method can effectively find hidden patterns in high-dimensional data, and is especially
suitable for logging identification of complex lithology [24].

The application of multivariate statistical algorithm needs to preprocess logging data,
including logging parameter selection, logging data normalization and dimensionality
reduction. Its application effect is good [25], but it can only solve the simple linear
relationship problem.

By constructing the technology of recovering the missing core picture information
and combining with migration learning, mine lithology is identified. The corresponding
core sample information is automatically synthesized from the logging curve data of
non-coring wells, and the existing data is automatically learned and analyzed by using
migration learning technology, so that the core sample information of coring wells is
migrated to non-coring wells, and a logging lithology identification model aided by core
samples is established. The establishment of intelligent identification model of cores
based on migration learning is helpful to improve the accuracy of lithology identification
of oil and gas reservoirs with complex cores, and logging curves are used to predict
lithology quickly and accurately [26].

In order to integrate the algorithms and modules into the unified software, the data
resource Lead software has been developed by CNLC, which includes reservoir param-
eter calculation module based on conventional logging data, single porosity calculation
module based on clastic rock, CRA module based on carbonate rock calculation and
CLASS module based on lithology classification. Its advantage is that it can choose the
appropriate calculation model according to the background of different regions, which
is convenient for rapid processing and interpretation of logging data. But the model
coverage is not comprehensive enough.

4.2 Automatic Layering and Identification of Reservoirs

There are three main guiding ideas for automatic layering: (1) variance analysis of
logging values and finding inflection points and half amplitudes on curves. The guiding
ideology of variance analysis is that the intra-layer difference is small and the inter-layer
difference is large. At the same time, the inflection point and half amplitude point are
found on the logging curve by differential and slope extreme point. (2) According to the
logging data, judge the rock attributes or calculate the membership degree of rocks, and
merge the same lithology, so as to realize layering (see Fig. 4). (3) Divide strata by flow
unit method based on fluid properties. In actual interpretation work, automatic layering
is carried out according to the priority order of fluid > lithology > curve [29, 30].
Three kinds of methods: mathematical statistical methods include intra-layer dif-
ference method, ordered cluster analysis, extreme variance clustering method and
change point analysis method (least square method and maximum likelihood estima-
tion method); Non-mathematical statistical methods include activity function method
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and wavelet transform method; Artificial intelligence methods include cluster analysis,
fuzzy mathematics and neural network methods. These methods have their respective
advantages and disadvantages.

Mathematical statistical method is strict in mathematics, which can keep the uni-
formity inside the rock strata, the difference between the rock strata is great, and the
calculation amount is large. In addition, It has a very high requirement for the one-to-one
correspondence between logging information and geological information. If it can’t be
achieved (in fact, it can’t be completely achieved), the layering result is a perfect math-
ematical result, which is not easy to meet the requirements of geological application.
Among the non-mathematical statistical methods, the activity function method has good
application effect and can quickly identify various types of curves; Wavelet transform
can simulate the artificial interpretation process of “from coarse to fine, layering step by
step” through multi-scale analysis, so as to avoid layering on a visual level and being
unable to distinguish between the local and overall information of strata [27].

raw data Data Dividing Identifying oil and
logging »| selection |—»| preproce |—»| reservoirs/non [—| water layers within
data ssing reservoirs areservoir
| Feedback output |

Fig.4. Technical route of automatic layering and identification with logging curves.
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Fig.5. Flow chart of multi-granularity clustering method (according to Ji Qingqing).

In the application of artificial intelligence methods, the multi-granularity clustering
algorithm with good effect belongs to supervised learning (see Fig. 5). This intelligent
algorithm can quickly and accurately solve various classification problems, extract the
characteristics of different layered logging curves by learning standard logging curves
and layering results, and then identify oil-water layers on the basis of dividing reservoirs.
In the case of standard big data, firstly, the original logging curves are analyzed by
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principal component analysis, and then the relationship between each original logging
curve and principal component is analyzed by principal component load matrix, and
then the logging curves used for automatic layering with logging curves are selected
[28, 44, 45].

The other is a knowledge-driven neural network reservoir evaluation model (KPNFE)
based on the knowledge map of reservoir logging. Its functions mainly include: (1) multi-
dimensional and multi-scale extraction of characteristic parameters that describe oil and
gas reservoirs in detail; (2) The entities, relationships and attributes associated with
these characteristic parameters are represented as vector characteristic graphs by graph
embedding technology; (3) Realizing intelligent identification of oil and gas reservoirs;
(4) Organically integrate expert knowledge into intelligent computing, and establish an
evaluation system and optimization algorithm for potential layer recommendation [32].
The KPNFE model inherits and promotes expert knowledge and experience, effectively
solves the problem of robustness in oil and gas reservoir identification, and its calculation
results are highly interpretable and accurate, and it is an effective method for re-logging
evaluation of old wells in old areas with high efficiency and high quality.

4.3 Sedimentary Microfacies Identification

The traditional method of identifying sedimentary microfacies is achieved manually by
geologists according to their own knowledge and experience. This manual interpretation
is subjective and time-consuming, and may introduce human bias. The method of iden-
tifying sedimentary microfacies based on logging curves usually includes three steps:
logging curve layering, feature extraction and classification [31].Typical classification
algorithms include Bayesian criterion, linear discriminant analysis, fuzzy logic, convo-
lutional neural network method, K nearest neighbor algorithm, SVM, ANN and so on.
The process of depth learning method based on logging curve is as follows: (1) data
preprocessing: (2) data marking and division: (3) model training: (4) model verification.
However, due to its own limitations, a single intelligent method is difficult to complete
the task of sedimentary microfacies identification alone.

Convolutional neural network method takes into account the morphological change
characteristics of logging curves in depth direction and the need to integrate the three
steps of curve layering, feature extraction and classification. Aiming at the multi-scale
and time series of logging curves, a logging sedimentary microfacies identification
model, Improved U-net, with multi-scale characteristics constraints has been established,
which can well identify distributary channel, channel side margin and distributary bay
with different scales. KD-SegCaps, a logging sedimentary microfacies identification
model with time series constraints, can well identify sedimentary microfacies such as
sand flat, sand mud flat and mud flat [31]. Using DMC-BIiLSTM, an intelligent identi-
fication method of sedimentary microfacies based on feature construction (DMC) and
bidirectional long-term and short-term memory network (Bilstm), the geological trend
characteristics, median filtering characteristics and clustering characteristics have been
constructed. Compared with the convolutional neural network method, this method is
helpful to extract the hidden features of logging curve sequence, and has better recogni-
tion performance for sedimentary microfacies such as distributary bay, front sheet sand,
distributary channel, estuary bar and channel side maigin [39].
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S Intelligent Logging Interpretation Method Process and Data
Architecture

Intelligent logging interpretation integrates all kinds of deep learning algorithms com-
bining the characteristics of logging interpretation business, so that intelligent algorithms
are integrated with traditional logging interpretation concepts. Its steps are intelligent
model training, model combination and automatic recommendation (see Fig. 6).

The Digital Reservoir Research System (RDMS) pioneered by Changqing Oilfield
is divided into four layers such as data layer, data link, support layer and application
layer. Functionally, it includes five platforms: basic management, data service, collab-
orative research, decision support and cloud software [1, 13, 34, 35]. Inspired by this
model, CNLC has established a big data ecology based on logging data lake (see Fig. 7).
Taking logging data as the main body, CNLC has built up a regional lightweight lake by
gathering logging data at home and abroad. Data are transmitted to various professional
libraries by means of automatic collection of the Internet of Things and manual stan-
dardized collection, and then merged into the data lake after cleaning and processing.
Real-time data and video data of industrial control are stored nearby [4]. CNLC has
studied key technologies such as data integration and professional software interface,
and developed and integrated exploration and development business model, multi-source
data of oil and gas reservoirs, multidisciplinary professional software and online anal-
ysis tools. Realizing the coupling and integration of professional software, intelligent
application and data lake. In the application scenario, data loading can be completed.
On the basis of core analysis, the interpretation conclusion has been re-recognized, the
logging characteristic values of the target horizon of each well have been marked, and
the sample data have been submitted in batches by layers. In addition, these data are
stored in the local computer work area, and can be adjusted and updated to the sample
library at any time. The mode from big data platform to data lake plus interface can meet
the requirements of different logging geological structure analysis scenarios.
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Standard big data
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| Automatic data feature extraction |

| Key parameters of the model |

Model1. Model2.

|
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or red
complex relationships |
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Fig.6. Intelligent Interpretation Method Process.
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6 Summary and Prospect

There are many kinds of intelligent interpretation methods, and different methods have
their own advantages and disadvantages in lithology identification, automatic stratifica-
tion, hydrocarbon reservoir identification and sedimentary microfacies identification of
clastic rocks, complex carbonate rocks, shale and volcanic rocks. Through model train-
ing, the optimal method can be obtained so as to improve the interpretation accuracy
and efficiency of complex reservoirs.

Big data is the foundation of intelligent interpretation. In practice, a high variable
dimension may not have high analytical accuracy, and sometimes it may even have the
opposite effect. Through the logging data management and data quality evaluation of the
big data platform, the logging data of hundreds of thousands of wells have been managed
to ensure the accuracy, completeness and standardization of the data and facilitate data
call. In the application scenario, the interpretation conclusion has been re-recognized on
the basis of core analysis. The mode from big data platform to data lake plus interface
can meet the requirements of different logging geological structure analysis scenarios.

Generally speaking, the infrastructure layer realizes IOT perception and resource
support, the data sharing layer realizes data entering the lake and comprehensive manage-
ment, the middle platform layer builds shared and reused data and business service capa-
bilities, and the application layer builds lightweight and agile intelligent application sce-
narios. It has realized the transformation of production and operation from man-machine
combination to intelligent cooperation, business management from process-driven to
data-driven, and business decision-making from experience management to intelligent
analysis, thus building a digital logging ecology and building a digital enterprise.
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Abstract. In oilfield production, the liquid production is an important indica-
tor for measuring the production capacity of sucker rod wells and determining
reasonable production parameters. Therefore, accurate metering of liquid pro-
duction in sucker rod wells holds significant importance for oilfield automation
production management. This paper proposed a physical-data hybrid-driven liquid
production prediction method based on the attention mechanism to improve the
accuracy of sucker rod well production metering. First, a physical-driven model
for measuring liquid production based on the sucker rod well dynamometer cards
is established, which ensures the rationality and interpretability of predicting lig-
uid production. Then, a ResNet-based data-driven model is established to uncover
the hidden features in downhole pump dynamometer cards and oil well production
data. Finally, an attention mechanism is employed to couple the physical-driven
and data-driven models, facilitating the identification of crucial features for liquid
production prediction. The proposed method was tested on actual production data,
and the average accuracy rate reached 95.67%, which was at least 2.43% higher
than other best benchmark models for production prediction, and demonstrating
good prediction accuracy and stability in special operating conditions. This app-
roach successfully fuses the physical analytical model and data mining model of
sucker rod wells, ultimately enhancing the interpretability and reliability of the
model, thereby promoting efficient production management in oilfields.

Keywords: Sucker Rod well - Production Prediction - Hybrid Modeling -
Dynamometer Card - Attention Mechanism

1 Introduction

With the continuous growth of global energy demand and the depletion of oilfield
resources, there is an urgent need to achieve sustained and stable production in oilfields
through automation and intelligent production optimization management. The sucker
rod well is the most commonly employed artificial lift system in the oil and gas indus-
try, and liquid production serves as a vital metric for evaluating well productivity and
determining optimal production parameters. However, automating the measurement of
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liquid production in sucker rod wells is challenging due to the complexity of the process
flow and high maintenance costs of traditional mechanical liquid measurement mode
[1], which hinder oilfield automation management.

With the development of electronic measurement technology and the industrial Inter-
net of Things (IoT) [2], the virtual flow measurement technology based on dynamometer
cards in sucker rod wells has gradually gained wide acceptance in the oilfield industry
since the 1980s [3], due to its low cost, acceptable error range, and remote operability.
This physical-driven model utilizes a vibration mathematical model of the pump rod
to solve for the dynamometer card, which indicates the pumping performance of the
downhole pump. By analyzing the effective stroke of the pump plunger and quantifying
various parameters, the effective liquid production at the wellhead can be calculated. In
practical applications, the accuracy and stability of this method can be affected by the
simplified system theory models and the complex working conditions of the downhole
pump. In light of existing problems, various advanced approaches have been proposed.
In 2013, Lyu et al. [4], proposed an interactive method for obtaining pump valve points
based on prior knowledge of dynamometer cards and manual experience, which reduces
the effective stroke error. In 2020, Yin et al. [5] proposed an analytical solution easily
applied for predicting the behaviors of multi-tapered sucker-rod pumping systems, which
provides a more precise description of the motion characteristics of the downhole pump.
In 2020, Lv et al. [6] proposed a production measurement method based on quantitative
analysis of fault dynamometer cards, which effectively improved the accuracy of liquid
production prediction under valve leakage conditions. Nevertheless, there is an immea-
surable gap between physical models based on prior information and the real world. This
difference leads to inaccuracies in the liquid measurement, and further optimization is
necessary to address these issues.

In recent years, artificial intelligence (AI) technology has emerged as the engine
driving the “Fourth Industrial Revolution,” and it has played a significant role in the
digital transformation and intelligent development of the oil and gas industry. Machine
learning methods, with their intelligence, simplicity, and efficiency, are widely utilized
to address traditional engineering problems [7]. In 2019, Ruiz et al. [8] employed fuzzy
logic (FL) and artificial neural networks (ANN) to interpolate oil well data and select
the most effective features for predicting production. In 2021, Pan et al. [9] combined
convolutional neural networks (CNN) and long short-term memory neural networks
(LSTM) alongside attention mechanisms to forecast production with time series data
derived from the oil well.

The dynamometer cards, as the most effective indicator data for characterizing the
motion characteristics of sucker rod well system, has significantly improved its fault
identification and liquid production measurement accuracy due to the application of
machine learning models. In 2020, Peng et al. [10] employed a deep autoencoder to
extract high-dimensional features from the dynamometer cards, aiming to overcome the
limitations of traditional manual feature extraction methods. In 2022, Zhang et al. [11]
aimed to the disadvantage that the traditional dynamometer card diagnosis needs a large
number of samples, a small sample diagnosis framework based on meta transfer learning
is proposed. However, whether it is machine learning or deep learning, the characteristic
of these data-driven models is to explore and utilize the underlying patterns in the
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data. The drawback is that they often lack higher-order explanations in terms of real-
world physical significance and may suffer from overfitting and limited generalization
capabilities. Furthermore, it is important to note that the current methods for liquid
production prediction generally lack the strong theoretical foundation provided by the
measurement based on dynamometer cards.

In this work, we presented a hybrid-driven prediction model for liquid production
of sucker rod wells that integrated physical and data-driven models using an attention
mechanism. A mathematical model was employed to solve the dynamometer cards of
the downhole pump, and then quantitative analysis was conducted on the cards to extract
physical features that characterized the pump’s operational state and theoretical displace-
ment. This ensured that the hybrid model possessed reliable global characteristics. To
address limitations in the physical model and quantitative analysis, while using Resnet
to extract the high-dimensional features of the surface dynamometer cards. The atten-
tion mechanism is used for concentrating on effective features and reduce the impact
of low-contributing and ineffective features, which guarantees the high accuracy and
robustness of hybrid model.

The remaining work of the paper is arranged as follows. Section 2 introduces the-
oretical methods in oil production engineering and machine learning. Section 2.1 dis-
cusses the production measurement based on dynamometer cards, while Sects. 2.2 and
2.3 present the fundamental theories of the deep learning network ResNet and attention
mechanism. Section 3 introduces the hybrid model for production prediction. Section 3.1
presents the detailed structure of the hybrid model. Section 3.2 elaborates on the estab-
lishment of the physical model and the steps for extracting physical features. Section 3.3
describes the modeling approach of the hybrid-driven model based on ResNet and the
attention mechanism. Section 4 validates the performance of the model through com-
parative experiments and ablation study. Section 5 summarizes the main contributions
of this paper and provides an outlook for future work.

2 Methodology

2.1 Production Measurement Based on Dynamometer Cards

Calculation of Downhole Pump Dynamometer Card
The surface pumping unit is connected to the downhole pump via sucker rods, enabling
reciprocating motion. The displacement and load of the surface pumping unit’s hanging
point are recorded using a dynamometer card. However, the downhole pump is subject
to various disturbances, forces, and torques, resulting in vibration or impact phenomena.
Therefore, the surface dynamometer card cannot accurately depict the downhole pump’s
motion characteristics and operational state. Consequently, it is necessary to establish
a model of the sucker rod well motion system to mathematically convert the surface
dynamometer card into a downhole pump dynamometer card.

The sucker rod well motion system model is a mathematical model that describes the
dynamic characteristics of a pumping unit well system. The Gibbs [12] model utilizes a
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wave equation with viscous damping as the fundamental differential equation to describe
the dynamic behavior of the sucker rod:

AU (x, 1) ,3%(x, 1) AU, 1)
=a —c
or? ax2 ot
where, U (x, t) is the displacement of any cross-section (x) of the sucker rod column
at any given time (¢), m; a is the stress wave propagation velocity, m/s; ¢ is equivalent
damping factor, 1/s.

The dynamic load function of the hanging point expressed by the truncated Fourier
series and the displacement function of the light rod are used as the boundary conditions,
and the motion equation of the cross-section of the sucker rod at any depth can be obtained
by the separation variable method:
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where, E is the rod pump Young’s modulus, Pa; A, is the rod string cross-sectional area,
m2; o, vy, O,(x) and P, (x) are all Fourier coefficients.

According to Hooke’s law, the time-varying dynamic load on that section can be
determined:

N
a0 oP,
F(x,1) = EA,[ZZZr + Z [ anx(x) cos nwt + % sin nwt] 3)

n=1

where, F'(x, t) is the dynamic load on any cross-section at a given depth (x) of the sucker
rod, N. At time ¢, the total load on the cross-section at depth (x) is equal to the sum of
the dynamic load F'(x, #) and the weight of the sucker rods below the x-section.

A conversion example is shown in Fig. 1. The downhole pump dynamometer card
exhibits a smoother and more stable shape by eliminating the deformation of the sucker
rod column, rod friction, vibrations, and inertia. This will facilitate quantitative analysis
of the pump dynamometer card to determine the effective stroke of the plunger S,,.

Calculation of Sucker Rod Well Production

The effective plunger stroke S, is primarily determined based on the position of
the valve opening and closing points on the pump dynamometer card. Typically, the
smaller displacement difference between the traveling valve switching point and the
standing valve switching point is used as S,. For example, in Fig. 2(a)(b)(c), the length
of segment AD is considered the effective stroke, while during plunger unloading, the
S, corresponds to the smaller length of segment BC.

Therefore, without considering the conditions of tubing leakage and pump leakage,
the actual daily production at the wellhead of a pumping unit well can be calculated
using the following equation:

nDﬁ
0= 144OTS,,NBI @)

where, Q is the daily production rate, m3/d; Dy, is the diameter of the pump, m; N is the
stroke number, min—1; B; is the volume coefficient of the crude oil with dissolved gas.
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2.2 Residual Neural Networks

ResNet, introduced by He et al. [13]. in 2015, is a deep convolutional neural network
structure. It was specifically designed to tackle the problems of gradient vanishing and
gradient explosion during deep neural network training, enabling more efficient training
of deeper networks.

The core concept of ResNet is the incorporation of residual connections, also known
as skip connections. These connections enable direct flow of information from shallower
layers to deeper layers, preventing the loss or degradation of information within the
network. The basic building block of ResNet is the residual block, as depicted in Fig. 3.
It consists of two main components: identity mapping and residual mapping.

activation

weight layer

T

|
|
|
|
:
F(x) | activation
|
|
|
|
|
|
|

T

weight layer

Fig. 3. Residual learning: a building block

When the number of channels of the identity mapping x; is the same as the residual
mapping F(x;), the output of the residual block can be obtained using the following
equation:

Xit1 =X + F(x;, wy) )

When the number of channels is different, dimension matching is required by
applying a convolutional kernel W; to adjust the dimensions.:

Xip1 = W - xi + F(xi, wi) (6)
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2.3 Attention Mechanism

The core idea of the Attention mechanism is to simulate the attention mechanism humans
employ when processing information. In traditional deep learning models, each input
is assigned the same weight and attention, but this is not always the most effective
approach. On the contrary, the Attention mechanism allows the model to dynamically
adjust attention allocation based on the relevance of the inputs. The calculation formula
of attention mechanism is:

0 = sofimax( 2.
= softmax

VL
where O is the output; Q is the input features; K and V the key-value pairs, which are
directly derived from the input sequence; L is the input feature length [14].

).V )

3 Hybrid Model for Production Prediction

3.1 Hybrid Model

The hybrid model for production prediction consists of several modules: an input module,
a data-driven model, a physics-driven model, and an attention mechanism module. The
specific architecture is shown in Fig. 4.

Input Data-driven Model

Image Input Resnet Network |
Dynamometer |
ﬁ

cards s ﬁ »

|

|

ol
Production I \

|

I

BN-ReLU-Conv
PR
BNReL.U-Cony
P
W
BN-ReLU-Conv
BN-ReLU-Conv

Attention
Mechanism

81

J -

parameters

$
Predicted
Production

Pump DC Conversion Feature Extraction ' Feature Design |

Physical-Driven model

Fig. 4. Overview of the proposed Hybrid Model

As shown in Fig. 4, the hybrid model takes as input parameters both the surface
dynamometer cards and daily production parameters, such as stroke count, pump diam-
eter, and water cut. The surface dynamometer cards are processed by the data-driven
module to extract deep features and obtain a data feature matrix that represents the
high-dimensional features.

Simultaneously, the production parameters, along with the surface dynamometer
cards, are analyzed by the physics-driven model. This analysis results in a physical
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feature matrix, which includes conventional sucker rod well production calculations and
other physical characteristics.

These data and physical feature matrices serve as inputs to the attention mechanism
module, where attention weights are dynamically assigned to the outputs of the data-
driven and physics-driven models. The attention mechanism evaluates the relevance and
importance of the predictions generated by each module, considering the specific task
and input conditions.

By combining the deep features extracted from the data-driven module and the
physical features obtained from the physics-driven module, the hybrid model aims to
leverage the complementary strengths of both approaches. This integration enables a
more comprehensive representation of the input parameters, leading to enhanced the
accuracy of production predictions in the context of the sucker rod well system.

3.2 Physics-Driven Model

The physics-driven model is primarily based on the conventional dynamometer card
production measurement technique introduced in Sect. 2.1. As shown in Fig. 4, It begins
by mathematically modeling and solving the motion system of the sucker rod well
to obtain the pump dynamometer card that represents the downhole pump’s motion
characteristics.

Subsequently, in feature extraction step, the pump dynamometer card is quantita-
tively analyzed and computed to identify the switch positions of the traveling valve and
the fixed valve. This information is then used in Eq. (4) to calculate the theoretical liquid
production rate.
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Fig. 5. Feature points extraction. (a) is the displacement curve of the data points. (b) is the slope
curve of the normalized load variation of the data points. (c) is the normalized pump dynamometer
card.

Additionally, by combining the analysis of displacement curve and load slope curve
of pump dynamometer card [15], various physical features are extracted, including
geometric slope, average load, valve displacement, and load. The specific steps are
follows:

Step 1: In Fig. 5(a), starting from the first data point, search for the first point with a
displacement equal to 0, which corresponds to the bottom dead center (D). Also, search
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for the point with the maximum displacement, which corresponds to the top dead center
U).

Step 2: In Fig. 5(b), identify the point with the maximum slope as K; and the point
with the minimum slope as K. K is located during the upward stroke loading process,
while K is located during the downward stroke unloading process.

Step 3: In Fig. 5(b), starting from point K, search forward in the data points for the
first point where the slope of the load curve is approximately 0. This point corresponds
to the first local maximum between the upward stroke loading process and the top dead
center (U), and it is referred to as the fixed valve opening point (Sy).

Step 4: In Fig. 5(b), starting from point K1, search forward in the data points until the
last point before the top dead center (U) where the slope of the load curve is approximately
0. This point corresponds to the last local maximum between the upward stroke loading
process and the top dead center (U), and it is referred to as the fixed valve closing point
(S2).

Step 5: In Fig. 5(b), starting from point K5, search forward in the data points for the
first point where the slope of the load curve is approximately 0. This point corresponds to
the first local minimum between the downward stroke unloading process and the bottom
dead center (D), and it is referred to as the traveling valve opening point (T).

Step 6: In Fig. 5(b), starting from point K, search forward in the data points until
the last point before the bottom dead center (D) where the slope of the load curve is
approximately 0. This point corresponds to the last local minimum between the down-
ward stroke unloading process and the bottom dead center (D), and it is referred to as
the traveling valve closing point (T3).

Step 7: In Fig. 5(c), record the load values of each data point between the fixed valve
opening point (S1) and the fixed valve closing point (S;), and calculate the average load
during the upward stroke.

Step 8: In Fig. 5(c), calculate the difference in displacement between the fixed valve
opening point (S1) and the fixed valve closing point (S;), which corresponds to the
effective stroke during the upward stroke. Also, calculate the difference in displacement
between the traveling valve opening point (T1) and the traveling valve closing point (T»),
which corresponds to the effective stroke during the downward stroke.

These features, along with the theoretical liquid production rate, are combined to
construct the physical feature matrix.

3.3 Data-Driven Model

From formulas (1)—(4) and the process of constructing the physical feature matrix, it can
be observed that conventional production measurement technique involves numerous
assumptions and quantitative analyses. However, during the actual production process
of oil wells, various operating conditions and unpredictable dynamometer card defor-
mations can adversely affect the quantitative analysis of the valve switch points, leading
to deviations in the calculated effective plunger travel. Therefore, the calculation of pro-
duction using empirical formulas or mathematical models inevitably introduces certain
errors, especially under special operating conditions.
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To address this issue, as shown in Fig. 4, this paper adopted a data-driven model to
extract deep features from the dynamometer card and utilizes an attention mechanism
to effectively integrate the physical and data-driven models.

During the training process of the data model, the dynamometer card X,, is first
passed through an image input module that includes convolutional and pooling layers
for initial image feature extraction:

Xeonv = flconv(Xy * W,) + b] 3

Xmap = [max{Xconv}] )]

where Xconv is the convolutional layer output; Xmap is the pooling layer output; conv(-)
stands for the convolution operation; W¢ is the convolution kernel.

Precise prediction of liquid production from dynamometer card images requires
accurate extraction of features, specifically the characteristics embodied in the varia-
tions of valve switch points and curves during the loading and unloading processes.
To overcome the limitations inherent to multi-layer neural networks, like gradient van-
ishing, a residual neural network consisting of multiple residual blocks is designed to
further extract high-dimensional image features.

L—-1
XL =Xi+ ) FX;, W) (10)

i=l

where X[, is the characteristic of deep unit L; X is the characteristic of shallow element
I; Other symbols have the same meaning as in formula (6).

Then, the feature matrix obtained from the analysis of the physical model is connected
to the data model through fully connected layers. Together, these features are fed into
the attention mechanism module for the final prediction of oil production.

4 Case Study and Results

4.1 Dataset

In this study, production data from a certain oilfield in China were selected as an exam-
ple for experimentation. The sample set consists of 6278 dynamometer cards and cor-
responding production data from 350 sucker rod wells within a period of 30 days.
The dataset was subjected to mathematical and statistical analysis based on different
operating conditions, as shown in Table 1.

Upon observing the sample quantities, it can be seen that the largest number of sam-
ples corresponds to normal operating conditions, followed by insufficient fluid supply
situations. Due to the presence of various types of leakage conditions in pumping unit
wells, such as fixed valve leakage, traveling valve leakage, and piston leakage, and the
relatively low number of samples for each specific condition, the subcategories related
to leakage were merged into one category for statistical analysis.

Based on the distribution of sample production, it can be observed that under normal
operating conditions, the average production of wells is the highest, followed by the
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Table 1. Production statistics under different working conditions.

Normal | Insufficient supply | Gas influence |Pump Hitting | Leak |All
Count | 3232 2251 232 261 302 6278
Mean |35.94 19.91 11.12 12.74 29.96 |27.98
Min 3.00 0.57 1.70 0.49 10.77 10.49
25% 21.35 9.73 5.81 8.83 17.73 | 14.89
50% 29.61 15.84 11.13 14.58 29.16 |22.40
75% 45.04 23.78 13.23 16.76 39.04 |35.26
Max 213.44 | 182.23 50.85 22.41 84.44 21344
Std 21.34 17.24 7.85 5.17 13.55 |20.78

Table 2. Model Evaluation Results.
Model RMSE MAPE(%)
Training set Testing set Training set Testing set

Hybrid Model 3.16 2.82 4.31 4.33
DModel 11.35 14.27 14.34 15.26
PModel 4.12 4.45 4.87 5.01
PDModel 3.67 3.54 4.67 4.86
SVM 6.42 6.73 7.16 7.34
XGBoost 5.51 5.82 6.13 6.76
MLP 8.76 9.54 10.43 10.12

leakage condition. This indicates that most wells experiencing leakage have relatively
mild leakage situations and lower leakage volumes. The condition with the lowest aver-
age production is gas influence, as in this oilfield, most wells affected by gas experience
gas lock phenomena, resulting in minimal liquid production.

4.2

Evaluation Metrics

When evaluating regression algorithms, their performance is typically assessed by exam-
ining the magnitude of the differences between their predicted results and the true values.
The most commonly used evaluation metrics for regression models are the Root Mean
Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE).

RMSE =

i=

n A~
i —3i)?
=1

(10)
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where y is the true value; y is the predicted value from the model. A larger value for both
RMSE and MAE indicates a larger difference between the predicted results and the true
results of the model, which suggests that the model has lower accuracy in its predictions.

4.3 Performance Verification Based on Ablation Study

Performance verification based on ablation study is a crucial step in assessing the effec-
tiveness and contribution of different components or factors within a machine learning
or deep learning model. In this section, we will conduct model performance testing
and comparisons by employing a hybrid drive model, various ablation models, and
conventional benchmark machine learning models.

The ablation models used in the study include the following:

(1) DModel: This model represents a data-driven approach that solely relies on ResNet
as the primary component for prediction. It utilizes the deep learning to extract
features of dynamometer cards and make predictions.

(2) PModel: In this model, only the physical feature matrix is constructed and fed into
the attention mechanism model for predicting production.

(3) PDModel: This model is a modified version of the hybrid drive model, where the
attention mechanism is removed.

In addition to the ablation models mentioned earlier, this study also includes sev-
eral benchmark models for comparison, predicting the daily fluid production from the
physical feature matrix.. The benchmark models are as follows:

(1) Support Vector Machine (SVM): SVM works by finding an optimal hyperplane that
separates different classes or predicts continuous values based on the data.

(2) XGBoost: XGBoost is a gradient boosting algorithm which combines the power
of decision trees and gradient boosting techniques to create an ensemble of weak
models that collectively make accurate predictions.

(3) Multilayer Perceptron (MLP): MLP is a type of artificial neural network with mul-
tiple layers of interconnected nodes. It is widely used for various machine learning
tasks, including regression.

The experiment details are as follows: The dataset was divided into a training set
and a test set in a 4:1 ratio, with 4,708 samples in the training set and 1570 samples in
the test set. During the training process, each model underwent a random grid search to
determine the best-performing model. In the testing phase, both the hybrid drive model
and the other six comparative models were evaluated on the test set. The partial fitting
performance of the hybrid model on the test set is illustrated in Fig. 6. The comparison
of fitting between the training set and the test set is depicted in Fig. 7. The specific results
of the ablation study comparison are presented in Table 2.

From Fig. 6 and Fig. 7, it can be observed that the hybrid model demonstrates satis-
factory production prediction accuracy in both the training and test sets. However, there
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are some samples where the model predicts significantly lower production compared to
the actual values. Upon further inspection of these wells, it was discovered that besides
the model error, some wells were operating in a "gushing with pumping" state, where
the surface production rate significantly exceeded the downhole pump’s maximum the-
oretical displacement. This situation deviates from the overall distribution of the oil well
sample set and makes it challenging for the model to predict such high production rates
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Comparison of actual production and predicted production of hybrid drive model.

accurately. Therefore, the model’s prediction accuracy still remains at a high level.

Analyzing the results from Table 2, it can be observed that the hybrid model exhibits
the lowest RMSE and MAPE losses, indicating that the proposed model outperforms
other conventional production forecasting models. The accuracy of the model on the test

set reaches 95.67%, which is at least 2.43% higher than that of the baseline model.
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Specifically, PDModel ranks second, indicating that the attention mechanism enables
the hybrid model to better capture the weight relationship between the image feature
matrix and the physical feature matrix, focusing on the most influential features for
production forecasting.

Moreover, compared to the baseline models that solely use the physical feature matrix
and exhibit lower accuracy, PDModel leverages Resnet for deep feature extraction from
the dynamometer card images, while PModel incorporates the attention mechanism
to adapt the internal weights of the physical feature matrix, resulting in significantly
improved production prediction accuracy.

It is worth noting that the DModel, which solely uses Resnet for extracting pump
dynamometer card features, performs the poorest. This is because it lacks input of
important production features specific to oil wells, such as stroke count and pump
diameter.

Rmse in Trainning
Mape in Trainning
Rmse in Testing
Mape in Testing

Rmse |Mape (%)
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Fig. 8. Histogram of model scores.

4.4 Performance Verification Based on Different Working Conditions

In this section, the hybrid model and baseline models will be used to predict liquid
production in five different operating conditions: Normal, Insufficient supply, Gas influ-
ence, Pump Hitting, and Leak. The goal is to analyze and compare the robustness and
generalization of the hybrid driving model. Detailed information about the dataset has
been presented in Sect. 4.1.

From Table 3, it can be observed that the hybrid driving model exhibits excellent
accuracy in the Normal operating condition. Additionally, in the abnormal operating
conditions, it maintains an error of less than 10%. Compared to the corresponding optimal
baseline models, it achieves an improvement of around 2% in accuracy, demonstrating
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good generalization and robustness. It is worth noting that although the hybrid model
achieves a relatively high average Mape in the Pump Hitting condition, its RMSE is only
1.72. After observing the distribution of liquid production in the sample of Pump Hitting
conditions in the dataset, it can be found that the overall liquid production of the oil well
under this operating condition is relatively low, with an average value of 12.74 m®/d and
a minimum value of only 0.49 m3/d. Therefore, in cases where the sample size is small
and the average value is low, even if the RMSE is only 1.72, the relative accuracy of the
model prediction will be greatly affected.

Overall, the number of samples for some special operating conditions in the dataset
used is relatively small, which is consistent with the uneven nature of oil well operating
conditions in the actual production process. Even under these conditions, the hybrid
model can still predict oil well fluid production with high accuracy. Therefore, if the
sample is equalized through human operation, the accuracy of the hybrid model will be
significantly improved under special operating conditions. Alternatively, in future work,
it is necessary to consider combining more comprehensive machine learning algorithms
and big data processing techniques to reduce the negative impact of sample imbalance
on the overall performance of hybrid models.

Table 3. Model characteristics under different operating conditions.

Conditions Hybrid Model Best Baseline Model
RMSE MAPE(%) RMSE MAPE(%)

Normal 2.35 1.97 3.37 6.05

Insufficient supply 4.17 5.40 3.89 8.20

Gas influence 2.76 6.31 3.04 7.93

Pump Hitting 1.72 9.38 1.91 11.29

Leak 0.96 7.65 1.23 9.60

5 Discussion and Conclusion

In this paper, a physical-data hybrid-driven liquid production prediction method based
on the attention mechanism is proposed to solve the problem of automatic and accurate
measurement of oil well liquid production. This model fuses the weight relationship of
the dynamometer card image feature and the physical feature matrix, and realizes the
effective combination of features through the attention mechanism. This allows the model
to extract key features from multiple perspectives to better understand the relationship
between well conditions and fluid production. It provides a powerful tool for oilfield
automation management and intelligent development.

In the future work, more machine learning algorithms will be used to solve the
problem that the production prediction of sucker rod wells is greatly affected by the type
of working conditions, so as to achieve ideal accuracy under special working conditions.
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Abstract. Numerical reservoir simulation is an important technology in reservoir
production development, but the computational consumption of numerical simu-
lation is a key factor affecting reservoir history matching, production prediction,
and optimization. By constructing a computationally fast machine learning model
to learn the mapping relationship between reservoir model parameters and pro-
duction data, a maximum alternative to the numerical simulation process can be
achieved to improve the efficiency of reservoir management and decision making.
The current surrogate models of reservoir numerical simulation for large spatial
variables, including permeability and porosity fields, often extract spatial fea-
tures by convolutional neural networks and later use recurrent neural networks
to learn the time-series relationships of production data. In this work, we study
the method using convolutional neural networks to extract spatial parameters of
reservoir models and propose a new module to convert the temporal and spatial
features of surrogate models. By converting the spatial features extracted by con-
volution and adapting the input features and dimensions of the recurrent neural
network, maximum extraction of spatial feature parameters is achieved. The pro-
posed method was verified on a 3D reservoir model, and the results indicate that
the method can enhance the accuracy of the surrogate model.

Keywords: Surrogate model - History matching - Spatial feature -
Convolutional neural network

1 Introduction

In reservoir production and development, numerical simulation technology is a key
and effective method to simulate the dynamic process of subsurface reservoirs [1, 2]. By
constructing mathematical and physical models, reservoir simulation can assist engineers
in understanding the physical parameters and fluid flow patterns of subsurface reservoirs,
and developing development plans and managing reservoirs [3]. Reservoir numerical
simulation has been widely used in automatic history matching, production forecasting,
production optimization, and other processes, and has demonstrated its great advantages
[4-8].
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However, reservoir numerical simulation involves solving partial differential equa-
tions, and the process is computationally expensive. For real reservoir models with mil-
lions of grid blocks, a single numerical simulation process can even take several hours.
For automatic history matching, reservoir model parameters need to be adjusted many
times to fit the historical observations (e.g., oil/water/gas production rate, bottom-hole
pressure) [9, 10]. If the observations are matched well, the reservoir model is regarded
as the closest to the real reservoir. Then, the calibrated model is reliable for production
forecast and optimization. The process always requires thousands of numerical simula-
tions and is even more computationally expensive, which greatly affects the efficiency
of the decision-making for oilfields.

In order to speed up the process of reservoir history matching, surrogate modeling
was proposed [11-13]. The surrogate model approach is based on machine learning
to train a black box model with the samples of the input and output. The model can
discover the complex nonlinear relationship between reservoir parameters and the simu-
lation results. Given the input, the surrogate can estimate its corresponding output. In this
paper, we are concerned with data-driven surrogates based on artificial neural networks
(ANN). The surrogate models can be mainly categorized into online and offline models
[14-16]. The key reason for using the online models is the low accuracy of the surro-
gates (e.g., the radial basis function model, and K-nearest neighboring model), which
requires lots of samples in the optimization to retrain the surrogate model and improve
its accuracy. Nevertheless, the offline method mainly relies on the performance of deep
learning models, which only train the model once with samples and no further training
subsequently. With the rapid development of machine learning and neural networks,
deep learning methods have a stronger approximation ability for complicated problems
and wider applicability [14—19].

For surrogate models of history matching, the inputs are the uncertain parameters of
reservoir models and the outputs are well production data. The parameters for reservoir
models are often high-dimensional because they are related to the number of grids, which
canreach millions. Itis still a challenge to extract the features of high-dimensional model
parameters and predict their corresponding production data.

In this paper, a feature extraction approach combining convolutional neural net-
works (CNN) [20] with recurrent neural networks (RNN) [21] is proposed for high-
dimensional reservoir model parameters for history matching. The method first extracts
reservoir spatial features by the CNN and residual blocks and then the spatial features
are input into the RNN to predict the production dynamic data of the reservoir. In order
to suit high-dimensional model spatial features, we propose a new spatial and temporal
transformation module to retain the spatial features of reservoir model parameters to the
maximum extent possible. The proposed method was tested in a 3D reservoir model,
and the results show that the method effectively can process the spatial characteristics
and enhance the accuracy of the surrogate.

The remainder of the paper is structured as follows. Firstly, the surrogate model
based on CNN and RNN is introduced in Sect. 2.1. Then, the proposed transformation
module for the spatial and temporal features is presented in Sect. 2.2. After that, a case
is used to demonstrate the efficiency of our approach in Sect. 3. Lastly, the conclusions
and discussion are given in Sects. 4.
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2 Methodology

The structure of the surrogate model for history matching is first introduced in this
section. The basic modules of the surrogate model include CNN and RNN. Then, the
proposed method for extracting the spatial features of the reservoir model is presented.

2.1 Surrogate Model Based on CNN and RNN

A surrogate model is a model that replaces a time-consuming numerical simulator. For
history matching, e.g., matching production data of oil and water wells, the inputs and
outputs of the proxy model are based on the inputs and outputs of the numerical simulator.
In this paper, we consider surrogate models for predicting the production data of oil and
water wells with time-series characteristics. The architecture of the surrogate mode is
mainly referred to [14—16]. The relationship f between the input m and output d using
the surrogate model is given by:

fm—d (D
where m € R™*">*">"f denotes the model parameters; d € R™>"»/ denotes the pro-
duction data including injection and production wells; ny, ny, and n; are the number
of grid blocks in the x, y, and z-direction of the model; ny denotes the type number of
model parameters (parameters that rely on grid blocks are considered in this paper, for
example, the permeability, porosity, net-to-gross.); n; denotes the number of timesteps;
nyr denotes the type number of production data in a timestep.

The surrogate model includes two main modules, Module 1 based on CNN, and
Module 2 based on RNN. CNN is utilized to process the spatial features of reservoir
parameters, as depicted in Fig. 1. The model parameters are input into CNN to extract
features. In the last layer of the CNN, the spatial features can be obtained using the global
average pooling. RNN including the long short term memory (LSTM) [22] and the gated
recurrent unit [23] can be used to capture the temporal features of production data, as
shown in Fig. 2. The spatial features are repeated to fit time steps of the production data
to input into the RNN. After the RNN, the linear layer is added to connect the output
of the RNN and the production data. The red dashed box in Fig. 1 and Fig. 2 represents
the module for the transformation of the spatial and temporal features. For the surrogate
model, this transformation module is very significant because it affects the transfer of
information about the spatial characteristics of the reservoir model, which in turn affects
the final prediction performance.

2.2 Proposed Transformation Module for the Spatial and Temporal Features

In our experiments, we found the transformation module in Fig. 1 and Fig. 2 (marked by
the red dashed box) can obtain good results but not the best results for some problems.
One of the key reasons is that the final global average pooling of the CNN reduces the
parameters while losing some spatial knowledge information of the reservoir model.
Thus, we propose a new transformation module to replace the parts in the red dashed
box, as shown in Fig. 3.
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Fig. 2. Module 2 for processing temporal features of production data.

An adaptive channel module is constructed to make the size of the output of CNN
match the timesteps. The number of the channel c in the adaptive channel module can
be calculated by:

c=int(c_i/n;+ 1) x ny 2)

where int denotes rounding the value, and c. represents the channel of the last layer for
the CNN.

After that, the output of the adaptive channel module is flattened to get the spatial
features. The spatial features are then reshaped to equal the number of time steps of the
production data. The difference between the proposed adaptive module and the previous
surrogate model is whether the spatial feature information is distributed to each time-
step feature is the same (after the reshape operation). If the input features are different
at each time step, then it is more suitable for RNN training and prediction.

In order to make this machine learning model with stronger approximation capability,
it is usually necessary to use more network layers and increase the number of trainable
parameters. But as the number of network layers increases, the performance of the
surrogate model may even decrease. Thus, to further enhance the effect of the surrogate,
the residual block is used in the module, as presented in Fig. 4. The residual block includes
the convolutional neural networks, batch normalization [24], and the rectified linear units
(ReLU) [25]. The feed-forward of the neural network module is performed through two
branches and the input data x is also added behind the final batch normalization layer.
For more details, please refer to [16, 26].
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3 Case Study

3.1 Reservoir Model

We tested the proposed surrogate model on the Brugge case [27]. This model is a bench-
mark to analyze and verify the efficiency of waterflooding optimization and history-
matching methods. The Brugge model has a grid of 139 x 48 x 9, as presented in
Fig. 5. There are 10 injection wells and 20 production wells. The production duration is
10 years, which is divided into 253 timesteps. The uncertain parameters in history match-
ing include permeability, porosity, and net-to-gross thickness ratio. These parameters are
the inputs of the surrogate model. The outputs of the surrogate include the bottom-hole
pressure of 10 injection wells and the water production rate and oil production rate of
20 production wells (a total of 70 indexes).

A data-driven proxy model is used to predict the production performance of this
reservoir. The model has a dimensionality of 30024 for the uncertainty parameters and
17710 for the output production data. The high dimensionality of this problem makes it
more difficult for traditional surrogate models, including polynomial regression, kriging
methods, radial basis neural networks, etc.
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Fig. 5. Brugge reservoir model.

3.2 Parameter Setting

There are 2000 samples generated to test the surrogate model, 1600 samples are formed
as the training set and 200 samples as the validation set, and 200 samples are as the
testing set. Figure 6 shows the model parameters in the samples. Each column in Fig. 6
denotes a sample and each row denotes a type of parameter. From top to bottom are
net-to-gross, permeability in x, y, and z directions, and porosity. Only the first layer
of the simulation model is shown here. Figure 7 shows the range of production data
of the samples. The first 7590 data are the bottom-hole pressures of the production and
injection wells, the 7590-12650 data are the oil production rates of the production wells,
and the 12650-17710 data are the water production rates of the production wells. For
the training of the surrogate, the training epochs are 100. The learning rate is 0.003 and
is set to decrease adaptively. The batch size is set to 16.

Fig. 6. Model parameters of the training samples. Each column denotes a sample and each row
denotes a type of parameter. From top to bottom are net-to-gross, permeability in X, y, and z
directions, and porosity. Only parameters of the first layer of the model are given.
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3.3 Results

We compared the proposed surrogate model (CNN-RES-TS) with the surrogate with
only the CNN (CNN) and the surrogate with the CNN and residual block (CNN-RES).
We used the means square error (MSE) and coefficient of determination (R?) to measure
the prediction error for the three surrogate models. The MSE can be represented by:

1 Y s
MSE = N;m ) 3)

where N refers to the number of samples, y; indicates the surrogate prediction and y;
represented sample data.
The R? can be represented as:
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where y; represents the sample.

Figure 8 presents the MSE of the three surrogates in the training, validation, and
testing set. Figure 9 shows the coefficient of determination (R?) for three methods. The
smaller the MSE and the larger the R? indicate the better the surrogate model. The results
show that CNN-RES-TS has the fastest convergence for both MSE and R? and the final
value is the best. Faster convergence of the surrogate model means less training time, so
the time consumption for building the surrogate model can be greatly alleviated.

Figures 10, 11, and 12 show the prediction results in the testing set for three methods.
Comparing CNN and CNN-RES, CNN-RES obtained better prediction results for the
production data index 15000-17710. This indicates that the residual block can enhance
the generalization of the surrogate. Comparing CNN-RES and CNN-RES-TS, CNN-
RES-TS can obtain a better prediction (especially for the production data index 15000-
17710). This indicates that the proposed transformation module can better extract the
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spatial features of reservoir model parameters, and thus enhance the prediction accuracy
of the surrogate.

train validation test
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Fig. 8. Mean square error (MSE) for the training set, validation set, and test set.
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Fig. 9. Coefficient of determination (R?) for the training set, validation set, and test set.
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4 Conclusions and Discussion

In this work, we present a new spatial feature extraction module for reservoir model
parameters for the surrogate model. The method contains an adaptive channel module
and the corresponding spatial feature transformation method. The method was tested
and analyzed on a 3D reservoir model, and the results indicate that the proposed fea-
ture extraction approach can enhance the prediction accuracy of the surrogate model
and provide a reference for the research of surrogate modeling for reservoir numerical
simulation. The module proposed in this paper is adaptive and has no parameters that
can be set, thus making it easier to build agent models. The main reason for the sur-
rogate model approach, which is still not widely applied in actual oil fields, is that the
surrogate model approach requires engineers with a high level of theoretical approaches
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to machine learning and neural networks. Also, the complexity of production data and
reservoir properties can affect the effectiveness of the surrogate model.

In the current research on surrogate models of reservoir numerical simulation, there
are many types of surrogate models. It is still a challenge to determine a suitable surrogate
model for a specific problem and to explain the mechanism behind them. The parameters
of the surrogate model need to be adjusted many times to achieve a satisfying result. This
process is very tedious and time-consuming and requires specialized domain knowledge
in machine learning, which is still challenging for some reservoir engineers. In terms of
surrogate models applied to problems of reservoirs, future research directions include
interpretability, hyper-parameter optimization, and automatic design of architectures for
surrogate models.
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1 Introduction

With the rapid development of modern artificial intelligence technology, the recognition
of oil drilling status has become a hot topic of research. To ensure the safety and efficiency
of the drilling process, this paper aims to explore the use of artificial intelligence algo-
rithms, such as machine learning and deep learning methods, to provide new solutions
for the recognition of oil drilling status. Despite many recent studies attempting to use
artificial intelligence technologies like decision trees [1], support vector machines [2],
and deep learning for condition recognition, these studies have certain limitations in eval-
uation methods and applications. This paper aims to address these limitations, proposing
more scientific evaluation criteria and building a unified drilling status dataset.

Firstly, this paper will introduce a new drilling status dataset, which covers various
types of status information, providing a solid foundation for the application of artificial
intelligence algorithms. Drawing on the classic ImageNet [3] dataset in the field of com-
puter vision, we hope to provide a shared, standardized data foundation for researchers
in the field of oil drilling status recognition through the construction of this dataset,
thereby promoting algorithm innovation and development.

Secondly, to address the limitations of existing research in evaluation methods, this
paper will use a more scientific evaluation standard, namely the F1 score [4]. The F1
score combines precision and recall, enabling a more comprehensive evaluation of model
performance. Comparing various algorithms on a unified drilling status dataset, we will
be able to gain a deeper understanding of the strengths and weaknesses of various
methods, providing more valuable guidance and insights for the field of oil drilling
status recognition.

Based on a unified dataset and evaluation standards, this paper will comprehensively
assess and improve existing oil drilling status recognition methods. After conducting a
detailed empirical analysis of various algorithms, this paper will propose an optimized
algorithm for oil drilling status recognition, aiming to achieve high-precision condition
prediction, thus enhancing the safety of the drilling process.

In conclusion, the work of this paper will provide a powerful inspiration and guidance
for the future development of oil drilling status recognition research. We believe that with
the continuous innovation and application of artificial intelligence technology, the field
of oil drilling will welcome a safer and more efficient development. By analyzing the
characteristics of various conditions and designing corresponding artificial intelligence
algorithms based on these characteristics, this paper will help to further advance the
research on oil drilling status recognition, providing more effective and reliable solutions
for future practical applications.

2 Drilling Status Dataset

2.1 Collection of Drilling Status

The dataset is collected from real logging data in the Engineering Intelligent Support
Center (EISC) system, downloaded through the EISC data lake, and provided by the
Xinjiang Oilfield Engineering Institute and the Junggar Project Department in three
ways: collecting design documents, logs, well histories, logging, well testing and other
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data. Data from 23 completed wells in different regions was collected, and the DDR
drilling status intelligent recognition system was used to complete the structuring and
standardization of the logs; the DDR accident complexity intelligent recognition system
was used to identify and construct a complex accident ledger. The data were categorized
according to 9 normal drilling statuses including drilling, circulation, reaming, and cas-
ing, and calibrated by specialized experts. A total of 224,781 status data records were
processed, with 153,776 valid data records (excluding status data with empty features in
any field). To ensure the accuracy of the status labels, the data annotation was performed
by five field experts, and the final drilling status label was determined by majority vote.
This dataset can be used by researchers to study and develop intelligent engineering
operation support systems.

2.2 Analysis of Drilling Status Dataset

This drilling dataset includes nine drilling statuses: composite drilling, casing running,
back reaming, directional drilling, drilling down, circulation, single joint connection,
pulling out of hole, and. The specific statistics for each drilling status are shown in Fig. 1:
among them, composite drilling is the most common, and reaming data is relatively less.

80000 70382

60000

40000

20000

Data Count

Status

Fig. 1. Statistics of different drilling status in the drilling data set

In all drilling status data, there are 17 key features (units in parentheses): torque
(kN-m), total pit volume (m>), weight on bit (kN), inlet flow rate (L/s), rotary table
speed (rpm), outlet flow rate (L/s), delayed drilling depth (m), standpipe pressure (MPa),
well depth (m), number one pump stroke (spm), drill bit position (m), outlet flow rate
percentage (%), number two pump stroke (spm), number three pump stroke (spm), hook
load (kN), hook height (m), and casing pressure (MPa). These features, which origi-
nate from historical manual drilling status judgments, are of crucial value for drilling
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status recognition. This study will use these features to apply artificial intelligence algo-
rithms to predict drilling status categories, aiming to improve recognition accuracy and
practicality.

3 Drilling Status Recognition Tasks and Experiments

In the previous section, we introduced the drilling status dataset. In this section, we
introduce the task of drilling status recognition into the field of machine learning, thus
achieving more efficient and accurate recognition. For this task, we will outline the
basic processes involved and describe the core steps of machine learning in handling
classification tasks. This paper will focus on using the proposed dataset to evaluate
different machine learning algorithms, analyze, and propose future research directions.

3.1 Overview of Machine Learning Algorithm Development

Drilling status recognition, as a classification task, aims to use machine learning algo-
rithms to automatically recognize different drilling statuses. Based on this goal, we can
divide the entire processing flow into the following key steps, as shown in Fig. 2:

1. Data Preparation: First, the drilling status dataset needs to be preprocessed, including
data cleaning, handling missing values, outlier processing, and feature engineering,
etc., to ensure data quality and usability.

2. Feature Selection: After data preprocessing, it is necessary to determine the most
representative and discriminative features for the specific classification task through
feature selection techniques to improve the performance of the classification model.

3. Model Selection and Training: Next, according to task requirements and data char-
acteristics, select an appropriate machine learning algorithm, and use the training
dataset to train the model to learn the association between features and drilling status
categories.

4. Model Evaluation and Optimization: After model training, predict the test dataset
to evaluate the model’s performance. If the evaluation results are unsatisfactory, the
model can be adjusted and optimized to improve classification accuracy.

5. Application and Deployment: After the above steps, when a classification model that
meets the requirements is obtained, it can be deployed in actual drilling scenarios to
achieve automatic recognition and monitoring of drilling statuses.

Based on the above process, this paper summarizes and organizes the drilling status
recognition task. In this task, our goal is to predict the corresponding drilling status
category based on the input drilling status data. Specifically, the input data includes a
series of key features during the drilling process, such as torque, total pit volume, weight
on bit, etc. The model generates the corresponding drilling status category as output by
analyzing these features.

3.2 Drilling Status Recognition Algorithm

The purpose of this paper is to explore the performance of different machine learning
algorithms in the task of drilling status recognition. Therefore, this study will select
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Fig. 2. Diagram of machine learning algorithm development for drilling status recognition

various commonly used multi-classification machine learning algorithms for experi-
mentation, including: Logistic Regression (LR) [5], Support Vector Machine (SVM)
[6], K-Nearest Neighbors (KNN) [7], Decision Tree Classifier (DTree) [8], Random
Forest Classifier (RTree) [9], Multilayer Perceptron (MLP) [9], Gaussian Naive Bayes
(GauNB) [9], AdaBoost Classifier (AdaB) [10], Gradient Boosting Classifier (GradB)
[11].

In order to further improve the performance of status prediction, this paper introduces
ensemble learning methods [12]. Ensemble learning is a strategy of combining multiple
weak classifiers to form a strong classifier. In this research, we select models that have
performed well in previous experiments as sub-models and construct a Voting Classi-
fier to implement ensemble learning. The core idea of ensemble learning is to make
the final prediction more stable and reliable by synthesizing the prediction results of
multiple models. Ensemble learning has the following advantages: it reduces the risk of
overfitting; improves prediction accuracy; enhances model stability; and handles diverse
data.

In this paper, we construct a voting classifier by integrating multiple well-performing
sub-models into a powerful classifier. This method is expected to improve the predic-
tive performance of the drilling status recognition task, providing more reliable status
recognition results for practical applications.

First, we need to preprocess the data. As the units among different features in the
status data are different, we need to normalize the data before training. After normal-
ization, the data will be in a unified scale range, which will help to improve the training
effect and performance of the model.

Next, we will use the processed data to train various algorithms and evaluate the
training results. In past research, the evaluation indicator usually used was accuracy.
However, accuracy does not fully reflect the performance of the model in classification
tasks. Therefore, this paper introduces the F1 score as the evaluation criterion.

The F1 score is the harmonic mean of Precision and Recall. Compared with accuracy,
the F1 score has the following advantages: first, the F1 score takes into account both the
precision and recall of the model, which makes the model have better evaluation effect
when dealing with imbalanced datasets; second, the F1 score can calculate evaluation
indicators for each category separately in multi-category classification problems, and
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then give an overall performance evaluation. In summary, the F1 score is a more com-
prehensive and robust evaluation indicator, which helps to understand the performance
of different machine learning algorithms in the drilling status recognition task.

3.3 Experiment Analysis

Table 1. Prediction results for different machine learning algorithms

Algorithm F1 Score % (1) Accuracy % (1)
LR 96.2 96.1
SVM 97.2 97.2
KNN 97.6 91.7
DTree 98.4 98.4
RTree 99.0 99.0
MLP 97.5 97.5
GauNB 72.9 70.6
AdaB 62.3 67.2
GradB 98.8 98.8
Voting Classifier 98.1 98.1

Which Algorithm Performs Better?

In the experiments of different machine learning algorithms in the drilling status recog-
nition task, we obtained the F1 scores and accuracy results as shown in Table 1. The
analysis is as follows:

Random Forest and Gradient Boosting Classifier performed outstandingly in this
experiment, with high F1 scores and accuracy, indicating that these two algorithms
have strong predictive ability when dealing with the drilling status recognition task. The
performance of Decision Tree is also relatively good, with high F1 scores and accuracy,
which can be used as an alternative plan for further optimization and adjustment. Logistic
Regression, Support Vector Machine, and K-Nearest Neighbors algorithms performed
moderately. Although they may not meet the prediction requirements in this experiment,
they may still have certain application value in specific scenarios. The performance of
Multilayer Perceptron is close to K-Nearest Neighbors, but slightly inferior to Decision
Tree, Random Forest, and Gradient Boosting Classifier. In practical applications, you can
try to adjust its parameters to improve prediction performance. Gaussian Naive Bayes
and AdaBoost classifiers performed poorly in this experiment, with low F1 scores and
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accuracy. In the drilling status recognition task, these two algorithms may not be the
best choices.

Is Ensemble Learning Useful?

The Voting Classifier, as a method of ensemble learning, performed well in the experi-
ment, with both F1 scores and accuracy reaching 98.1%. Although in this experiment, the
performance of the Voting Classifier was slightly lower than that of the Random Forest
and Gradient Boosting Classifier, it still demonstrated significant predictive capability.

The advantage of ensemble learning methods is that they integrate the prediction
results of multiple sub-models, reducing the risk of overfitting of a single model, thereby
enhancing the generalization ability of the model. The predictive performance of the
Voting Classifier is influenced by the performance of multiple sub-models, so in practical
applications, attempts can be made to optimize and adjust the sub-models to further
enhance the predictive capability of the Voting Classifier.

In summary, although the performance of the Voting Classifier in this experiment
was slightly lower than that of the Random Forest and Gradient Boosting Classifier, as
an ensemble learning method, it still demonstrated high predictive performance. Future
research could consider further optimization and adjustment of the sub-models of the
Voting Classifier, to further improve the accuracy and practicality of drilling status
recognition.

Does Different Features Have Different Impacts on the Model?

Indeed, feature selection has a significant impact on the performance of the model. By
selecting appropriate features, the complexity of the model can be reduced, computa-
tional costs can be minimized, and prediction accuracy can be improved. Therefore,
feature selection can be an important direction for future research. This article mainly
presents a dataset suitable for various condition predictions, proposes a condition pre-
diction task, and tests the performance of commonly used machine learning algorithms
on the proposed dataset and tasks, so no special operations for feature selection were
conducted. Subsequent research can explore how to select features that are more suit-
able for predicting all conditions. Furthermore, for different machine learning models,
researchers can also try to carry out targeted feature selection to maximize the advantages
of each model and further improve prediction performance.

In summary, feature selection is of significant importance in the task of drilling status
recognition. Future research can explore from multiple perspectives how to choose more
representative features to improve the predictive performance and practicality of the
model.

4 Future Direction

While the prediction accuracy has already reached about 99%, there are still some
research directions worth exploring in the field of drilling condition recognition:

1. Feature engineering: Although the existing features have achieved good prediction
results, the feature set can still be optimized to enhance the model’s generalizabil-
ity through further feature engineering, such as feature selection, dimensionality
reduction, and feature construction.
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2. Model fusion: Try to fuse different types of models, such as stacking, Bagging, and
Boosting methods, to enhance the model’s stability and generalization performance.

3. Online learning and incremental learning: Drilling condition data may change over
time. Researching online and incremental learning methods can enable the model to
continuously update and optimize on new data, improving prediction capabilities.

4. Anomaly detection and handling: Anomalies may occur during the drilling process,
and these anomalies may affect the prediction performance of the model. Researching
anomaly detection and handling methods can enhance the model’s robustness when
facing abnormal data.

5. Interpretability research: Improve the interpretability of the model, helping engineers
understand the reasons for the model’s predictions, thus providing more targeted
suggestions for drilling operations.

By exploring these research directions, the field of drilling condition recognition
will continue to develop in the future, providing higher quality prediction and decision
support for the drilling industry.

5 Conclusion

This paper introduces a brand-new drilling condition dataset and standardizes the task of
condition recognition prediction. Based on the proposed dataset and tasks, we evaluated
a variety of different machine learning algorithms and conducted a detailed analysis of
the prediction performance of each algorithm. This research result provides a benchmark
for subsequent researchers to facilitate more in-depth discussions in the field of condition
recognition.

Through experiments and analysis of different machine learning algorithms, we
revealed the strengths and weaknesses of each algorithm in the task of drilling condi-
tion recognition. In addition, we introduced ensemble learning methods and improved
prediction performance by combining multiple excellent sub-models into a voting
classifier.

This research not only provides a new data foundation and prediction standard for
the task of drilling condition recognition but also provides useful insights for researchers
in related fields. Future research can continue to explore more advanced machine learn-
ing algorithms and optimization techniques based on this paper, thus achieving more
significant results in the field of drilling condition recognition. We hope this research
can provide strong support for actual drilling operations and contribute to improving
drilling efficiency and safety.
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Abstract. The theoretical regulation of production parameters in oil production
engineering plays a significant role in the management of beam pumps. However,
it falls short in identifying the inherent relationships among historical production
data, thus failing to address the problem at its core. Valuable information can be
extracted from historical well experiences through data mining techniques, offer-
ing new insights for adjusting production measures. To achieve this objective, an
analysis is conducted to explore the factors and patterns influencing the exemption
period of oil wells. Various methods, including expert experience and correlation
analysis, are employed to process and selectively identify relevant features. Draw-
ing upon the principles of oil production engineering and leveraging advanced big
data processing techniques, these features are encoded to construct a compre-
hensive sample set that represents long-life wells. Subsequently, association rule
mining is applied to uncover frequent patterns exhibited by these long-life wells.
By setting a minimum support threshold of 0.01, the mining process encompasses
a substantial dataset comprising over 1700 wells, leading to the discovery of more
than 100 meaningful association rules. These rules are further prioritized and visu-
alized based on their lift values, providing valuable insights into the experiential
knowledge base related to effective measures for long-life well patterns. Conse-
quently, this knowledge base becomes an invaluable asset, offering support for
informed decision-making in terms of production parameter control and aiding in
the development of scientifically guided production strategies.
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1 Introduction

As the primary production equipment for domestic oil wells, beam pumps play a cru-
cial role in petroleum production. However, issues such as rod parting, pump leakage,
rod deviation and wear, and wax deposition significantly reduce the exempt period of
beam pumps [1]. Therefore, it is of great significance to explore the intrinsic factors
and patterns that affect the exempt period of oil wells, and provide corresponding rec-
ommended measures. This can effectively reduce the workload and extend the exempt
period, contributing to improved operational efficiency.

The underground structure of oil wells is complex and constantly changing, with
strong coupling of production parameters. The maintenance and management of beam
pump wells lag behind, and there is an urgent need for production experience-supported
information decision-making. Traditional methods for extending the exempt period are
often based on empirical knowledge, without extensive utilization of historical real-
time data feedback from well production. As a result, it is difficult to track the dynamic
information of well production and identify the mixed effects caused by multiple factors.
The perspective is limited to single-type problems. For example, in addressing the issue
of rod wear, a directional lifting system was designed for a specific well, and no-rod
lifting technology was adopted, which fundamentally solved the problem of rod wear
[2]. However, this lifting system technology was designed based on the characteristics
of a single block, and it has limitations and is difficult to be widely applied.

The advent of the era of big data in the petroleum industry has provided a vast stage
for the application of data mining techniques. Accumulating massive historical data
during long-term oil well development allows for the use of data mining techniques to
process and analyze this data, uncovering valuable insights and experiences embedded
within. Association rule mining, as one of the representative techniques in data mining,
has made significant advancements in various areas such as disease recognition, drug
prediction, and risk prediction of unsafe behaviors [3-5]. In this context, leveraging
the mining capabilities of association rule algorithms for intrinsic factors of features
promotes the deep integration of petroleum big data mining technology. To achieve this,
a long-life well sample library was created based on historical production data from
oil wells, combining expert experience with data processing techniques. By applying
association rule mining algorithms, a frequent pattern library for long-life wells was
constructed, and visual analysis was conducted on these frequent patterns.

The organizational structure of this paper is presented as follows: Sect. 2 introduces
the methods for processing and selecting data features, as well as the techniques for
association rule mining. Section 3 focuses on the frequent pattern mining of long-life
wells in a specific oilfield, analyzing and discussing the frequent patterns and associated
rules within these patterns. Section 4 presents the conclusions of the study and provides
prospects for future research endeavors.
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2 Preparation of the Sample Set for Beam Pump Well Exemption
Period

2.1 Construction of Relevant Indicators System for Well Design

In response to the requirements of well design tasks, a comprehensive indicator system
tailored for well design was developed by integrating expert knowledge. This indicator
system consists of six major categories and includes over 100 parameters. The data
sources for each parameter were identified, and a corresponding database was designed.
The details of this indicator system are presented in Table 1.

Table 1. Presents the corresponding database for the well design study.

Basic Geological Fluid Data Mechanical | Production Operation Data
Information | Data and Data
Production
Data

Well Reservoir Crude Oil Structure Daily Water Pump Testing
Number Type Viscosity Data Cut Period
Production | Exploitation | Volume Tubing Data | Dynamic Exemption
Date Layer Coefficient Sucker Rod | Liquid Level | Period
Oil (Gas) Effective Water Data Submergence | Operation
Field Thickness Mineralization | Pump Data | Depth Time
Block Unit | Saturation Formation Supporting | Pump Repair Causes
Unit Name | Pressure Water Type Data Efficiency Construction
Well Type Formation Freezing point | Pump Jack | Power Type
Lifting Temperature | Wax Data Consumption | Failure Point
Method Layer Appearance Wellhead System Description

Porosity Temperature Data Efficiency

Layer Wax Content Production | Indicator

Permeability | Gas-Oil Ratio | Parameters | Diagram

Layer Oil Pressure

Saturation

Combining expert experience, a total of 15 features were selected for the oil well,

including reservoir type, sand production, scale deposition, wax deposition, daily fluid
production, normal water cut, dynamic liquid level, pump depth, submergence depth,
stroke times, pump position wellbore inclination angle, salinity, crude oil viscosity,
freezing point, and pump Size.

2.2 Data Integration and Standardization

Based on the operation big data of the pumping unit wells, standardized processing
was carried out to address issues such as multiple data sources, varying frequencies,
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and mixed data types. This included the fusion of multi-source data, integration of data
with different frequencies, and digitization of text-based data indicators. As a result, a
standardized operation big data set for pumping unit wells was prepared. Refer to Table 2
for details.

Table 2. Operational sample set of beam pumping wells.

Well | Number Category | Depth |Diameter | Efficiency |Stroke | Stroke
Reservoir Sand Pump | Pump Water Count

1 Fault Block No 2000 44 53 3.05 2.4

Sanding

2 Medium to Slight 1999 44 95 3.76 3
High Sanding
Permeability

3 Medium to Slight 2003 44 96 3.71 22
High Sanding
Permeability

4 Complex Fault | No 2100 44 95 3.88 2
Block Sanding

5 Complex Fault | No 2000 44 68 3.41 2
Block Sanding

6 Complex Fault | No 2002 44 21 3.85 2.7
Block Sanding

7 Complex Fault | Severe 2007 38 98 2.96 25
Block Sanding

2.3 Correlation Analysis

When two variables change in some degree as a result of each other’s variations, we say
they have correlation. Therefore, before data mining, analyzing the correlation between
features and removing weakly correlated features can not only reduce workload but also
improve model accuracy.

Common methods for correlation analysis include Pearson correlation coefficient,
Spearman correlation coefficient, and Kendall correlation coefficient [6-8].

Pearson correlation coefficient formula:

cov(X,Y) EX ;—px)EY ;—pny)
Ox 0y Ox Oy

pxX,y = (1)
where X; and Y; represent the values of the i observation, uy and py are the means of
variables X and Y respectively, and 6 x and 0 y are the standard deviations of variables
X and Y respectively.



198 Z. Zhang

Spearman correlation coefficient formula:

n
6 d?
i=1

a2 =1

p=1 (2)

where d; represents the rank differences between the i variable X; and Y;, i.e., X; - ¥},
and n represents the sample size.
Kendall correlation coefficient formula:

2

FT a1 > san(xi — x)sgn(vi — ;) ©)

i<j

where sgn(x;-x;) and sgn(y;-y;) represent the signs of rank differences between the i and
J observations for variables X and Y respectively, and n represents the sample size.

The Pearson correlation coefficient is commonly used for linear correlation analysis,
the Kendall correlation coefficient is often used for comparing ordinal correlations, while
the Spearman correlation coefficient can reflect both linear and nonlinear relationships
between features. Therefore, Spearman correlation coefficient was chosen to analyze the
relationship between features and the maintenance period, and the resulting correlation
analysis is shown in Fig. 1.
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Fig. 1. Spearman correlation analysis graph.

According to the correlation analysis graph in Fig. 1, it can be observed that the
features affecting the maintenance period are, in sequence, Salinity, pump depth, and
crude oil viscosity. Submergence and scaling condition have insignificant impact on the
maintenance period.
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3 Measures Recommendation Design for Long-Life Wells Based
on Association Rules

3.1 Association Rule Mining Algorithm

Data mining algorithms can be used to discover frequent item-sets and association rules.
In order to perform effective clustering, the A-priori algorithm [9-11] is employed for
association rule mining. The strength of each rule is evaluated based on indicators such
as support, confidence, and lift.

The A-priori algorithm generates frequent item-sets through the process of joining
and pruning. The generated frequent item-sets are then used to generate association rules.
As shown in Fig. 1, which illustrates the process of association rule mining, the algorithm
starts by generating candidate item-sets (C1) based on the item categories in dataset D.
Items below a certain threshold are removed, resulting in frequent 1-itemsets (L1). L1
is then combined to form 2-itemsets, generating candidate 2-itemsets (C2). Similarly,
items below the threshold are removed to obtain frequent 2-itemsets (L.2). This process
continues, with L2 being combined to form 3-itemsets and generate candidate 3-itemsets
(C3). Again, items below the threshold are removed to obtain frequent 3-itemsets (L3).
Finally, the items contained in L3 are permuted and combined to form antecedents and
consequents. Support, confidence, and lift are calculated for each rule (Al, A2, A3)
based on the relationships between the antecedents and consequents (Fig. 2).

Database D itemset | sup L1 itemset | sup
11 2
TID|  Items S .
{12} 3 {12} 3
01 11,13,14 —
{13} 3 {13} 3
02 12,13,15 Scan D , 3
E— {14} 1 {15}
03 | 11,12,13,15 15} ;
04 12,15
itemset sup C2 temset
c2 (11,12}
g L,
L2 itemset | sup {I1,12} 1 3
(11,13} 2 (11,13} 2 Scan D (L3}
«— | {1115
{I12,13} 2 — {I1,15} 1
12,1
{1215, | 3 a3 | 2 12,13}
(12,15}
o - 213 3 {13,15}
(13,15} 2 .
L3
itemset Scan D itemset sup
—_
C3 | {12,13,I5} {I2,13,I5} | 2
Scan D
Al A2 A3
ant [ con | sup | conv | lift ant | con | sup | conv | lift ant [ con | sup | conv| lift
{I2}{13,15)| 2 | 0.67 | 1.33 {IB}[I2,15) 2 0.67 | 0.89 {I5}{12,13} 2 0.67 | 0.89

Fig. 2. Tllustrates the concept of association rule mining.
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3.2 Preparation of Long-Life Well Measures Knowledge Base

The process measures supporting long-life oil wells in each block were statistically
analyzed, and an association rule mining algorithm was used to create a process library
for long-life wells. By setting the minimum support threshold to 0.01, a total of 104
frequent patterns for long-life wells were obtained, as shown in Table 3.

Table 3. Library of frequent patterns for long-life wells.

rules frequent item-sets

1 - Stroke * Stroke per Minute [>15]

* Wax Deposition Condition [No wax]

* Well Reservoir Type [Medium to high permeability]
- Water cut [>95]

* Pump Size [56 57]

* Dynamic Fluid Level [634-889]

» Salinity [0-10000]

* Angle of Inclination [0-15]

* Scaling Condition [Slight scaling]

* Crude Oil Viscosity [1000-10000]

* Sand Production Condition [Slight sand production]
* Submergence [100-300]

* Daily Fluid Production [30-80]

* Freezing point [null]

* Pump Depth [800-1100]

2 * Wax Deposition Condition [No wax]

* Stroke * Stroke per Minute [6.5-9.5]

* Well Reservoir Type [Medium to high permeability]
- Water cut [>95]

* Pump Size [56 57]

* Daily Fluid Production [10-30]

* Dynamic Fluid Level [634-889]

- Salinity [0-10000]

* Angle of Inclination [0-15]

* Scaling Condition [Slight scaling]

* Crude Oil Viscosity [1000-10000]

* Sand Production Condition [Slight sand production]
* Submergence [ 100-300]

* Freezing point [null]

* Pump Depth [800-1100]

(continued)
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Table 3. (continued)

rules frequent item-sets

3 * Wax Deposition Condition [No wax]

* Submergence [300-500]

* Stroke * Stroke per Minute [6.5-9.5]

* Well Reservoir Type [Medium to high permeability]
* Water cut [95-]

* Pump Size [56 57]

* Daily Fluid Production [10-30]

- Salinity [0-10000]

* Angle of Inclination [0-15]

* Scaling Condition [Slight scaling]

* Crude Oil Viscosity [1000-10000]

+ Sand Production Condition [Slight sand production]
* Dynamic Fluid Level [306-634]

* Freezing point [null]

* Pump Depth [800-1100]

Taking the first frequent pattern as an example, when the frequency of Stroke *
Stroke per Minute is greater than 15, Wax Deposition Condition is “no wax deposition”,
Well Reservoir Type is “medium to high permeability”, Water cut is greater than 95%,
Pump Size is either 56 or 57, Dynamic Fluid Level is between 634—-889 m, Salinity is
within the range of 0-10000, Angle of Inclination is between 0—15 degrees, Scaling
Condition is “slight scaling”, Crude Oil Viscosity is within the range of 1000—10000,
Sand Production Condition is “slight sand production”, Submergence is between 100—
300 m, Daily Fluid Production is within the range of 30-80, Pump Depth is between
800-1100 m, in this pattern, the wells exhibit long lifespan phenomena.

4 Measures Recommendation for Extending the Free Repair
Period

Based on the historical data of the wells and expert consultation information, key indica-
tors are determined. Then, the generated solutions from the historical data of the wells and
scheduling rules are compared against the determined key indicators to identify expert
experiences corresponding to similar well characteristics. Finally, a recommended action
plan is formulated in accordance with the expert experiences.

For the target well, long-lived wells in the corresponding block are identified, and
measures from these long-lived wells are recommended for the target well, as shown in
Table 4.
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Table 4. Example of Recommended Measures for Long-lived Wells.

Target Well Recommended Wells
Well Well 1 Well 2
Maintenance Period 1 year 5 years
Well Reservoir Type Medium-high permeability | Medium-high permeability
Sand Production Condition Slight sand production Slight sand production
Scaling Condition Slight scaling Slight scaling
Wax Deposition Condition Slight wax deposition Slight wax deposition
Water cut 30-90 30-90
Freezing point 0-30 0-30
Pump Size 56/57 56/57
Crude Oil Viscosity 1000-10000 1000-10000
Daily Fluid Production (DFP) 0-10 10-30
Dynamic Fluid Level 889-1260 0-306
Pump Depth 1100-1500 800-1100
Submergence 100-300 >500
Stroke * Stroke per Minute (SSPM) | 0-6.5 9.5-12.0
Angle of Inclination 15-30 0-15
Salinity 10000-50000 0-10000

Based on the geological features and process parameters between the target well
and the candidate recommended well, the changes in lift values are analyzed based on
shared characteristics. This process facilitates the identification of the optimal solution
for process selection. As shown in Fig. 3, the lift values are compared for different
processes between the target well and the recommended well. The lift values indicate
the contribution to the long-term operational performance of the oil wells.

As shown in Fig. 3, when the geological indicators of oil wells, such as reservoir
type, sand production, scale deposition, and wax deposition, are consistent, there are
significant differences between the pump depth and output water salinity indicators of
the target wells and the recommended wells. Therefore, we focus on analyzing the pump
depth, submergence, and output water salinity indicators. The pump depth of the target
wells ranges from 1100 m to 1500 m, the submergence ranges from 100 m to 300 m,
and the output water salinity ranges from 10000 to 50000. In contrast, the recommended
wells have a pump depth ranging from 800 m to 1100 m, submergence greater than
500 m, and output water salinity ranging from 1000 to 10000. As the output water
salinity indicator is determined by geological conditions and is not easily changed, we
can appropriately adjust the pump depth and submergence indicators to prolong the
maintenance-free period of oil wells.
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Fig. 3. Comparison of Oil Recovery Measures Indicators

5 Conclusion

Based on the comprehensive achievements of information construction in a certain oil-
field, historical production data of 5,789 fully equipped medium-high permeability reser-
voirs with beam pumping wells were collected. Feature analysis samples and long-lived
well samples were designed. Parameters were analyzed from multiple perspectives,
including geology, fluid, production, lifting systems, and supporting processes. The focus
was on comparing the differences between abnormal wells with extended maintenance
intervals and regular wells in various parameters. Based on this analysis, factors and
patterns influencing the extended maintenance interval were statistically summarized
and identified.

After identifying the factors influencing the extended maintenance interval, the sup-
porting patterns for long-lived wells were explored, resulting in the preparation of 105
frequent patterns for supporting long-lived wells. These patterns can be used to rec-
ommend measures and experiences for short-lived wells with similar geological char-
acteristics, providing valuable guidance for the high-value application of oilfield big
data.

In the future, efforts will be made to further expand the application of frequent
patterns by integrating the recommended supporting patterns with field implementation
codes, thereby reducing the difficulty of frontline application.

Acknowledgments. The project is supported by the Sinopec Scientific and Technological
Research Project “Research on the Application of Big Data Technology in Oilfield Development”
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Abstract. The existing pumping unit downhole working condition diagnosis sys-
tem has a high false alarm rate and a low accuracy rate of diagnosis for complex
working conditions and abnormal working conditions. To address this problem,
a diagnostic system of pumping unit workings is developed. First of all, the
displacement-load data of the workover diagrams were converted into images,
and then, through preliminary screening, manual review and data balancing from
hundreds of millions of workover diagrams accumulated over the years, a sample
database of 28 types of workover conditions, such as normal production, insuf-
ficient fluid supply, gas influence, rod breakage and tubing leakage, was estab-
lished, with a total of about 760,000 samples, to compile a data set that is leading
in quality and quantity in China. The project adopts “graphic + data” composite
diagnosis, “graphic” corresponds to the power diagram, “data” refers to the elec-
trical parameters, set pressure and other production parameters, and transforms
the fault diagnosis problem of the power diagram into a deep learning-based
image classification problem. Deep learning based image classification problem.
A fault diagnosis method based on migration learning and category imbalance
loss is designed. Better diagnostic results are obtained, with the single diagnostic
accuracy of no less than 98% for common working conditions, 99.5% for normal
production, 98.4% for insufficient fluid supply, and 97.2% for gas influence.

Keywords: Convolutional neural network - fault diagnosis - oil extraction
machine - transfer learning

1 Introduction

Currently, PCS, EPBP, and other information platforms in oil fields have brought great
convenience to production management. However, the data collected through these plat-
forms is not fully exploited. The load and displacement parameters generated during
the reciprocating motion of the drilling head of a well machine are the parameters of
dynamometer card. It reflects the impact of internal factors such as gas, oil, water, sand,
and asphalt on the working condition of the drilling machine [1-3]. In the process of
identifying the working condition of an oil well, dynamometer card fault diagnosis is
an important method. Traditional dynamometer card fault detection is based on expert
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systems and summarizes and analyzes different shapes of work diagrams. However,
the actual dynamometer card are diverse and the relationship between formation rea-
sons and faults is complex [2, 4-8]. Overreliance on expert knowledge leads to costly
and time-consuming system development and low robustness. The accuracy of graph
description is low and some characteristic features of the work diagram are difficult to
describe. Existing downhole working condition diagnosis systems have high warning
misreporting rates, low accuracy in diagnosing complex and abnormal working con-
ditions, and lack of targeted solution after diagnosis, requiring technical personnel to
develop solutions again.

In recent years, the development of machine learning technology has made it possible
to achieve high-precision recognition of oil well conditions using massive data [9, 10].
Artificial neural networks, BP neural networks, and self-encoders are among the machine
learning methods applied in oil well performance diagnostics, and all have achieved good
results. Based on SVM and other classification models, good results can also be achieved,
but the condition is that reasonable feature selection is conducted. Deep learning has
gradually emerged as a popular method, and the most representative image recognition
method is convolutional neural networks. Similar to deep learning, it also requires a
certain level of domain knowledge and experimental analysis [10—12]. Since the arrival
of the GPU computing era, many professionals have attempted to explore the application
of convolutional neural networks in performance diagnostics for oil wells.

Research priorities for using CNN to diagnose oil extraction machinery underground
conditions include: It is necessary to focus on studying the problems of high warning
false positive rates and low diagnostic accuracy for complex and abnormal operating
conditions of underground oil extraction conditions in existing oil extraction condition
diagnosis systems, and effective extraction of the outline features of the performance
graph, as well as strengthening the extraction of highly discriminating outline features.
Therefore, a set of deep learning-based and expert experience fusion performance graph
real-time diagnosis technology is developed to transform the fault diagnosis problem of
the performance graph into an image classification problem based on deep learning. The
loss function FocalLoss is used to alleviate the class imbalance problem and enhance the
learning of the model for rare samples, solving the problem of poor diagnostic accuracy
for rare data. The CAM method is used to present the parameters of the convolutional
neural network in a visually intuitive hot region format in the final diagnostic image,
so that the model can be judged whether it has sufficient attention to the key regions of
the performance graph that cause incorrect classification. This can solve the problem
of high warning false positive rates and low diagnostic accuracy in existing diagnosis
systems and intelligently provide strategic solutions to guide on-site production.

2 Production Data Analysis

2.1 Dynamometer Card Analysis

The extraction rod of the oil extraction machinery moves from the bottom to the top,
and then back to the bottom, repeating this process. This process is called the stroke.
During one stroke of the extraction rod, the point of suspension’s displacement and load
will form a closed figure, which is called the dynamometer card.
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Using actual workload graphs to diagnose oil well conditions is a widely adopted
method in oil field production. The different geometric shapes of the workload graph
represent different operating conditions of the well. Actual workload graphs can reflect
abnormal operations of deep well pumps in underground conditions. Combining geo-
logical conditions, production data, and the condition of instruments to analyze and
interpret the working system of the oil well and the compatibility of the machine, rod,
and pump parameters with the well. Figure 1 are examples of dynamometer card.

a. Unbalance c.Breaker
o~ >
e~ —

d.Engine oil supply shortage e.Rusting f.Mixing production due to pump collision
— " = i /// =
A - - 7 | /
[/// g / / ( f
g.Gas lock h.Gas influence i.Double valve leakage

Fig. 1. Example of dynamometer card

2.2 Electrical Parameter Analysis

During the operation of the well, the three-phase electrical parameters that can be col-
lected by the electrical control cabinet include RMS current, RMS voltage, active power
and reactive power. The average active power and the coefficient of active power fluc-
tuation can be used as parameters for well condition diagnosis, and the average active
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power is calculated as follows:

szTi/P(t)dz (1)

0

Calculate the coefficient of active power fluctuation:

/Tl0 [ P2(t)dt

2
TLO [ P(t)dt

Ty represents the electrical parameter collection cycle, with a set collection cycle of
2 h, and (¢) is the active power. During the normal working process of the pumping unit,
the average load rate of each stroke of the pumping unit is stable and stable in a straight
line. The load rate will be affected by the operating conditions of the oil well, but the
average active power Py, fluctuates steadily within a reasonable range. The fluctuation
coefficient K of active power can reflect the fluctuation of the pumping unit load within
a stroke, and the larger K, the poorer the balance and stability of the pumping unit. The
balance rate of the pumping unit can be determined based on the collected electrical
parameters, thereby understanding the changes in downhole load of the oil well.

2.3 Data Preprocessing

In Jiangsu oil field, the exploration and production units of Unit 1 and Unit 2 of the
drilling production plant have a total of nine management areas and nearly 2,000 wells.
From 2015 to 2020, almost one hundred million pictures of dynamometer card have
been accumulated. In order to obtain samples of work efficiency diagrams of normal
and various fault conditions, it is necessary to select from this billion-plus number of
pictures, and the following work was implemented:

(1) Preliminary screening: A preliminary screening program was written based on the
principle of small batches and elimination of obvious duplicates, to screen work
efficiency data. The traditional work efficiency diagram diagnosis method was used
to iterate through all the historical dynamometer card of all management areas, and
the work efficiency data of different diagnoses was drawn as an image and saved in
different directories.

(2) Human review: A large amount of work efficiency data was labeled for operating
conditions after screening, and human review was performed on each dynamome-
ter card. Dynamometer card with incorrect diagnoses were assigned to the appropri-
ate directories for faulty operations, and dynamometer card with unidentified faults
were submitted for review by oil field experts.

(3) Data balance: The number of work efficiency diagrams corresponding to different
fault types was very imbalanced. There were many work efficiency diagrams for
normal and insufficient fluid operations, while the number of diagram types such
as cylinder lock pump cylinder, fixed valve leakage, and mobile valve leakage was
very small. This had a significant impact on the results of artificial intelligence
data training, significantly reducing the accuracy of diagnosis. In response to this
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situation, we wrote a data reduction program to delete numerous and similar work
efficiency diagrams. For rare fault types with few diagram samples, a separately
written enhancement program was written to screen from historical work efficiency
diagrams again. This program had a higher tolerance rate than the previous screening
program. The results were then reviewed by humans.

3 Algorithm Research and Model Design

3.1 Algorithm Research

Current methods for fault diagnosis using dynamometer card generally have the
following drawbacks:

1. Convolutional neural network as a deep learning model have inherent black-box
properties. Existing CNN-based work efficiency diagram diagnosis models can only
reflect the diagnosis results of a specific work efficiency diagram in the final clas-
sification probability, without specific visualization of the many parameters within
the network. This makes it difficult to evaluate the effectiveness of the model from a
professional experience perspective.

2. The accuracy of recognition by deep learning models is dependent on the quality
of the data set. The larger the number of categories in the data set, the better the
training effect will be. In the context of work efficiency diagram diagnosis for oil
wells, such as fixed leakage and mobile leakage, due to their rarity, there are few
samples, resulting in a long tail distribution across the entire data set, which has a
very negative impact on the training and final diagnosis accuracy of deep learning
models. However, existing CNN-based work efficiency diagram diagnosis models do
not make adjustments to address the problem of long-tail distribution in data sets, and
therefore have poor performance in diagnosing rare data.

3. The performance of deep learning models also depends on the good initialization of
network parameters. Some existing work efficiency diagram diagnosis models typi-
cally use a random initialization method to set the initial parameters of the network.
This can affect the final convergence of the model to a certain extent, thereby reducing
the performance of fault diagnosis.

Based on the above three issues, a method for fault diagnosis using transfer learning
and class imbalance loss was designed. Transfer learning technology, as the mainstream
initialization method in the field of deep learning, uses parameters trained on a large
image data set ImageNet as the initial parameters of the network and performs parameter
fine-tuning using work efficiency diagram data. This addresses the third issue. For the
second issue, a loss function called Focal Loss was used to alleviate the problem of class
imbalance, in order to improve the learning level of rare samples for the model. For the
first issue, the CAM method was used to visualize the parameters of the convolutional
neural network in a thermal map format in the final diagnosis image, allowing the model
to focus on key regions of work efficiency diagrams that were incorrectly classified.
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3.2 Model Design

The diagnosis of dynamometer card falls into the category of N-class image classifi-
cation, where N is the number of categories. The normal, imbalance, gas influence,
insufficient fluid, and valve failure categories are all included in the 26 categories of
work efficiency diagrams. The routine work efficiency data is stored in a database in the
form of binary coding, which is decoded by a Python program and drawn on a canvas to
form an image. The axis of the horizontal and vertical coordinates is retained to provide
scale information for model recognition, and the image is saved with a resolution of 224
x 224 on local storage.

The entire model’s output is extracted through an intermediate pre-trained model for
feature extraction. The pre-trained model contains multiple residual blocks within its
internal structure. The feature vectors are then transformed into probability distributions
for target classifications through a fully connected layer, achieving model prediction.
Finally, the probabilities are normalized using the softmax activation function to obtain
the final classification results.

This article uses the SeResnet50 network as the model framework for training, where
the prefix “Se” stands for the squeeze and excitation process. This process involves
adding a SE module to the ResNet50 network model. The SE (Squeeze-and-Excitation)
module adaptively redefines each channel’s feature by separately modeling information
from each feature layer. The module is not a complete network structure but rather
a sub-structure that can be nested into other classification or detection models. The
principle of the process is to enhance important features and weaken unimportant ones
by controlling the scale of the SE module, similar to the mechanism of attention. The
process is mainly aimed at making the extracted features more pointing, thus better
recognizing fine features in FGVC tasks (Fig. 2).
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Fig. 2. SE module structure diagram

3.3 Accuracy Analysis

The CAM algorithm is used to visualize the features of samples with insufficient fluid
supply. The characteristics of insufficient fluid supply are that the weight of the hang-
ing point cannot decrease immediately during the downward stroke, and only when
the piston contacts the fluid surface can it be rapidly unloaded. This is reflected in the
load-deflection curve, as shown in Fig. 3, where a missing corner should be present in
the lower right corner of the load-deflection curve. After visualizing the discrimination
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features learned by our model, it can be seen that our model focuses on the missing cor-
ner point and learns the discrimination features for load-deflection curve classification.
Through the visualization of the CAM algorithm, it better reflects the detection hotspots
and interpretability of the model for various types of load-deflection curve failures. In
response to the problem of long tail distribution, the loss function we use, the Focal Loss
function, produces a large loss value for samples with fewer categories, and a smaller
loss value for samples with more categories, significantly improving the accuracy of
classification for samples with few categories and reducing the negative effect brought
about by long tail distribution, resulting in an increase in final model accuracy of 6%.

Fig. 3. Applying CAM methods to interpret dynamometer card

4 Experiments and Results Analysis

This article explores the effectiveness of different residual networks as feature extractors,
including ResNet, DenseNet, and MobileNet. Among the three models, ResNet shows
the strongest robustness to imbalanced data, while DenseNet performs the poorest. This
is because the strong generalization ability brought about by the extensive connections in
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DenseNet is actually achieved by ignoring the features of a few rare samples. MobileNet
is more concise and therefore achieves better results, but its Transfer Learning is weaker
than ResNet’s, so it naturally trails behind in low-sample situations. Figure 4 shows a
comparison of experiments on seven typical working conditions for the three models.
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Fig. 4. Experimental comparison of seven typical working conditions on three models

Table 1 shows the experimental results of the resnet model.

Table 1. Experimental results of the resnet model.

No Type of working condition Precision Recall F1-score Support
1 Downside obstruction 0.96 0.94 0.95 144

2 Imbalance 1.00 1.00 1.00 3853
3 Insufficient fluid supply 0.99 1.00 1.00 31522
4 Power diagram error 0.99 0.99 0.99 12381
5 Fixed valve normally open 1.00 0.97 0.98 59

6 Fixed Valve Leakage 0.99 0.99 0.99 964

7 Pumping and spraying 1.00 1.00 1.00 822

8 Pumping rod on touch 0.98 0.98 0.98 2166
9 Rod broken 0.96 0.98 0.97 46

10 Plunger stuck 1.00 1.00 1.00 3

11 Plunger out of pump barrel 0.93 0.94 0.93 113
12 Normal 1.00 1.00 1.00 41278
13 Gas influence 0.99 1.00 1.00 1065
14 Airlock 0.00 0.00 0.00 1

(continued)
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Table 1. (continued)

No Type of working condition Precision Recall F1-score Support
15 Oil well out of sand 1.00 0.92 0.96 26

16 Oil pipe leak or well wash 0.99 1.00 0.99 1441

17 Swim valve normally open 0.99 1.00 0.99 414

18 Leaky pilot valve 0.98 0.98 0.98 227

19 Pump production 0.98 0.98 0.98 3467
20 Wax formation 0.99 1.00 1.00 4278

4.1 Practical Applications

As of March 25, 2022, the types of working conditions diagnosed based on dynamome-
ter card fault diagnosis were divided into 26 categories, and a total of 19 types of faults
occurred in the nine management areas of Jiangsu Oilfield Plant I and Plant II during
this period, select the three most common to display, which were manually reviewed
and counted as follows (Table 2):

Table 2. Results of the three most common types of troubleshooting.

NO | Type of working | Number of oil | Number of | Number of wells | Correct rate
condition wells misreported | missed
wells
Normal 798 2 2 99.5%
2 Insufficient fluid | 618 0 10 98.4%
supply
3 Gas influence 180 5 0 97.2%

5 Conclusions

The well condition diagnosis based on the workup graph uses the pre-training-fine-
tuning paradigm of migration learning, combined with the loss function FocalL.oss for
category imbalance, to reduce the negative effect of the long-tail distribution and sig-
nificantly improve the performance of the model in the workup graph fault diagnosis
of oil wells. Using the CAM method, the parameters in the convolutional neural net-
work are presented in the final diagnostic map in the form of visualized hot zones, from
which it can be judged whether the model has sufficient attention to the key areas of the
schematic power map misclassification. Better diagnostic results were obtained, with a
single diagnostic accuracy of no less than 95% for common operating conditions, 99.5%
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for normal production, 98.4% for insufficient fluid supply, and 97.2% for gas influ-
ence. Improved response timeliness, with an average reduction of 4 h in fault response
time. Improved management, timely handling of faults, avoiding complications of faults,
timely maintenance, and improved equipment integrity.
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Abstract. Drilling sensor failure leads to unavailability of kick monitoring param-
eters and the inability to apply intelligent kick detection methods. To solve this
problem, a confidence evaluation indicator based on softmax is designed to mea-
sure the difficulty of kick identification, and the appropriate monitoring param-
eters are adaptively selected based on this indicator. Finally, an intelligent kick
detection method using a cascaded GRU network with adaptive monitoring param-
eters is proposed in this paper. Kick identification experiments were conducted
using simulated and measured data. The experimental results show that, when one
monitoring parameter is unavailable, the recognition accuracy of the cascaded
network proposed is improved by 10.61% on average and the computational load
is reduced by 38.5% compared with the traditional gate recurrent unit network.
The applicability of intelligent kick detection methods is significantly improved.

Keywords: Intelligent Kick Detection - Difficulty of Kick Identification -
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1 Introduction

Kick is the phenomenon of formation fluids influx into the borehole, caused by formation
pore pressure being higher than the bottom hole pressure (BHP). Kick can cause a
blowout accident, resulting in huge casualties and economic losses. Therefore, accurate
early kick detection has always received high attention from drilling experts.

Many studies use multi-parameters for kick detection. The monitoring parameters
include mud parameters, engineering parameters, and downhole parameters. Mud param-
eters that reflect the change in total mud volume include differential flow out (DFO) and
pit volume [1]. Using them to detect kicks will make some delay. Engineering parameters
include rate of penetration (ROP), weight on bit (WOB), torque, pump pressure, stand-
pipe pressure (SPP), hook load [2], etc. They have fast responses, but they are prone
to receive interference from human operation and environmental factors, resulting in
low accuracy of kick detection. Downhole parameters are collected from logging-while-
drilling (LWD) and measurement-while-drilling (MWD), including downhole annular
pressure, drilling fluid density, drilling fluid conductivity [3], etc. It is more accurate
and timely kick detection using downhole parameters because their collection location
is close to the location of kick occurrence. However, downhole acquisition equipment
is still not widely used in some well sites due to its expensive price, slow transmission
efficiency, and poor equipment stability.

The existing kick detection methods include model-based methods and data-based
methods. Major oil service companies, including Schlumberger [4], Halliburton [5],
Shell International Exploration and Production [6], and Corva [7], have mainly stud-
ied model-based kick detection methods. The model-based method needs to build a
mathematical model of pit volume and drilling fluid flow, then alarm when two param-
eter values exceed the preset safety thresholds. The more reasonable the mathematical
model constructed, the higher the accuracy of kick identification. However, there are
many assumptions in the modeling process, as well as some model parameters and
safety thresholds are difficult to set. So, the accuracy of the model-based method needs
to be improved. In contrast, data-based monitoring methods have self-learning capabil-
ity, thus reducing the number of missed and false alarms caused by unreasonable settings
of model parameters and thresholds. Therefore data-driven kick detection models often
use multiple parameters as input to achieve earlier kick detection. Many universities and
researchers use data-driven methods to achieve earlier kick detection, including support
vector machines (SVM) [8], Bayesian networks (BN) [9], random forests (RF) [10], and
Artificial Neural Networks (ANN) [11]. In addition, deep learning techniques, such as
Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) [12], show
greater advantages in processing drilling time series data. Because it is more accurate to
identify the kick by analyzing the trend of the parameters than by the parameter values.

The studies by major oil service companies prove that most kicks can be monitored
based on anomalous changes in pit volume and flow-out rate, and the research by uni-
versities indicates that using engineering parameters can achieve earlier kick detection.
However, engineering parameters are easy to become unavailable due to environmental
factors in the field. And the data-driven kick detection methods are only useful if all
input parameters are available. In order to accurately detect kicks using mud parameters
and engineering parameters and to improve the robustness of the kick detection method,
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an intelligent kick detection method based on a cascaded gated recurrent unit (GRU)
network with adaptive monitoring parameters is proposed. The cascaded GRU network
consists of two sub-networks: a basic GRU network and a comprehensive GRU network.
The basic network uses the mud parameters to identify most of the kicks. The compre-
hensive network uses the engineering parameters and the results of the basic network as
input to achieve the monitoring of difficult-to-identify kicks. In order to automatically
distinguish the kicks with different identification difficulties, a confidence evaluation
indicator is designed using the softmax algorithm to evaluate the reliability of the output
of the basic network. The results of the basic network can also be applied in the com-
prehensive network, thus avoiding the increase of computational load. Therefore, the
method not only has fewer calculations but also is more robust.

2 Method

The proposed method aims to use only mud parameters (pit volume and DFO) to mon-
itor most of the kicks and to automatically use both mud parameters and engineering
parameters (ROP, WOB, torque, and SPP) to monitor a few difficult-to-identify kicks.
The proposed intelligent kick detection method consists of three sequentially connected
modules: a basic model, a switching module, and a comprehensive model (see Fig. 1).

Mud a—

parameters Monitoring Switching module

Basi result confidence —
Drilling data asic evaluation ecognition
model unit N result
Features
switch Comprehensive
Engineering model

parameters

Fig. 1. Kick detection process of proposed method.

First, a kick is monitored by the basic model constructed with the mud parameters
as input. Then a confidence evaluation unit designed in the switching module is used
to determine which kicks can be accurately monitored by the basic model. Where the
confidence evaluation indicator is calculated by the softmax algorithm [13] and is used
as a “switch” to control the use of the comprehensive model.

e8&X.Y)
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where p is the indicator, X denote the inputs, y denotes the outputs for each type, Y
denote the outputs for all types, e denotes an exponential function, g denotes the basic
model.

When the indicator value is lower than the preset threshold, the comprehensive model
performs. The comprehensive model uses the engineering parameters and the features
of mud parameters as inputs. This structure avoids repeated calculations. Therefore, the
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automatic selection of monitoring parameters in this method not only has less computa-
tional load but also avoids the reduction of accuracy when the engineering parameters are
unavailable. Thus, the robustness of the intelligent kick detection method is improved.
Both the basic and comprehensive models are based on the GRU, which can realize the
feature extraction and classification of time series.

2.1 GRU

GRU is a deep learning technique based on the LSTM simplified architecture. It also
could analyze the time series and avoid the long-term dependencies in RNN. The basic
structure of GRU consists of two gating units (a reset gate and an update gate) (see
Fig. 2). It is easier to train and compute than the three-gating unit structure of LSTM
network (a forgetting gate, an input gate, an output gate) [14]. To prevent important
historical information from being forgotten, the update gate in the GRU module filters
and records historical information, while the reset gate analyzes the relationship between
historical information and the current input. Where M is the recurrent module of GRU,
L is the fully connected layer, which classifies the time series according to the state of
the hidden layer at the last moment.

heiq y
M M
t f
Xe-1 Xt+1

Fig. 2. Process of GRU network processing time series.

The formula for each parameter in the GRU network.

2 = o (wy * [h—1, x;] + b;) 2)

rr = oW *x[hi—1, x;] + by) 3)

h, = tanh(wy, % [r; % hy—1, x;] + bp) “)
e = (1 —z0) % byt + 2 % y) (5)
y =0Wo *hy +bo) (6)

where the values of weights (w,, w,, wy, w,) and biases (b;, b, by, b,) are obtained by
training using a backpropagation algorithm.
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2.2 Cascaded Network

The cascaded network consists of two sequentially connected GRU networks, a basic
GRU network and a comprehensive GRU network (see Fig. 3). The basic GRU network
uses DFO and pit volume (PitV) as inputs, while the comprehensive GRU network
employs ROP, WOB, torque (Tor) and SPP as inputs. The trend features of the time
series are obtained in the GRU module M, then the concatenate layer C combines all
features, and the fully connected layer L classifies the time series based on these features.
The basic GRU network classifies the drilling data according to the trend features of DFO
and pit volume, while the comprehensive network depends on the trend features of DFO,
pit volume, ROP, WOB, torque, and SPP.

Basic GRU Network

h - h
; - = " ]
i DFoO, PitV, DFO, PitV,

Comprehensive GRU Network

M2 eee M2

EROR woty1 ToI"l SPI’I Rolvn wotsn ToI*" SPI’H

Fig. 3. Structure of a cascaded GRU network.

The following Table 1 gives the number of nodes in each layer of the cascaded GRU
network.

Table 1. Number of nodes in each layer of the cascaded GRU network.

Layer name Basic GRU network Comprehensive GRU network
Input layer (60,2) (60, 4)
GRU module 32 64
Concatenate layer / 96
Fully connected layer 8 24
Output layer 2 2
3 Data

The drilling data used in this paper were collected from 29 wells in Shengli oilfield, and
a total of 35 kicks occurred. The monitoring parameters, including ROP, WOB, torque,
SPP, DFO, and pit volume, are available in 20 wells. In addition, some parameters in
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9 wells have missing data, and the reasons include sensor not working or equipment

failure. The following Table 2 gives the number of kick cases with missing parameters
and the type of missing parameter.

Table 2. Number of kick cases with missing parameters.

Missing parameter Number of kicks
None 24

ROP 9

WOB 5

Torque 9

SPP 3

DFO 1

Pit volume 0

There are many outliers, missing values, and noise in the measured drilling data.
So, before training the intelligent detection model with the measured kick data, data
pre-processing, and sample set construction are required. Data pre-processing includ-
ing outlier removal, missing value processing, noise removal, and normalization could
improve the quality of training data.

The 3 sigma method [15] is used to identify outliers and then remove them.

x €{|lx — u| > 30} (N

where p denotes the mean and o denotes the standard deviation.
A linear interpolation method [16] was used to fill in the individual missing values.

_ Xiet + Xigs

Xj > ®)

where ¢ indicates the time interval between the missing data and the adjacent valid data.
Then, a time series denoising method based on the heat conduction equation [17]
was used to remove noise from the data.

=y — 2d) ©)

where u denotes the signal values, i represents the sampling instant, j denotes the number
of iterations, and A is the conduction rate.
Finally, the data are mapped to the interval [0,1] using min-max normalization [18].
X — Xmin

f= (10)

Xmax — Xmin

where x4, denotes maximum value, and x;,,;,;, denotes minimum value.
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A sample refers to a time series of monitoring parameters, including ROP, WOB,
torque, SPP, DFO, and pit volume. These time series were obtained using the window
slicing method. The length of the time window is 5 min. A total of 17,774 samples
are obtained, of which 14,954 samples without missing parameters are divided into the
training and testing sets in the ratio of 8:2. 2,820 samples with missing parameters are
used as the validation set to check the robustness of the model. The sample labels are
marked by experts based on drilling records.

4 Result and Discussion

The accuracy of the kick detection model is calculated using a confusion matrix. The
following Table 3 gives a confusion matrix including True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). The accuracy is calculated as

TP + TN

Accuracy = (11)
TP + FP + FN + TN

Table 3. A confusion matrix for kick detection.

Predicted Actual

Kick No Kick
Kick TP FP
No kick FN TN

First, the value of the threshold in the confidence evaluation unit needs to be preset.
Different values of the threshold correspond to different accuracies of the kick detection
model (see Fig. 4). The accuracy of the testing set increases as the threshold increases,
while the accuracy of the validation set decreases as the threshold increases. So, the
accuracy of testing and validation sets increases and then decreases. When the threshold
value is 0.8, the accuracy of the test set and validation set is maximum.

Traditional GRU network is built with DFO, pit volume, ROP, WOB, torque, and
SPP as inputs. For the validation set, the accuracy of the cascaded GRU network is
higher than that of the traditional GRU network (see Fig. 5). It shows that the cascade
GRU network can identify kick cases with missing parameters more accurately. For all
kick cases, the accuracy of the cascaded GRU network is 10.61% higher than that of the
traditional GRU network.

The testing set includes 2,991 samples and the validation set includes 2,920 sam-
ples. There are 5,811 samples in testing and validation sets. Experimental results show
that the basic GRU network identifies 4,100 of the samples. The number of calcula-
tions in the basic GRU network is 15,325,800 and that in the comprehensive GRU
network is 14,909,654. So, the total number of calculations in the cascaded GRU net-
work is 30,235,454. The number of calculations in the traditional GRU network is
49,161,060. Therefore, the cascaded GRU network reduces the computational load by
38.5% compared with the traditional GRU network.
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Fig. 4. Accuracies of testing or validation sets with different threshold.
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Fig. 5. Accuracies of cascaded GRU and traditional GRU.

5 Conclusion

The result of kick identification experiments using measured data shows that most kicks
can be accurately identified by using pit volume and differential flow out. For drilling
data without missing parameters, the kick detection model using DFO, pit volume, ROP,
WOB, torque, and SPP as monitoring parameters has higher identification accuracy than
the model only using pit volume and DFO. However, there are some drilling data with
missing parameters collected at the field. For these data, the cascaded GRU network with
adaptive monitoring parameters has higher identification accuracy than the traditional
GRU network. The computational load of the cascaded GRU network is lower than the
traditional GRU network. So, the applicability of intelligent kick detection methods is
improved using the cascaded GRU network.

The small amount of drilling data used in this paper can only be used to verify the
effectiveness of the proposed method. For practical application, it is necessary to train
the model using a larger measured data set. The cascaded GRU network with adaptive
monitoring parameters proposed in this paper includes two sub-networks, and only mud
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parameters and engineering parameters are used. If the downhole parameters are used to
build a multi-level cascaded GRU network, the accuracy and robustness of the intelligent
kick detection method can be further improved.

Acknowledgments. The project is supported by National Natural Science Foundation (Number
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Abstract. CO» huff and puff is an important replacement method for the subse-
quent improvement of oil recovery after the elastic development of multi-stage
fracturing horizontal wells in tight reservoirs. The rates optimization of huff and
puff injection and production has the advantages of low cost, easy implementation,
and obvious effects. At present, the rates optimization method of huff and puff
injection and production is insufficient, and the interference between different huff
and puff cycles and different stages were not fully considered. This paper estab-
lished a CO; huff and puff injection and production rates optimization method for
multi-stage fractured horizontal wells based on the proximal policy optimization
algorithm. We took the net present value as the optimization objective and huff
and puff injection and production rates parameters as the optimization variables.
The new method realized dynamic injection and production rates optimization
with different huff and puff cycles and variable injection and production speed
and variable injection and production duration, and considered the interference
between various stages. The rates optimization results of CO, huff and puff in
multi-stage fracturing horizontal wells indicate that the optimal project extends
the backflow time by reducing the backflow rate, fully improving the utilization
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degree of the backflow stage. At the same time, improving the efficiency of CO,
injection and reducing the number of cycles significantly reduce gas injection
costs, achieving optimal economic benefits and providing guidance for on-site
actual CO; huff and puff injection and production rates optimization.

Keywords: Proximal Policy Optimization Algorithm - Multi-stage Fracturing
Horizontal Wells - CO, Huff and Puff - Rates Optimization

1 Introduction

Due to the extremely low permeability of tight reservoirs, artificial fracturing is used
to transform the reservoir. A large number of artificial fractures provide high-speed
channels for oil and gas flow, and the single well can achieve industrial production
capacity [1-3]. During the initial stage of multi-stage fracturing in horizontal wells, the
oil production rate of the elastic depletion development decreases sharply [4, 5], and
the CO, huff and puff development is used as the succession measure. It is difficult to
form effective displacement for the CO; continuous flooding in the tight reservoir, so
the CO» huff and puff development is proposed. The CO; huff and puff development
effect is influenced by many factors, and it is necessary to study the impact of different
influencing factors, among which the injection and production rates have a significant
impact on the development effect. The injection and production rates optimization has
the advantages of low cost, easy operation, and obvious effects.

At present, there is a lot of research on the influencing factors and oil displacement
mechanism of the CO» huff and puff in multi-stage fracturing horizontal wells, but there
is less research on the injection and production rates optimization [6—8]. The existing
rates optimization methods for the CO; huff and puff have shortcomings. The optimal
CO;, injection rate and backflow rate are the same for different huff and puff cycle, and
do not dynamically change with the change of cycle number. Moreover, the produc-
tion durations of the CO» injection, soaking and production backflow have not been
optimized [9]. There are significant differences in production conditions among differ-
ent huff-puff cycles, and the interferences between different stages and cycles cannot
be neglected, which are rarely considered in existing rates optimization methods. We
established a dynamic optimization method for CO; huff and puff rates optimization
in horizontal wells based on the proximal policy optimization (PPO) algorithm, achiev-
ing dynamic optimization of the huff-puff rates and time. The production interferences
between different huff and puff cycles and stages have been considered, making up for
the shortcomings of the existing optimization methods.

In this paper, the PPO algorithm as a gradient free optimization method has the
advantages of gradient free optimization method. It does not need to obtain the par-
tial derivative of the optimization target to the optimization variable, and it is easy to
combine with commercial numerical simulation software, and achieves a wide range of
applications. What’s more, we deeply analyzed the mechanism of rates optimization for
increasing oil recovery, and provided guidance for rates optimization on site.
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2 Optimal Problem Description

The CO», huff and puff mechanism model for multi-stage fracturing horizontal wells
consists of a geological model and a fluid model. The geological model considers the
impact of fracture network morphology on the development effectiveness in Fig. 1. To
demonstrate the stability of the CO, huff and puff rates optimization method based on
the PPO algorithm, the geological model sets up two sets of simulation experiments
with significant differences in fracture network morphology, with two wing fractures
and a volume fracture network, respectively. We used local grid refinement method to
simulate artificial fractures, and adopted a dual medium model to simulate matrix and
natural fractures in tight reservoirs [10, 11]. Subsequent rates optimization based on the
PPO requires thousands of simulation calculations. In order to significantly reduce the
simulation calculation time, the mechanism model intercepts a section of a horizontal
well with a length of 200m that is 7 clusters in two fractures. Using oil samples from
the Chang 6 Yuan 284 block in the Ordos Basin, a fluid model was established with the
component model required for reservoir numerical simulation operations.
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(a) two wing fractures (b) volume fracture network

Fig. 1. MFHW-CO, huff and puff mechanism model

3 Proximal Policy Optimization Algorithm

The proximal policy optimization algorithm (PPO) is easy to achieve high solving effi-
ciency in terms of the difference constraints between the new strategies and old strategies
[12]. The PPO algorithm belong to the policy based deep reinforcement learning algo-
rithms, which solves the problem of determining the reasonable learning step size for
policy updates, so it is easy to converge and have high stability. The PPO is often treated
as the preferred algorithm for Google DeepMind team to handle optimization problems.

The proximal policy optimization algorithm (PPO) has undergone complex theo-
retical argumentation and achieved monotonic improvement during the policy update
process. The strategy has made progress every time it is updated, with the objective func-
tion of maximizing the difference between new strategies and old strategies. Every time
the new strategy is updated, it performs better than the old strategy [13]. The expression
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for measuring the advantages and disadvantages of new and old strategies using value
expectations is

(1) = Expapsiar....Y_ v'1(s0)) )

=0

To demonstrate the monotonic improvement of the PPO policy updates, an advantage
function is defined in formula (2), which represents the difference between the value of
a certain action-state pair and the average value of all possible action-states under a
given state. The relationship between the advantage function and the difference between
the new strategies and old strategies in formula (3). When the difference between the
new strategies and old strategies can be guaranteed to be non-negative, it can ensure
that the new strategy monotonically improves better than the old strategy. Therefore, the
optimization objective of the PPO algorithm is to maximize the difference between the
old strategies and new strategies, and the optimization objective is represented by an
advantage function as shown in formula (4).
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where, T is the sampling trajectory that is determined by state probability, transition
probability, and policy strategy.
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where, p; (s) represents the sum of state probability for any time step state
o
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The proximal policy optimization algorithm (PPO) aims to improve sample utiliza-
tion by transforming on-line learning of strategies into off-line learning based on the
importance sampling theorem. Samples generated from historical old strategies can be
repeatedly sampled for learning, resulting in a significant improvement in sample uti-
lization. The cumulative reward expectation expression is transformed into formula (6)
after importance sampling. By introducing importance weight correction, the cumulative
reward expectation of the new strategy distribution can be calculated using the old strat-
egy distribution, but the difference between the two action probability distributions of
the new strategy and the old strategy cannot be too large. Similarly, the PPO optimization
target is transformed by importance sampling as shown in Formula (7).
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The PPO algorithm achieves monotonic improvement in policy updates by ensuring
that the expected difference between the new strategies and old strategies is not negative.
Therefore, the PPO algorithm is set to maximize the expected difference between the
new strategies and old strategies, and the expected difference between the new and old
strategies is expressed through an advantage function for easy calculation and implemen-
tation. In order to further improve the sample utilization rate, the importance sampling
theorem is introduced, and the old strategy distribution replaces the new strategy distri-
bution. From online learning to offline learning, the samples generated by the old strategy
in history are repeatedly sampled. The sample utilization rate is significantly improved,
but the distribution of the new strategies and old strategies cannot be too different, and
certain constraints need to be met.

The PPO algorithm improves the constraint on the difference between new and old
strategies, and uses the Clip truncation function to truncate the importance ratio of the
new strategies and old strategies, limiting its value range and ensuring that the fluctuation
amplitude of each gradient update is reasonable and avoiding excessive fluctuation, as
shown in formula (8). What’s more, using the minimum value function ensures that all
minimum values can achieve excellent performance.
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4 CO; Huff-n-Puff Rates Optimization Based on the PPO

The rates optimization of CO, huff and puff in multi-stage fracturing horizontal wells
(MFHW) based on PPO algorithm is an optimization problem, which consists of
optimization objective, optimization decisions, and constraint conditions.

4.1 Optimization Objective

The determination of optimization objective requires comprehensive consideration of
the physical problem characteristics of CO, huff and puff rates optimization and the
principle of the PPO algorithm. If the optimization target is cuamulative oil production or
oil recovery, without considering the impact of gas injection cost, the intelligent agent
achieves maximum oil recovery by significantly increasing the cumulative gas injection
amount resulting in too much high cost. Therefore, we take net present value (NPV) as
the optimization objective in Formula (9), and pursue the maximum oil recovery while
taking into account the impact of CO; injection cost, and obtain the maximum economic
benefits.

N A" Ar" At"
_ P()Q() - CCOz—INJ QCOZ—INJ - CCOg—PROQCOZ_PRO
NPV =
n=1

(1+ b)t"/365 ©

where, P, is crude oil price, yuan/ton; Cco,—ivy and Cco,—pro are the prices for

injecting CO, and produced CO; treatment, respectively, yuan/ton. QOA’n, Qé(’)nz_mj

and Qé(’)"z _pro are the cumulative oil production, CO; injection, and CO; production in
the n-th injection production adjustment time step, tons; N is the total number of rates
optimization adjustment time steps; At”" is the n-th adjusted time step, in days; b is the
annual interest rate, %.

4.2 Optimization Decision

According to the principle of deep reinforcement learning PPO algorithm, it is necessary
to determine the action space variables and state space variables, where the action space
variables are the optimization decisions. There are five action space variables for the rates
optimization of the CO; huff and puff in multi-stage fracturing horizontal wells based on
the PPO algorithm, namely gas injection rate, gas injection time, soaking time, backflow
rate, and backflow time. The maximum variation range of rates variables in adjacent
adjustment time steps is within 20%, to prevent the variables variation range from being
too large or too small, resulting in difficulties in reservoir simulation convergence and
on-site construction. State space variables are needed to clearly describe the huff and
puff production characteristics, providing information for intelligent agents to select
the optimal injection and production action based on specific environmental states. We
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selected CO, huff and puff well production data as a total of 9 state space variables,
which are time steps, daily gas injection, daily gas production, daily oil production,
production gas oil ratio, bottom hole flow pressure, cumulative gas injection, cumulative
gas production, and cumulative oil production. The state space variables should be as
comprehensive as possible to improve the accuracy of describing the state of huff and
puff injection and production environment.

4.3 Constraint Condition

The constraints of the physical problem of CO, huff and puff injection production
optimization for multi-stage fracturing horizontal wells are: the upper limit of bottom
hole flowing pressure in the injection stage that is lower than 90% of the rock breakdown
pressure. In the backflow stage, the lower limit of the bottom hole flow pressure of the
production well is higher than 10MPa. On the one hand, the lower the bottom hole
flow pressure of in the backflow stage, the greater the production pressure difference
provided, and the higher the reservoir utilization degree. On the other hand, setting a
reasonable lower limit of bottom hole flow pressure in the backflow stage can control
formation damage within a certain range.

4.4 Optimization Method Process

The optimal strategy for CO; rates optimization in multi-stage fracturing horizontal
wells is achieved through continuous interaction between the PPO intelligent agent
and the injection and production environment. At each rates optimal adjustment time
step, the agent transfers the action variable injection production rates and time steps
to the reservoir numerical simulation environment. With the running calculation of the
reservoir simulator, the agent obtains the simulation results of the well production data,
which are used to calculate the immediate NPV of this adjustment time step and form
the state space variable of the next adjustment time step, and were stored as a sample
in the experience pool. In the subsequent reservoir simulation round calculation, the
target action selection network searches the historical experience pool for the optimal
action corresponding to the maximum cumulative reward. The online action selection
network adjusts the weight in the direction of maximizing the cumulative reward. With
the increase of reservoir simulation rounds, the optimization target cumulative NPV
gradually converges to the maximum value, and the optimal huff and puff strategy were
achieved. The method process of the CO, huff and puff rates optimization in multi-stage
fracturing horizontal wells is shown in Fig. 2.

5 Algorithm Implication and Simulation Results

We built the huff-n-puff rates optimization method of the multi-stage fracturing hori-
zontal well based on the PPO algorithm. We applied the rates optimization method to
two group simulation cases to demonstrate the effectiveness and stability of the new
rates optimization method. What’s more, we further analyzed the reasons behind the
phenomenon of the optimal case, and provided guidance for rates optimization on site.
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Fig. 2. Rates optimization method process for MFHW-CO, huff and puff

5.1 Demonstrate Optimization Method Effectiveness and Stability

Two groups simulations of the CO, huff and puff rates optimization in multi-stage
fracturing wells with two wing fractures and volume fractures were set. If the NPV of
the optimal case is significantly higher than the base case, it indicates the effectiveness of
the new rates optimization method. If two sets of simulations with significant differences
in main influencing factors can converge to the optimal solution, it indicates that the
rates optimization method has high stability and wide applicability. Otherwise, it is only
applicable to specific situations.

We applied the new rates optimization method to the two group simulation cases.
The economic parameters used to calculate the NPV are as follows: the crude oil price
is 2818 yuan/ton, the injected CO, price is 550 yuan/ton, the produced CO, treatment
cost is 30 yuan/ton, and the annual benchmark interest rate is 8%. The PPO algorithm
is based on the Actor-Critical algorithm framework and consists of an action selection
Actor network and a value evaluation Critical network. The intelligent agent selects
specific actions through the action selection network based on the state of the injection
and production environment. The Actor network consists of three layers, with 64 neurons
in the middle layer, 9 neurons in the input layer and 2 neurons in the output layer. The
intelligent agent evaluates the value of specific states and action space through the value
evaluation network. The Critical network consists of three layers, with 64 neurons in
the middle layer, 9 neurons in the agent state space dimension in the input layer, and 1
neuron in the target value dimension in the output layer.

As Fig. 3 shows the optimal target cumulative NPV gradually converges to the
optimal value around the 500th simulation round and remains near the optimal value
until the end of the 1000th simulation round. We took the P5 optimal scheme that is
higher than 95% optimal scheme as the optimal case, rather than the highest optimal
scheme to increase credibility. The optimal target NPV of the base case and the P5
optimal case in horizontal well with two wing fractures are 3.80 x 10% ¥ and 4.28 x
103 ¥, respectively. The NPV of the base case and the P5 optimal case in horizontal well
with volume fracture network are 8.32 x 10% ¥ and 8.90 x 108 ¥ respectively. The NPV
of the P5 optimal case of the two wing fractures and the volume fracture network are
12.63% and 6.97% higher than the corresponding base case respectively, which proves
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the effectiveness of the new rates optimization method based on the PPO algorithm. The
optimal cases with significant differences in main influencing factors fracture network
morphology can converge to the optimal value, indicating that the established rates
optimization method has high stability and wide application range.
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Fig. 3. Convergence change of target NPV of MFHW-CO; huft and puff

5.2 Analyze Rates Optimization Case Qil Increasing Mechanism

By comparing and analyzing the rates optimal case with the base case, and taking the
horizontal well with volume fracture network as an example, the oil increasing mecha-
nism was analyzed from different perspectives, providing theoretical guidance for on-site
operation.

The rates optimization system obtained from CO; huff and puff in multi-stage frac-
turing horizontal wells, including the optimal gas injection rate, gas injection time,
soaking time, backflow rate, and backflow time, are shown in Fig. 4, respectively. We
firstly analyzed the reasons why the optimal target NPV of the optimal case is higher
than that of the base case. By comparing and analyzing the cumulative production data
as shown in Fig. 5, it can be concluded that the main difference lies in the cumulative
gas injection volume and cumulative gas production volume. The optimal case has sig-
nificantly lower cumulative gas injection volume and cumulative gas production volume
than the base case. The cumulative oil production of the optimal case is slightly higher
than that of the base case. Thus, the optimal project achieves the optimal target NPV by
reducing the gas injection cost results from the decreased cumulative gas injection, and
retains the revenue for cumulative oil production slightly change.

From the aspect of different production stages of injection, soaking and backflow,
we analyzed the oil increasing mechanism of CO, huff-n-puff in multi-stage fracturing
horizontal wells. The injected CO; during the injection phase increases formation pres-
sure, and reduces formation damage caused by pressure sensitivity. During the soaking
stage the injected CO; dissolves and diffuses in the crude oil. In the backflow production
stage, the immiscible flooding and the dissolved gas flooding are the main mechanisms
for the increased oil production.

As the Fig. 4(a) shows, the optimal case reduces the cycle number from 6 to 4. The
gas injection rate of the optimal case was significantly lower than that of the base case
in the second the fourth cycles, while was higher than the base case in the first and
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Fig. 5. Cumulative production data comparison

third cycles. From the aspect of average formation pressure, the optimal case for the
first and third huff and puff cycles of the volume fracture network are higher than the
base case, while other cycles are similar to the base case. During the injection phase,
the larger the cumulative gas injection in a single huff and puff cycle, the greater the
increase in average formation pressure, and the smaller formation damage caused by
the stress sensitivity. Due to the small difference in the average pressure between the
base case and optimal case, the degree of reservoir damage is slight different. However,
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the increased the cumulative gas injection in a single cycle leads to high cost and poor
economic benefits.

During the soaking stage the injected CO» interacts with crude oil in the reservoir
matrix through molecular diffusion. There is a slight difference in the soaking time
between the base case and the optimal case, as shown in Fig. 4(b). The recovery rate of
CO; huff and puff in multi-stage fracturing horizontal well increases with the increased
soaking time. However, the influence degree of soaking time on the development effect
of CO» huff and puff is very small and can be neglected.

Comparing the liquid production rate and time steps during the backflow stage,
the optimal case has significantly lower backflow speed than the base case, while the
reverse flow time steps were significantly higher than the base case, as shown in Fig. 4(c)
and Fig. 4(d). It indicates that the backflow stage of the optimal case makes full use of
formation energy and has a higher utilization degree, which makes the main contribution
to the increased oil recovery.

Overall, the oil recovery of the optimal case and the base case are nearly equal,
because the adverse effects of reduced cumulative gas injection and formation damage
caused by pressure sensitive for the optimal case are offset by the favorable effects of
reducing the backflow rate and increasing the backflow time, making the backflow stage
more fully utilized.

6 Conclusions

(1) A new CO; huff and puff rates optimization method for horizontal wells with
multi-stage fracturing based on the PPO algorithm has been established, and the
effectiveness and stability have been demonstrated.

(2) The optimal case makes the backflow stage more fully utilized by reducing the
backflow rate and increasing the backflow time, and also reduces cumulative CO;
injection, achieving high economic benefit.
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Abstract. The development of strike slip faults in the central part of the Sichuan
Basin is influenced by the structure, and the high yield wells reveal that strike slip
faults have a close relationship with reservoir control. This article uses 3D seis-
mic data from the HC125 work area in the Hechuan Tongnan area of the Sichuan
Basin to carry out identification of strike slip faults based on artificial intelligence.
Firstly, preprocess seismic data to improve the imaging characteristics of strike
slip faults in seismic profiles. Secondly, developing method for edge coherence
enhancement to highlight the faults boundaries. Finally, U-Net convolutional neu-
ral network machine learning method is used to identify main faults, and disorder
detection technology is used to identify associated fractures and small-scale faults.
According to this, a comprehensive detection technology suitable for strike-slip
faults in the central Sichuan region will be formed. Compared with conventional
fracture detection technology, artificial intelligence technology for fracture detec-
tion has a relatively high fault resolution, and the continuity and interpretability of
deep fracture have been greatly improved; Results of multi-scale Fault Detection
guarantees the research on the Mechanism of Controlling hydrocarbon accumu-
lation through Strike-slip Faults in the Central Sichuan Basin. This technology
effectively improves the interpretation accuracy and classification accuracy of
strike slip faults in the central Sichuan region.
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1 Introduction

In recent years, exploration and geological studies have made it clear that the Sichuan
Basin as a whole is a complex oil-bearing system, and strike-slip faults play an important
role in controlling multi-layer complex petroliferous accumulation [1]. Therefore, it is
very important to accurately characterize the strike-slip faults. Fault plays an important
controlling role in improving reservoir physical property and hydrocarbon migration and
accumulation [2]. Conventional fracture detection methods mainly include coherence
body technology, curvature attribute identification technology, variance body technol-
ogy, ant body tracking technology and so on [3]. With the continuous development of
technology, the "three-low phenomenon" of low precision, low continuity and low reso-
lution of conventional fault identification has seriously restricted the complex strike-slip
fault interpretation [2, 4]. In recent years, with the development of artificial intelligence
technology, the geophysical field has been trying to use artificial intelligence technology
to serve for seismic exploration. Scholars in the field of geophysics begin to explore
the application of machine learning methods to fault identification. Han Chengyang [5]
et al. proposed to use CNN model to predict faults, and the predicted results are roughly
consistent with the artificial interpretation results, but its accuracy and resolution still
need to be improved. Zhang Li [6] et al. proposed strike-slip fault identification based
on full convolutional neural network technology, compared U-Net and SegNet two full
convolutional algorithms for optimization, and used the construction-oriented method to
improve network performance and enhance the generalization ability of network struc-
ture. Yang Wuyang [7] et al. proposed that U-Net and Res-50 residual modules jointly
build a new network ResU-Net to improve the noise resistance of the model, strengthen
its generalization ability, and improve the accuracy of fault prediction. Chang Dekuan [8]
et al. proposed the combination of ResNet deep residual network and U-Net architecture
to characterize multi-scale fault information. A large number of studies have shown that
the artificial intelligence technology has better accuracy, resolution and continuity than
the traditional coherence and curvature attributes in fault identification. In this paper,
the fracture detection algorithm based on U-Net convolutional neural network image
segmentation is adopted, and the large-scale trunk fractures are identified by machine
learning. At the same time, the messy detection of multi-frequency coherence is adopted
to identify the associated fractures and cracks, so as to form a set of comprehensive
detection methods for different fracture levels in Hechuan area.

2 Geological Overview

The Sichuan Basin is located in the northwest of the Yangtze Block and has experi-
enced multi-stage tectonic-sedimentary cycles with complex structure. Meanwhile, a
large number of studies have proved that the strike-slip fault has a significant control
over the reservoir transformation, oil and gas migration and accumulation. The strike-
slip structure in the central Sichuan area developed on the early basement. They can be
divided into several stages of evolution, such as the embryonic stage of Nanhua strike-slip
fault, the Late Sinian-Early Cambrian right-lateral tension-torsion strike-slip movement,
the Ordovician--Permian pre-weak compression and tension-torsion strike-slip move-
ment, and the late Permian left-lateral weak tension-torsion strike-slip movement [9].
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The Tongnan block of Hechuan is located in the central Sichuan region, where karst
fracturevugg-type reservoirs are developed under the influence of Caledonian move-
ment and Yunnan movement uplift before Permian and Dongwu movement uplift in
Permian [10]. The strike-slip faults developed at the same time are the main controlling
factors for the formation of efficient reservoirs, so it is of great geological significance
for the identification of strike-slip faults.

3 Technical Principle and Process

In view of the strike-slip fault movement of the Permian system with weak pressure and
torsion, the conventional fault identification technology is difficult to identify the strike-
slip fault and the associated small faults. The strike-slip faults in central Sichuan are
mainly developed in NNW direction. A set of comprehensive fault detection techniques
for this area is proposed.

3.1 Seismic Data Preprocessing

Azimuth seismic data perpendicular to the strike of the fault is selected, denoising is
optimized for the seismic data, and fault enhancement processing is adopted for the
seismic data to highlight characteristics of the fault.

3.2 Deep Learning Fault Detection Technology Based on U-Net Convolutional
Neural Network

Compared with conventional seismic interpretation methods such as coherence and cur-
vature, deep learning can accurately reflect the characteristics of main fault in seismic
data with its powerful calculation and learning ability. In this paper, the convolutional
neural network (CNN) technology based on U-Net architecture is used to treat the fault
as an image segmentation problem, which is mainly composed of encoder and decoder.
The encoder consists of a convolutional layer and a pooling layer. The image after
convolution is nonlinear activated by using ReLU function. During downsampling, the
number of activated feature image channels is increased by two times and the image size
is reduced by two times. In the encoder part is the deconvolution of the feature image,
enlarging the size of the feature image twice. The encoder and decoder are connected
in the form of full connection layer, and the parameters are constantly adjusted based
on ReLU activation function. In the output layer, 1x1 convolution is used to check the
feature image convolution restoration to generate the original image, and finally, the fault
is labeled by Sigmoid function [7]. Technical features and advantages of this method:
training data are obtained by establishing a large number of different fracture modes
and synthesizing seismic models, and given the "fault" label, to achieve the supervised
deep learning based on big data, and the U-Net based convolutional neural network has
a strong generalization ability in fault classification [4] (see Fig. 1).



240 Z. Wang et al.

B o8 HE GO SREMER %, o
ISR B— MR EREAIE)

- S = | o -
Hl "»' RIS

} w m .
P - .
k) =

-
= — P s omans

§

" ™

BT UnetfICNNRIE =

(@)

dip: -64°  dip: -67°  dip: -70*  dip: -73°  dip: -76"

Fig. 1. U-Net network structure diagram (a) and fault sample setup diagram (b).

3.3 Messy Fracture Detection Based on Amplitude Gradient Vector Coherence

Carry out the identification of secondary faults, small faults, fractures and other small and
medium scale faults. The amplitude gradient vector messy fault detection technology is
based on the third generation of coherent method to implement fault detection, the core
idea of this method is (assuming that the fault plane is a plane in a local area, search the
messy degree of seismic amplitude gradient vector through each azimuth and dip Angle
in three-dimensional space, find the most messy degree of the surface indicating the
fault location, According to this, the fault body optimization is carried out, and finally
the fault messy body reflecting the characteristics of the section is obtained [11]. Search
the messiness of the amplitude vector along a direction v of a seismic sample point s,
and construct the gradient construction tensor field T(s, v), whose expression (1) is as
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follows:

fD)%SWN(s, v) [ DiDyWn(s,v) [DyD:Wy(s,v)
T(s,v) = | [ DDySWn(s,v) fD%SWN(s, v) [ DyD:SWy (s, v) (1)
[ DDSW (s, v) [ D,DSW(s,v) [ DSWy (s, v)

where Dx, Dy and Dt are the change rate of seismic amplitude along x, y, z over time
t respectively, SWy (s, v) are the smoothing factor along azimuth v, and the smoothing
function is the multi-point Gaussian function. After establishing the matrix in the direc-
tion of s, Eq. (2) is used to obtain the disorder property of the amplitude vector, where
are the first, second and third eigenvalues respectively A1, A2, A3, This method makes
the coherent data more accurately indicate the fault information, the resolution is higher
than the conventional coherent data and the fault information is richer.

3 M(s,v) 4+ A3(s, v)

F(s,v) = EM(S, V) + A2(s, v) + A3(s, v)

)

4 Application

The study area is located in the middle and low moderate tectonic belt of Sichuan.
Hechuan area was influenced by Caledonian, Hercynian and Indochinese tectonic move-
ments. The top surface of Maokou Formation developed three stages of near-east-west,
northeast and northwest strike-slip faults, and the HC125 working area in this study
mainly developed near-east-west and northwest strike-slip faults. Under the influence
of Dongwu Movement, the top of Maokou Formation is generally affected by tec-
tonic denudation and regional unconformity, which is generally affected by palaeo-
geomorphic elevation difference and erosion. At the same time, the development of
strike-slip faults is conducive to the infiltration of surface water into the fracture zone,
which is conducive to the formation and development of karst reservoirs.

4.1 Preprocessing of Seismic Data

Denoising and fault enhancement processing were carried out on the seismic data, and
the comparison between the original seismic data and the pre-processed data showed
that the edge of deep and large faults was clearer, local hidden faults were prominent,
and the fracture zone was more clearly delineated, which provided a reliable data basis
for fault identification (see Fig. 2.a, Fig. 2.b).

4.2 Main Fault Identification

Figure 4 shows the composite diagram of fault probability body and seismic profile
obtained by two methods of maximum likelihood attribute and deep learning. The maxi-
mum likelihood body is chaotic and disorderly, and the continuity of deep fault is unclear.
Deep learning has high resolution and good continuity for deep fault (see Fig. 2 c, Fig. 2
d).
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4.3 Messy Attribute Detection of Associated Fractures

Figure 3 shows that the messy detection profile has richer fracture information than the
deep learning detection profile, and the fracture zone and secondary fracture associated
with the main fracture are described more clearly.
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Fig. 3. Seismic profile (a) and seismic composite profile of messy body (b)

From the above analysis, it can be seen that the deep learning is clear in charac-
terizing the main faults, and the fault distribution characteristics are consistent with
the geological understanding. Since the ability of characterizing minor faults and other
secondary associated faults is relatively weak, the characterization of minor faults and
cracks is enhanced with the messy detection technology, so as to obtain the development
characteristics and distribution rules of multi-scale faults in this region. Relative to the
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coherence, curvature plan and multi-scale fault overlap, coherence plan resolution is low
and curvature diagram fault classification is not obvious (Fig. 4).

Fig. 4. Coherence slice (a), curvature slice (b) and fracture composite slice (c) of HC125 working
area

The TS10HC well deployed in the working area used the technique for fault detection,
predicting that a small fault (The position indicated by the yellow arrow in Fig. 5.b)
would be drilled in the deviation section. Small faults and fractures are developed in the
northwest direction near well TS10HC, and the strike of large faults is consistent with
geological understanding, with rich details of small faults and fractures (see Fig. 5).

89071625

(€)) (b)

Fig. 5. Slice of Multi-scale fault superposition in the TS10HC well area (a), Seismic superimposed
profiles of faults at different scales

5 Application

1. Messy detection technology is suitable for identifying the faults associated with strike-
slip faults and local hidden small faults. The combination of deep learning and messy
technology provides a guarantee for the accurate characterization of the fault system.
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2.

Compared with conventional fracture recognition technology, deep learning fracture
detection based on U-Net convolutional neural network algorithm has a clearer and
higher resolution. It can well reflect the distribution space of faults and accurately
predict the distribution law of strike-slip faults in Hechuan area, which is highly
consistent with the geological understanding, proving the feasibility and reliability
of artificial intelligence technology in the field of fault detection.

. After applying this technology in the research area, a new TS10HC was drilled for

fault-controlled karst reservoir in the area. The strike-slip fault next to the well is
accurately predicted. At the same time, the small fault associated with the strike-slip
fault is predicted in the inclined section. The leakage occurs there during the drilling
process, which proves the accuracy of the fault prediction of this technology, and
further proves that the technology can be extended in the detection of the strike-slip
fault in the Hexhuan area (see Fig. 5).
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Abstract. The massive data and information in the petroliferous basins formed
by exploration and development are extremely valuable. Thus, they need to be
deeply mined and utilized by new technologies to provide data support and deci-
sion basis for exploration and development. The knowledge graph can well inte-
grate the knowledge contained in these data and documents. However, its concept
and relationship rely on manual construction, which results in its limited coverage
of knowledge areas. The traditional question-and-answer (Q&A) method can get
relevant answers from documents according to questions, which has the charac-
teristics of wide knowledge coverage. Nevertheless, it is difficult to understand
the contents of professional fields, which leads to its low accuracy in petrolifer-
ous basins. In order to address the above problems, this paper proposes a hybrid
Q&A method for merging the knowledge graph and documents in petroliferous
basins. The method takes the knowledge graph of petroliferous basins as the knowl-
edge base of professional background. Additionally, it obtains professional-related
knowledge contents from documents. In particular, to answer the question on
petroliferous basins, the method firstly extracts entities from the question accord-
ing to the knowledge graph. Then, with these entities, the method converts the
question into a query in the knowledge graph, obtaining partial candidate answers
to the question. For obtaining candidate answers from documents, the method
constructs a deep semantic matching model which incorporates knowledge graph
embedding. The model can match the question and answers in documents base on
the information from the knowledge graph. Finally, the method leverages a sort
algorithm to reorder the above two types of candidate answers from the knowledge
graph and documents respectively. Compared with traditional Q&A methods, the
hybrid Q&A method supports professional Q&A scenarios for the knowledge
graph and documents of petroliferous basins, improving the efficiency of users’
knowledge query and increasing the recall rate while ensuring the retrieval accu-
racy. The hybrid Q&A method has the characteristics of convenient operation,
strong interaction and high accuracy, etc., which provides a platform on knowledge
deep sharing and application for the study of petroliferous basins.

Keywords: Petroliferous Basins - Hybrid Q&A Method - Deep Semantic
Matching - Knowledge Graph Embedding; Reorder
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1 Introduction

Petroliferous basins are natural places where oil and gas occur. Many research institutions
have accumulated a vast amount of knowledge and documents on global petroliferous
basins [1], and there are also a large number of published literature online (such as
Wikipedia). In order to further mine and utilize these knowledge documents, mature,
advanced, and applicable information technologies should be utilized. Intelligent Q&A
based on knowledge graphs is a series of theories and methods that organize data and
mine knowledge based on graphs. It is very suitable for deep utilization of knowl-
edge documents in petroliferous basins with complex business processes and intensive
knowledge.

The knowledge of a petroliferous basin can be standardized and integrated to form
a document library and knowledge graph of the basin. Due to the lack of correlation
in the construction of the two, they can only be provided as a single knowledge sys-
tem for users, and cannot achieve the retrieval and display of comprehensive data and
knowledge resources under user query needs. Therefore, many organizations and schol-
ars have committed to researching and improving Q&A methods. (1) Knowledge Graph
Q&A (KGQA) [2, 3] refers to the process of inferring answers based on the informa-
tion in a graph, which mainly includes two methods: information retrieval and semantic
parsing. For example, Qu et al. [4] proposed the AR-SMCNN model to answer single
relationship questions, while Luo et al. [5] proposed generating candidate query graphs
to obtain answers in the knowledge graph. The knowledge graph Q& A method can clar-
ify the reasoning process and obtain accurate answers, but its coverage of knowledge
domains is limited. (2) Document-based Q&A [6, 7] refers to obtaining answers from
text paragraphs based on questions, mainly including three stages: question processing,
text retrieval, and answer extraction. For example, Seo et al. [8] proposed a BiDAF
model for multi-stage hierarchical processing and extracting answers from documents.
The document-based Q& A method can obtain answers from a wider range of knowledge,
but it cannot deeply understand the contents of the professional domain, and the accuracy
of answers in the professional domain is relatively low. In addition, the intelligent Q&A
method has not yet been effectively implemented in the professional domain of petrolif-
erous basins. In response to the above issues, this paper proposes a hybrid Q&A method
for knowledge graph and documents of petroliferous basins, which conducts research
from two aspects: the document Q&A method with embedding knowledge graph, and
the comprehensive sorting method with graph and document answers, to provide users
with answers that meet their needs.

2 Method Framework

The overall framework of the hybrid Q&A method for knowledge graph and documents
of petroliferous basins is shown in Fig. 1.

An example of the hybrid Q& A method is shown in Table 1, and a detailed description
of the method is provided later.

The process of this paper’s method is as follows: (1) Build a full-text index and
semantic index for a large number of document contents, and retrieve candidate para-
graphs based on the question. The number of candidate paragraphs is generally set to
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Table 1. An example of the hybrid Q&A method.

Question: What are the petroleum geological conditions of the Bohai Bay Basin?

Candidate paragraphs:

1 ... The geothermal gradient of the Bohai Bay Basin is generally 3.7 °C/100m, and the main petroliferous
sags have basically undergone a complete thermal evolution process......

2) ... There is an order of magnitude difference in hydrocarbon generation intensity and resource abundance
between the Bohai Bay Basin and the Subei Basin. The maximum hydrocarbon generation intensity in the Bohai
Bay Basin is 18-22x10° t/km?.

(3) weeeee The main source rock in the Bohai Bay Basin is also widely developed in the development period of
reservoir rocks. There are at least three sets of regional caprocks in the Eocene to Pliocene. The space matching
conditions of source, reservoir and caprock are excellent. The physical property sealing and pressure sealing
conditions of the upper strata are far better than those of the Subei Basin-++--+

4 ...
Knowledge subgraph:
Northern
Jiangsu Basin
Bohai Bay
North China < Basin
Plate 463: N>
& o Excellent space
SIS . .
FE matching conditions
Cg
k- 18-22 X108 t/km?
3.7°C/100m
Answers:

(1) The geothermal gradient in the Bohai Bay Basin is generally 3.7 “C/100m
(2) The maximum hydrocarbon generation intensity in the Bohai Bay Basin is 18-22x10° t/km?
(3) Excellent spatial supporting conditions

(4) ......
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5-10 manually. The knowledge graph information is fused with document information
through graph embedding, and then a deep semantic matching model is used to obtain
answers from the candidate paragraphs; (2) Based on the knowledge graph of petrolifer-
ous basins, analyze natural language problems and transform them into query structures
that exist in the graph, and perform knowledge matching in the graph to obtain answers;
(3) The answer resorting algorithm is used to measure the semantic matching degree
between the question and all the above candidate answers, which is integrated into a
complete and accurate answer list.

3 Document Q&A Method with Knowledge Graph Embedding

3.1 Knowledge Graph Information Embedding

Retrieving Candidate Paragraphs. To obtain the candidate paragraphs related to the
problem from the document library accurately and quickly, this paper designs the inverted
index and semantic index library. Full-text retrieval is used to obtain candidate documents
based on keyword matching, while semantic retrieval is used to obtain candidate passages
by local sensitivity hashing.

Knowledge Subgraph Matching. (1) Domain entity recognition: A large number of
specialized concepts and knowledge are included in the domain of petroliferous basins,
so the analysis of interrogative sentences requires the application of the naming entity
recognition technique to identify the specialized words. This method uses the BIO anno-
tation method to perform naming entity annotation in petroliferous basins, generates
training and test sets, adds BERT [10] pre-training network as a word embedding model
based on the commonly used model BiLSTM-CRF [9], and introduces attention mech-
anism to optimize the effect of entity recognition. (2) Graph entity alignment: This
method uses semantic matching to establish the correspondence between the entities in
the question and the graph entities. For an entity obtained from question analysis, the
BERT pre-trained language model is used to convert the entity into a vector represen-
tation, and the Euclidean distance calculation between vectors and the local sensitivity
hashing algorithm are used to select the aligned entities that are closest to their seman-
tics in the graph, and a threshold is set at the end of semantic matching to filter out the
semantically distant entity pairs and keep the aligned entities that satisfy the threshold.

Knowledge Graph Embedding. The feature vectors of candidate paragraphs and ques-
tions after embedding only contain the content representation of the context, which
cannot reflect the intrinsic logical association of in-text entities with attributes and other
entity relationships, and lack the semantic information at the relationship level. Since the
knowledge map of petroliferous basins is a high generalization of knowledge in the text, it
can be used as additional relational semantic information. The role of knowledge graph
information embedding is to update the original text representation by incorporating
knowledge graph information, which can obtain the relationship information between
entities, and at the same time enhance the semantic representation of corresponding
entities in the passage. An example of graph embedding is shown in Fig. 2.
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Fig. 2. An example of graph embedding

The fusion of the knowledge graph with the document information is shown in
Fig. 3. By combining the entities “Bohai Bay Basin”, “18-22 x 10° t/km?”, “3.7
°C/100 m” and other expressions are integrated with the corresponding words in the
paragraph expression, which enhances the semantic information of the paragraph. In
which, firstly, the corresponding subgraphs in the knowledge graph of petroliferous
basins are obtained by analyzing the interrogative sentences; then the vector represen-
tation of entities in the corresponding knowledge graph of the problem is obtained by
a pre-trained TransE embedding model; finally, the self-attention mechanism is used to
fuse the encoded text paragraph information and entity information to obtain the updated
paragraph representation.

Northern Jiangsu
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Fig. 3. The fusion of the knowledge graph with the document information
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3.2 Deep Semantic Matching Model

The main goal of the deep semantic matching model is to extract the answer fragments
related to the question from the candidate passages. Traditional text-based Q& A method
assumes the existence of answers in candidate passages and ignores the case where the
question cannot be answered, so this method overcomes this drawback by determining
whether an answer exists in the passage. This method not only can accurately answer the
question based on the candidate passages, but also allows for better answer identification.
The structure of the deep semantic matching model is shown in Fig. 4.

1 3.7° €/100m

! What are the petroleum geological conditions in the Bohai Bay Basin? The geothermal gradient in the Bohai
i Bay basin is generally 3.7°C/100m, the major petroliferous sags...

logit (start and end
position of answer)

-

null €| Classification
et layer

E[cx_s,]f

-

Text combination

! What are the petroleum geological i 1 The geothermal gradient in the Bohai Bay i
! conditions in the Bohai Bay Basin? i | Basin is generally 3.7°C/100m, and the major !
H ! petroliferous sags have basically .... :

Question Text paragraphs

Fig. 4. Deep semantic matching model

First, the question and the candidate paragraph are jointly embedded using the BERT
pre-trained language model, and the obtained encoding vector incorporates contex-
tual information; then, the vector corresponding to the first [CLS] token of the coding
sequence is represented as an aggregated sequence, and the classifier is trained to deter-
mine whether the answer to the question exists in the paragraph; for the case where the
answer does not exist in the paragraph, the answer is directly set to a null value; for the
case where the answer exists in the paragraph, the sequence annotation model is used
for word-level prediction to determine the starting and ending position of the answer in
the paragraph, and the corresponding text subsequence is extracted as the answer.
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4 Comprehensive Sorting Method of Answers from Knowledge
Graph and Document Q&A

4.1 Q&A Method Based on Knowledge Graph

The main goal of the Q&A method based on knowledge graph is to match answers from
the knowledge graph. It is divided into three submodules: domain entity recognition,
entity alignment, and template-based answer matching. The methods for the domain
entity recognition submodule and the entity alignment submodule can adopt the corre-
sponding methods in Sect. 3.1. And for the template-based answer matching submodule,
the method is as follows: According to the semantic matching of entities in the question,
the entity type distribution in the question can be distinguished. For the matched entities
in the question, it is first judged whether the types of entities belong to the concept,
instance, relation or attribute of the knowledge graph. Then, according to the types of
entities in the question, the corresponding entities are filled into the manually written
executable query statement. Table 2 lists the query statements corresponding to some
templates.

Table 2. Templates for the query statements

Types of entities Templates Template description

[instance, attribute] match (n:INDIVIDUAL {name: $P}) Query entity attributes
return n.$A

[instance, relation] match (n:INDIVIDUAL {name: $P}) Query entity relations

match (n)-[:$R]- > (m)
return m.name

[instance, instance, match (n:INDIVIDUAL {name: $P}) Compare properties
attribute] match (m:INDIVIDUAL {name: $Q}) between entities
return n.$A, m.$A

[instance, relation, match (n:INDIVIDUAL{name:$P})-[:$R]- > | Query properties of
attribute] (m) return m.$A adjacent entities

4.2 Answer Resorting

The hybrid Q&A method proposed in this paper integrates the document Q&A method
based on knowledge graph embedding and the Q&A method based on the knowledge
graph. By designing a resorting algorithm, the results of the two Q&A methods are
integrated. The structure of the answer resorting algorithm is shown in Fig. 5.

In the research process of the answer resorting algorithm, a professional dataset is
constructed for global petroliferous basins, including the set of question-answer pairs
in the field. Query questions and candidate answers are embedded into a unified vector
space using a language model, and the model is trained to constantly learn the semantic
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matching capability of questions and answers. When the user puts forward a question,
a set of candidate answers is obtained by using the above two Q&A methods, and then
the semantic matching degree between the question and answer is measured according
to the trained resorting algorithm. Finally, the sorted answer list is displayed according
to the matching degree.

S Experiments and Analysis

5.1 Datasets and Environment Parameters

To compare the effectiveness of the full-text retrieval and semantic retrieval, the
Wikipedia dataset is used for experiments, which divides 5,035,182 training set, 10,000
verification set and 10,000 test set.

The experiment for Q&A in this paper adopts the public dataset SQuAD 11. SQuAD
is an English Q& A dataset with the answer extracted from the document that includes ver-
sions SQuADI1.1 and SQuAD2.0. Among them, SQuADI1.1 contains 107,785 (question,
paragraph, answer) triples, and SQuAD2.0 builds on SQuAD1.1 with more than 50,000
pieces of expanded data whose text paragraphs do not contain answers to questions.

To verify the adaptability of this method in the Chinese environment and the field
of petroleum basins, this paper adopts the large-scale open dataset DuReader 12 as the
basic training dataset, and customizes about 1,000 small-scale datasets for petroleum
basins. By training the specific datasets through transfer learning, the Q&A method can
cover petroliferous basins.

The number of the three datasets is shown in Table 3.
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Table 3. Comparison of the number for Q&A datasets

Set train dev
SQuAD2.0 130,319 11,873
DuReader 130,800 10,000
The datasets for petroliferous basins 1,000 100

5.2 Benchmarks and Evaluation Indicators

The term accuracy is used as the evaluation criterion in the hybrid Q& A method proposed
in this paper. And the benchmark models for experimental comparison with the document
Q&A method based on knowledge graph embedding are from QANet 13, BERT and
SG-Net 14, with EM 11 and F'1 used as evaluation criteria in the experiment.

The accuracy is calculated by the following formula.

P
P+ N

accuracy = €))
where P is the number of samples predicted correctly and N is the number of samples
predicted incorrectly.

EM (Exact Match) is the exact match score, used to measure the exact match between
the model’s predicted answer and the standard answer, calculated by the following
formula.

EM = — 2)
m
where m represents the total number of predicted samples, and n represents the number
of samples in which the predicted answer is completely consistent with the standard
answer.
F1isthe fuzzy matching score, which is obtained by the calculated repetition between
the model’s predicted answer and the standard answer. The formula is as follows.

. . Numgame
precision = - 3)
len(predict_answer)
Ni
recall = Wisame “4)

len(gold _answer)

Fl— 2 X precision x recall

— 4)
precision + recall

where predict_answer r represents the answer predicted by the model, gold_answer

represents the actual label answer, Numig,n,, represents the number of repeated words

between the predicted answer and the standard answer, and F'1 represents the harmonic

average of precision and recall.
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5.3 Experimental Results and Analysis

Analysis of experimental results of retrieval. In this paper, two paragraph retrieval
methods, full-text retrieval and semantic retrieval, are implemented for knowledge doc-
uments in petroliferous basins to narrow the range of answer candidates. The comparison
results of recall are shown in Table 4.

Table 4. Comparison of retrieval effects

Method Hit@1 Hit@10 Hit@20 Hit@50
Semantic retrieval 0.4772 0.7195 0.7773 0.8416
Full-text retrieval 0.5933 0.6825 0.6954 0.7090

The Hit@k in the table refers to the probability of a Hit in the first k results. By
analyzing the results in the table, it can be seen that the recall of traditional full-text
retrieval is higher in the case of single retrieval, but with the increase in the number
of results, the results obtained by semantic retrieval are higher in recall and broader in
coverage. Therefore, in order to consider the recall under various retrieval granularities,
this paper adopts two retrieval methods at the same time to increase the recall of the
whole retrieval module.

Analysis of Resorting Experimental Results. In order to verify the correctness of the
resorting algorithm design in the hybrid Q& A method, experiments are conducted on the
resorting experimental dataset based on MS MARCO 15, and the experimental results
are shown in Table 5.

Table 5. Experimental results of the resorting algorithm

Model MAP MRR
Initial sorting 0.3462 0.3500
Resorting 0.5703 0.5749

MAP represents the average accuracy of the retrieval set, and MRR refers to the
reciprocal sorting of standard answers in the search results as accuracy. Initial sorting
represents the score of the basic retrieval model on