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Abstract. Predicting the oil production rate is a crucial means to improve the
operation of hydrocarbon reservoirs and manage the economic plans for oil com-
panies. However, developing a reliable model to predict oil production rate using
traditional numerical frameworks are challenging and requires too much time to
attain a single model. Thus, in this paper, Machine Learning (ML) techniques are
presented as arobust and intelligent framework to predict oil production rates accu-
rately and timely. The ML techniques include Multiple Linear Regression (MLR),
Random Forest (RF), Decision Tree (DT), and K-nearest neighbor (KNN). These
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four techniques were engaged to predict the oil production rate of real oilfield
data of 11 wells. The 11 oil wells were considered as datasets to achieve a pre-
cise prediction of the oil production rate. The available datasets were split into
two subsets of training and testing data sets. Furthermore, the Root Mean Squared
Errors (RMSE) and determination-coefficient values (RZ) regression metrics were
employed to evaluate the model performance. Hence, the comparative analysis of
the proposed models was presented for all 11 selected production wells. The anal-
ysis of results showed that RF can be considered the best predictive ML model
for predicting oil production rate with the lowest RMSE and the highest R2 scores
in all 11 production wells. In the KT911H well, the RF model achieved the most
accurate results with RMSE and R2 0.868 and 0.9993 respectively. In addition,
the study analysis illustrated that the RF can be considered to be the best predic-
tive model, which was also applied to indicate the relationship between the input
parameters and the oil production rate. A sensitivity analysis of the RF model indi-
cated that the liquid volume, water cut, and gas pressure are the most important
input parameters affecting the oil production rate performance in all 11 production
wells. This paper therefore presents a pragmatic approach for predicting the oil
production rate of a typical oilfield and the parameters with the most effects on
the prediction based on machine learning techniques.

Keywords: Predictions - Oil Production Rate - Machine Learning - Oilfield -
Model Performance Evaluation

Nomenclature

DCA  Decline Curve Analysis

RNS Reservoir Numerical Simulation

LSTM Long Short-Term Memory

LSSVM Least Square Support Vector Machine

SVM  Support Vector Machine

ML Machine Learning

Al Artificial Intelligence

KNN  K-nearest neighbors

DT Decision Tree

RF Random Forest

Y Response Variable

MLR  Machine Learning Techniques

RMSE Root Mean Square Errors

R? Determination Co-efficient Value

Bo Y Intercept

B1& B2 Regression Coefficients first and second independent variables
x1&xy  First and Second Independent Variables

Bp Regression Coefficient of the Last explanatory variable x,
€ residuals

GOR

Gas Oil Ratio
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1 Introduction

In the last decades, the oil industry has gained a lot of improvement experiences which
have had a huge positive impact on the global and regional businesses and economies
associated with this kind of industry and other energy sectors [1-5]. One of the main keys
that made this industry so impactful for decision-making is how the well’s performance
and production forecasting [6-9].

Generally, the performance of an oil well is characterized by many factors such as rate
transient analysis, microseismical data, and well completion configurations. In the field,
the well’s performance can be achieved by implementing a refinement of the statistical
interpretations of the well’s data by normalizing either one or two key parameters that
embody those factors, such as tonnage and lateral lengths[10]. Those wells are then
grouped into certain categories for various reasons such as identical completion design,
thus reducing the sample sizes without influencing the well performance.

1.1 Well Performance and Decline Curve Analysis Optimization

There are two basic methods for analyzing and predicting of oil production rate, the
decline curve analysis (DCA) and reservoir numerical simulation (RNS). The DCA
method uses the production data to make predictions of the well’s problems and per-
formance. DCA has many advantages: the required data is easily obtainable, it can be
illustrated easily with graphs, it shows results on a timely basis, and its analysis is easily
handable [10]. However, for DCA, production predictions are made using ideal models,
resulting in real production curves that may not exhibit the same level of smoothness as
their output.

RNS has proven to be a highly effective tool in the examination of intricate reservoir
problems [11]. Nonetheless, this approach follows a bottom-up methodology that entails
alaborious and time-intensive process, involving the development of a geological model,
a numerical model, and the execution of history matching. Each of these individual
models has to be near-perfect for an accurate prediction of the production rate.

The utilization of big data mining, machine learning, and artificial intelligence has
emerged as the primary technological advancements employed for intelligent investi-
gation, advancement, and production inside the upstream petroleum sector. Reservoir
engineers are responsible for the storage and management of substantial quantities of
oilfield data. Additionally, they engage in comprehensive mining and examination of this
data to enhance and optimize oilfield development strategies. The employing of artificial
intelligence technology enables a thorough analysis and interpretation of oil reservoir
data, hence significantly enhancing the efficiency and economic advantages associated
with oilfield development [12-15].

The work in this article was therefore carried out by using artificial intelligence and
machine learning techniques from a decision tree, a multiple linear regression, and a
random forest technique. Those machine learning applications have major aspects in
the oil industry in general and especially for the prediction of the well’s production
performance which is one of the most emerging sectors being explored and developed
nowadays. The focus of this article is to highlight the relevance of the chosen machine
learning techniques employed to forecast and optimize the performance of the wells.
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Many works have been carried out using machine learning techniques for production
performance optimization. For instance, Huang et. al [16] developed a Long Short-Term
Memory (LSTM) neural network model to analyze the impact of gas injection on the
prediction of production performance in a carbonate reservoir. According to the authors’
statement, the LSTM method exhibited an average error that was 43.75% lower compared
to the traditional RNS approach. Furthermore, the LSTM approach exhibited a total CPU
time and comprehensive computing power consumption that constituted just 10.43% and
36.46% of the RNS’s, respectively. [16].

Panja et al. utilized a Least Square Support Vector Machine (LSSVM) method to
achieve precise predictions of oil recovery [17]. Wang et al. devised a data mining app-
roach for well production performance They employed four distinct supervised learning
techniques, including Random Forest, adaptive boost, support vector machine (SVM),
and neural network, to forecast the first-year oil production in unconventional reser-
voirs. [18]. Osarogiagbon et al. provide a comprehensive analysis of the existing liter-
ature pertaining to hazardous events and supervised machine learning algorithms. The
review offers a concise overview of the methodologies, achievements, and constraints
associated with these algorithms [19] (Table 1).

Table 1 Summarized the differences between DCA, RNS, and ML techniques for production
performance

Decline Curve Analysis (DCA) A direct method to forecast the production is not
appropriate for reservoirs that possess complex
geological characteristics

Reservoir Numerical Simulation (RNS) | A mature used reservoir development and prediction
solution with a lack of perfection in the geological
uncertainty and long-running worktime

Machine Learning Techniques (ML) High speed and accurate data foundation especially
with high-quality data, but it requires a mature
reservoir development solution to be applicable

2 Evolutions of Analytics

Analytics can be classified into four distinct types. The automation of descriptive ana-
Iytics has been feasible since the inception of computing. However, advancements in
machine learning and artificial intelligence (AI) have now made it possible for enter-
prises to automate the processes of issue identification, outcome prediction, and action
prescription.

e Descriptive Analytics (What occurred?): demonstrating what is truly occurring based
on the provided data, typically through dashboards and reporting tools.

e Diagnostic Analytics (Why did it occur?): Examining previous performance to
achieve not only what occurred, but also why it occurred.
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e Prescriptive Analytics (What should we do?): Making recommendations on what
should be done and why.

e Predictive Analytics (What could occur?): Explains what possibilities are likely to
happen, usually in the form of a predictive forecast.

2.1 Descriptive Analytics

Descriptive analytics, regarded as the foundational kind of analytics, refers to the analysis
of historical data in order to determine what events or phenomena occurred within
a specific dataset. This form of analytics encompasses several arithmetic operations,
including mean, median, maximum value, percentage, and other similar calculations, is
used by almost every organization. It provides organizations with useful insights into
past actions; however, descriptive analytics may not provide the causes of the problem.
That is why data consultants do not advise organizations to only use descriptive analytics.

2.2 Diagnostic Analytics

It clarifies the causal factors that contributed to an event occurring in the past. Orga-
nizations that utilize diagnostic analytics are more inclined to comprehend the causal
connections between actions so they acquire a profound understanding of the underly-
ing factors contributing to events. The research utilizes numerous techniques including
data discovery, data mining, and correlation methods. Additionally, statistical expres-
sions such as probability, likelihood, and distribution of outcomes are employed in the
analysis.

2.3 Prescriptive Analytics

Analysts attempt to determine the appropriate course of action or strategies for maxi-
mizing forthcoming prospects based on a provided dataset. Despite utilizing advanced
machine learning algorithms and adhering to established business guidelines, prescrip-
tive analytics is not devoid of limitations. The efficacy of prescriptive analytics is con-
tingent upon the extent to which the model integrates external data alongside the internal
data set of the organization.

2.4 Predictive Analytics

Predictive analytics is a field of study that focuses on the extraction and analysis of data
with the objective of making predictions about an event of interest, often pertaining to
future events. The utilization of data-driven learning technologies for the purpose of
predicting these unidentified occurrences has the potential to enhance decision-making
processes. Predictive models have the capability to identify patterns and correlations
within datasets, enabling organizations to make informed predictions on future outcomes,
grounded in empirical evidence rather than mere conjecture. Consequently, the primary
objective of predictive analytics is to improve the process of human decision-making
by supplementing or surpassing dependence on human knowledge, personal experience,
and subjective intuition. The incorporation of predictive modeling within this objective
has the potential to yield advantageous outcomes in mitigating both implicit and explicit
biases. The predictive analytics process involves a series of consecutive steps:
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2.4.1 Identification

A critical first step is identifying the problem and determining the outcome and objec-
tives. The capacity to determine the purpose of the problem will assist in the selection
of suitable data to be utilized for the model.

2.4.2 Data Collection

Data mining techniques are employed to facilitate the preparation of data for analy-
sis through the storage and manipulation of data obtained from multiple sources. A
notable characteristic of data mining is its comprehensive documentation of all link-
ages or correlations that can potentially be identified within the dataset, irrespective
of their source. The utilization of statistical or machine learning algorithms is capable
of detecting patterns, establishing correlations within data, and making predictions for
novel data, constituting an integral component of the predictive analytics process. Data
mining can be used to gather knowledge about data relationships, which can then be
applied in predictive modeling.

2.4.3 Data Analysis

Data analysis is the systematic process of examining, cleaning, and modeling data with
the aim of uncovering significant insights and information. Statistics play a crucial role
in the process of validating assumptions and testing hypotheses during the examina-
tion of data. Statistics enables the examination of purposeful and targeted associations
within data through the utilization of sophisticated statistical methodologies, including
multivariate analytic approaches such as advanced regression or time series models.

Regression models are one of the most widely used predictive analytics techniques.
These models provide a mathematical representation of the relationship between the
predictor variable and the outcome variable. Machine learning techniques have their ori-
gins in several academic disciplines, such as artificial intelligence, wherein their initial
purpose was to facilitate the development of computer learning capabilities. In contrast
to conventional statistical approaches, which often necessitate certain data qualities and
generally rely on a limited set of essential variables to generate outcomes, machine
learning models utilize a computer-based methodology that incorporates numerous ele-
ments to identify similarities and patterns within the data. In general, these models tend
to prioritize enhanced predictive accuracy by leveraging a wider array of unstructured
data, such as text and images, at the expense of interpretability.

2.4.4 Modeling

Identifies patterns and relationships in data and predicts future outcomes based on those
patterns and relationships. A predictive model’s main assumption is that a future event
will occur in the same way that previous events have. Some researchers contend that this
assumption is flawed because past behavior does not always predict future behavior.
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2.4.5 Model Development and Monitoring

These are the last steps in the predictive analytics process. The process of model devel-
opment involves integrating the findings of analytics into the decision-making process.
For instance, using a predictive tool to discern a discernible pattern that portrays the
probability that a well to produce oil. Once this established pattern has been identi-
fied, the model should be utilized to predict the future risk associated with production.
Model monitoring is a crucial practice employed to effectively oversee and evaluate the
performance of a model, with the primary objective of verifying its appropriate function-
ing. The premise that past production events may accurately predict future production
events is inherently erroneous. While certain reservoirs may exhibit homogeneity in their
behavior, it is important to note that these homogeneities are not necessarily absolute.
Even though some reservoirs are homogenous in their routines, these homogeneities are
not absolute, and reservoir changes can occur, invalidating the model used to predict
the well. Model deployment and monitoring may have an impact on decision-making;
therefore, ensuring an accurate, valid model is critical. It is important to acknowledge
that the utilization of models should not be confined to decision-making in isolation, but
rather as a complementary tool to inform and support decision-making processes.

3 Methodology

In this study, we used some supervised machine learning techniques, which are Decision
Tree (DT), Random Forest (RF), Multiple Linear Regression (MLR) and K-nearest
neighbors (KNN). All these models were developed in Python.

3.1 Decision Tree

The decision tree is a supervised learning method that predicts values of responses
by learning decision rules derived from data The decision tree constructing algorithm
works top—down at every node, by choosing the best variable that best splits the current
training subset according to the homogeneity of the target variable within the subsets.
[19]. In general, it is a nonparametric method that is used for both classification and
regression problems. Also, the decision tree is non-parametric since it does not suppose
any distributional properties about the data [20]. The decision tree consists of decision
nodes and terminal leaves where each node n implements a function, that gives discrete
outcomes with branches [20]. It has two types which are classification and regression
trees. The classification tree applies to problems where the output data is discreet whereas
RT applies to problems where the output is continuous [13, 20]. As a result, the total DT
branch of this work can be depicted in Fig. 1.
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Fig. 1 Decision tree regression model of prediction oil production rate

3.2 K-Nearest Neighbors

K-nearest neighbors KNN algorithm is the simplest and non-parametric supervised learn-
ing approach that can be utilized for both classification and predictions. In both regression
and classification, the input parameters are composed of the positive integer k closest
training datasets within a feature space [13]. Also, KNN determines the class of a new
object based on majority votes among k number of neighbors of the objects [21]. The
privileges of the KNN method are the simplicity of its applications when solving com-
plex tasks, its ability to reverse calibration, and the need not to re-estimate the model
when there are additional new objects to the training data [13].

3.3 Multiple Linear Regressions

Multi Linear regression is a statistical technique that evaluates the linear connection
between two or more variables. The predicted outcome is called the dependent variable
and the variables on which the outcome is based are called the independent variables.
Ordinary linear regression and multiple linear regression are the two main types of
linear regression. The difference between the two is related to the number of explanatory
variables used to predict the outcome variable.

Ordinary linear regression models the linear relationship between two variables (a
dependent variable and an independent variable) by fitting a line of best fit that closely
approximates the data points. The best-fit line is determined by squaring the verti-
cal distance between each potential line and the closest point (least squares method).
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The best-fit line is the line that reduces the sum of the squared intervals [22]. There-
fore, ordinary linear regression predicts the outcome variable with a single explanatory
variable.

On the other hand, multiple linear regressions rely on multiple explanatory variables
to quantify the dependent variable. Establishes the linear correlation between many inde-
pendent variables and an outcome variable. Instead of a line of best fit, several regression
algorithms use least squares to determine the plane (p-dimensional plane) that best fits
the scatterplot [22]. To perform p-dimensional plane fitting,’the sum of squares of the
deviations of the points from the plane is reduced” [22]. The optimized line for each
explanatory variable is determined by calculating the regression coefficient that pro-
duces the smallest residual and the t-statistic of the algorithm and the associated p-value
[23].

This makes multiple linear regression more suitable for real-world scenar-
ios because it can be used to model the effects of many independent parameters
on a given outcome while quantifying the relative contribution of each individual
explanatory variable in the data set [24].

Multiple linear regression algorithms can be summarized by the equation below;

Y =pixi+ poxa+---+ Bpxp+¢ 9]

where the terms:

Y = response variable.

¢ = y-intercept; the predicted outcome when all other variables equal zero.

B1& Br= regression coefficients of the first, second, and third independent variables
x1&x; respectively.

Bp= regression coefficient of the last explanatory variable xp

& = residuals.

Assumptions for Multiple Linear Regressions

a) The correlation between the dependent variable and each individual term of the
independent variables must be linear.

b) The statistical approach for sampling the observations must be independent and
devoid of obvious linear correlation among the independent variables in the dataset.

¢) The residuals must follow a normal distribution.

d) The variance must be constant and the size of the residual error must be similar
(homoscedasticity).

3.4 Random Forest

“Random forests are a combination of tree predictors such that each tree depends on the
values of a random vector sampled independently and with the same distribution for all
trees in the forest” [25]. As a supervised learning algorithm, random forest can handle
classification and regression problems. It operates on a concept known as ensemble
learning, which is basically a technique that integrates several classifiers to address
complicated problems (“Random Forest,” n.d.). Random forest performs similarly to
boosting on a wide range of problems. In addition, they are easy to train and refine.
Numerous decision trees make up a random forest algorithm. The generated cluster
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of trees that constitute the algorithm is trained via bagging or bootstrap aggregating
[26]. To issue the final outcome, the algorithm depends on each individual tree class
prediction. The final prediction is the average or majority by votes of the trees. For
a more accurate prediction of final outcomes, the number of uncorrelated trees in the
algorithm should be increased since as the population of trees increases, the likelihood
of predicting incorrectly dramatically decreases.

Because random forest makes predictions based on the mean or majority by votes of
several decision trees, it is possible some trees may predict wrongly while others may
predict correctly. Therefore, in order for random forest to perform better by predicting
accurate results rather than an assumed outcome, there has to be some real values or
signals included in the feature variable of the dataset and each tree’s prediction must
have extremely low correlations (“Random Forest,” n.d.).

4 Results and Discussions

In this research, we introduced four powerful and dependable soft computing algorithms
for predicting the oil production rate of a real oilfield dataset of 11 wells. The suitable
selection of input parameters in the machine-learning model is a crucial task. Therefore,
in accordance with the majority of published machine-learning-based research, the fol-
lowing input parameters were selected: production time, casing pressure, liquid volume,
water cut, gas pressure, and gas-oil ratio (GOR), while the oil production rate is defined
as the output parameter.

The framework of this research was developed using four different datasets from the
eleven wells. We performed eleven groups of experiments on eleven wells with the train-
ing and testing of the ML algorithms. In this study, the multiple linear regressions (MLR),
RF, DT, and KNN are the selected machine-learning models. To assess and compare the
performance of these developed models, two statistical metrics were perfectly applied
for comparing the training and testing dataset stages of all predictive models. More so, to
evaluate discrete models for overfitting, the developed MLR, RF, DT, and KNN models’
performances for predicting oil production rate for all wells’ datasets include Well-S95,
Well-KT905H, Well-KT906H, Well-KT907H, Well-KT908DH, Well-KT909H, Well-
KT910H, Well-KT911H, T912CH, TK918, and TK919H. Overall, the proposed ML
models were evaluated for each well dataset using the R2 and RMSE metrics. Table 2
highlights the statistical metrics outcomes for training and testing.

Consequently, itis reported that the RF model is tuned by a kernel function, which has
adirectimpact on results accuracy in all eleven wells: for Well-KT911H, the RMSE of RF
is the lowest (0.868) compared to that of DT and KNN of (1.866 and 5.599), respectively.
Furthermore, its determination-coefficient score R2 is very close to the standard precise
value of 1 (0.9993) and much higher than that of DT, LR, and KNN (0.9969, 0. 9684, and
0. 9720), respectively. The RF and DT models for Well- KT908DH have the highest R2
values (0.9991, 0.9977) and the lowest RMSE (1.560, 2.572), respectively. The RF and
DT models for Well-S95 have the highest R% values (0.999 and 0.997) and the lowest
RMSE (0.902, 1.338) respectively. These three wells are ordered respectively in term of
their results of high accuracy. Thus, the evaluation results indicated that the proposed
RF model performs the optimal accuracy, followed by the DT model.
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Table 2 Statistical metrics results of ML models performance for training and testing sets

Statistical Metrics RMSE R? RMSE R?
Well Model Training set Testing set
Well-S95 MLR 3.184 0.982 3.48 0.978
DTM 0 1 1.338 0.997
REM
KNN 0.32 1 0.902 0.999
0 1 4.162 0.969
Well-KT905H MLR 4.006 0.935 4.439 0.927
DTM 0 1 12 0.995
REM
KNN 0.291 1 1.164 0.995
0 1 3.875 0.945
Well-KT906H MLR 4.419 0.965 5.036 0.957
DTM 0 1 1.95 0.993
REM
KNN 0.266 1 1.089 0.998
0 1 4.423 0.967
Well-KT907H MLR 6.111 0.942 6.57 0.932
DTM 0 1 1.536 0.996
REM
KNN 0.323 1 1.222 0.998
0 1 6.747 0.928
Well-KT90SDH MLR 9.903 0.9610 10.278 0.9625
DTM 0.000 1.0000 2.572 0.9977
REM 0.637 0.9998 1.560 0.9991
KNN 0.000 1.0000 9742 0.9663
Well- KT909H MLR 5472 0.871 5.346 0.8742
DTM 0.000 1.000 0.834 0.9969
REM 0.529 0.999 0.581 0.9985
KNN 0.000 1.000 4.492 09111
Well- KT910H MLR 4.896 0.943 4.578 0.9477
DTM 0.000 1.000 1.355 0.9954
REM 0.480 0.999 0.812 0.9984
KNN 0.000 1.000 3.003 0.9775
Well-KT911H MLR 5.872 0.972 5.948 0.9684
DTM 0.000 1.000 1.866 0.9969
REM 0.437 1.000 0.868 0.9993
KNN 0.000 1.000 5.599 0.9720

(continued)
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Table 2 (continued)

Statistical Metrics RMSE R? RMSE R?

Well Model Training set Testing set

Well-T912CH MLR 4.180 0.877 4213 0.8714
DTM 0.000 1.000 1.162 0.9902
RFM 0.250 1.000 0.860 0.9946
KNN 0.000 1.000 1.590 0.9817

Well-TK918 MLR 3.778 0.856 4.031 0.8740
DTM 0.000 1.000 0.871 0.9941
RFM 0.337 0.999 0.678 0.9964
KNN 0.000 1.000 1.604 0.9801

Well-TK919H MLR 2.403 0.895 2214 0.8956
DTM 0.000 1.000 0.724 0.9888
RFM 0.275 0.999 0.509 0.9945
KNN 0.000 1.000 1.966 0.9177

Furthermore, the prediction visual plots by all proposed models were presented, and
the comparative configuration plot of real oil production rate and predicted values are
visualized for the datasets of each well as illustrated in Fig. 2. The oil production rate
values of test and train data for each well are highlighted graphically in the subplots of
Fig. 2. Obviously, the RF model proved its high precision in Fig. 2 by accumulating the
data points that are identically close to the 45° slop line. The results indicated that the
DT, KNN, and MLR also predict oil production rate with high accuracy due to the larger
quantity of data points presented in the Well-S95 and Well-KT211H, but by comparison,
the RF is the proposed method achieved the most optimized predictive performance by
taking into account variant tendency and related data of oil production rate.

The proposed predictive RF method also provides a perfect oil production rate pre-
diction for the other wells, particularly in Well-KT908DH and Well-S95. This study
demonstrated the superiority of the RF model in predicting the oil production rate for
the eleven wells. However, in the case of testing conditions shown in Fig. 3 (a), and (b),
the performance reference models (DT, MLR, and KNN) improved slightly. The RF pro-
vided an optimal accurate prediction by taking the highest place of the R2 and the lowest
place of the RMSE. As demonstrated in Fig. 3, the RF and DT models outperformed the
other ML models.
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Fig. 2 (continued)

Figure 3(a) revealed that the RF model demonstrated the best accurate results based
on R2 error in Well-KT911H, Well-KT908DH, Well-S95, and Well-KT909H, respec-
tively. Figure 3(b) further showed that the RF model proved the validated results based on
RMSE in the Well-TK919H, Well-KT909H, Well-TK918, and Well-T912CH, respec-
tively. In addition, the decision tree model (DT) is validated as the second-best algorithm
for predicting production performance, which demonstrated better results based on R2
error for Well-KT908DH, Well-KT909H, Well-KT911H, and Well-S95, as represented
in Fig. 3(a). According to Fig. 3(b), the performance path of the DT model based on
RMSE is different which provided accurate results in the Well-TK919H, Well-KT909H,
Well-TK918, and Well-KT912CH.
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A possible reason for the weak predictive performance of the other ML models
might be because they depend on the effect underlying the data quantity, where the ML
technique discovers the relations through data mining.
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Fig. 3 Comparison performance results of the (a) RZ, and (b) RMSE results of proposed ML
models for the testing dataset of all wells

In this study, the input parameters selection and importance rely on the best-proposed
predictive model. Thus, a fitting model should be used to identify input parameters with
the greatest impact. However, the RF method was used to compute the input parameters’
importance ranking and permutation importance for only testing datasets shown in Fig. 4.
From the subplots of Fig. 4, the first and second most effective input parameters for
oil production rate prediction in Well-S95 are liquid volume and water cut, followed
by gas pressure and casing pressure. The water cut is the most influential parameter
affecting oil production rate in all other wells, followed by liquid volume, casing pressure,
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gas pressure, and GOR parameter except Well-KT908DH and Well-TK918. In Well-
KT908DH, we can see that the water cut is the most influencing parameter, followed by
casing pressure. In Well-TK918H, we can see that the water cut is the most influencing
parameter, followed by gas pressure. Therefore, as shown in Fig. 4, the production time
parameter has no effect on the oil production rate in all wells followed by GOR and
casing pressure. Overall, the other input parameters have non-relative importance in the
RF model for predicting oil production rate in all wells.

Importantly, by estimating the drop in the model score, the permutation parameter
importance can evaluate input parameters and oil production rate. Therefore, the average
permutation importance score of parameters is listed in Table 3. The greater effect of
the input parameter on the model can be established when the model score displayed
a dramatic dropping and a higher ranking is assigned, as shown in subplots of Fig. 4.
Accordingly, the liquid volume, water cut, and gas pressure parameters in the RF model
for each well have high permutation importance scores, implying that they have the
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Fig. 4 Importance of input parameters for the prediction of oil production rate in each well using
random forest model
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Fig. 4 (continued)

greatest impact on the oil production rate. As shown in Table 3 and Fig. 4, production
time, GOR, and casing pressure were clearly less important parameters in oil production
rate prediction. Furthermore, as shown in Table 3, the production time has a negative
impact on the oil production rate in wells KT911H. However, if the production time
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parameters increase in well KT911H the oil production rate would decrease. Overall,
the permutation importance not only demonstrates a parameter’s predictive fitness, but
it also validates how important a parameter is for a model.

Table 3 Average permutation importance of input parameters on the oil production rate using RF
model

Average Permutation Importance Scores

GOR Gas Water Liquid | Casing-Pressure | Production-
Pressure | Cut Volume Time
Well-S95 0.00015 |0.09325 |0.31995 | 0.97466 |0.01443 0.00005
Well-KT908DH | 0.00429 | 0.00508 |1.1153 |0.19719 |0.11043 0.00000
Well-KT909H 0.01155 |0.00894 |2.5202 |0.39682 |0.00369 0.00000
Well-KT911H 0.01517 | 0.08111 |1.0935 |0.22028 | 0.00465 -0.00000

In general, an oil production rate prediction model has been developed for all wells
in the area based on the ML models developed, which have shown that the RF model is
the most effective for predicting oil production rates in all eleven considered wells. It is
interesting to note, however, that Well-S95, which has the highest quantity of data points
(4560), exhibited a slightly lower RZ value (0.999) compared to Well-KT911H, which
has 3190 data points (R? of 0.9993). This observation suggests that the model may not
always benefit from an increase in the number of data points beyond a certain threshold.
It may also imply that the different locations and times of the data points could play a
role in the model’s performance, rather than just the sheer quantity. Thus, each well has
its unique features that impact the model performance, and imbalanced data can affect
the model’s accuracy differently for each well.

5 Conclusion

In this work, MLR, KNN, DT, and RF models have been engaged to predict the oil
production rate of real oilfield data for 11 wells in the oilfield, each with varying quan-
tities of data points. Overall, the model demonstrated satisfactory performance, with
good accuracy for most of the wells studied. These wells are (Well-S95, Well-KT905H,
Well-KT906H, Well-KT907H, Well-KT908DH, Well-KT909H, Well-KT910H, Well-
KT911H, Well-T912CH, Well-TK918, and Well-TK919H). All the aforementioned
models were trained and tested to verify that the models learned the rapport between
the input and output data. Thereafter, all the datasets were split in the same distribution
as 75% of the data points, which were employed for the training set and the remaining
points for testing the developed models. According to the calculated and tabulated results
of statistical errors for all models in the study analysis, the built models display their
performance precisely.

In general, DT and KNN models equally outperformed the other two models in
terms of training performance in all wells, with RZ and RMSE (1, 0). On the contrary,
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the RF model performed the best outcome in the testing performance set in all wells
as verified with other ML models. Precisely, the performance metrics indicated that the
RF model performed the best accurate outcomes in Well-KT911H well with the R2
and RMSE values of (0.9993, and 0.868), respectively. Additionally, the DT proved its
second-order predictive model in the testing performance set in all wells.

In this work, the RF model was used as a selected model to study the relationship
between the input parameters and oil production rate. It was deduced that the liquid
volume, water cut, and gas pressure are the most important parameters affecting the oil
production rate performance in all wells, whereas production time, GOR, and casing
pressure are proven less important parameters for the final prediction.

It has been found that the liquid volume parameter has an impact on the accuracy of
the model for Well-S95, which has the highest quantity of data points. This well exhibited
slightly lower accuracy than Well-KT911H, which has less data points. However, the
liquid volume was considered the most influential feature affecting oil production rate
performance.

Declaration of Interest. The authors declare no conflict of interest regarding the publication of
this paper.
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