
Chapter 7
Locally Adaptive Processing of Color
Tensor Images Represented as Vector
Fields

Lakhmi C. Jain, Roumen K. Kountchev, and Roumiana A. Kountcheva

Abstract A new approach for locally-adaptive processing of color RGB images
represented as tensors of size M × N × 3, is offered in this work. Unlike the
famous similar methods of the kind, the processing here is executed on a single
matrix only, which comprises the modules of the vectors, corresponding to the image
pixels’ colors. A group of related basic algorithms for locally-adaptive processing is
presented, which have lower computational complexity than that of the algorithms,
applied individually on each of the RGB components. As it is known, in the famous
color RGB transform models of the kind YCrCb, HSV, HSI, Lab, KLT, etc., the
processing is applied on the most powerful transformed color component only, and
after inverse operation, the original RGB model is restored. In contrast, the idea
for locally-adaptive processing does not need direct and inverse transform of the
color model. Together with this, the brightness and the color hue of the processed
image pixels, are retained. The characteristics of the proposed basic algorithms
for contrast enhancement, linear and non-linear sharpness filtration, noise suppres-
sion, and texture segmentation, are defined. Some examples for locally-adaptive
processing of color medical images are given, which illustrate the related algorithms.
The presented approach could be also used for other kinds of color images, where
the visibility of their local structure is of high importance.

L. C. Jain
KES International, Selby, UK

R. K. Kountchev
Technical University of Sofia, Sofia 1000, Bulgaria

R. A. Kountcheva (B)
TK Engineering, Sofia 1582, Bulgaria
e-mail: kountcheva_r@yahoo.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
R. Kountchev et al. (eds.), New Approaches for Multidimensional Signal Processing,
Smart Innovation, Systems and Technologies 385,
https://doi.org/10.1007/978-981-97-0109-4_7

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0109-4_7&domain=pdf
mailto:kountcheva_r@yahoo.com
https://doi.org/10.1007/978-981-97-0109-4_7

88 L. C. Jain et al.

7.1 Introduction

The initial form for color image representation is a tensor of size M × N × 3, which
has three sections—the matrices R,G,B each of size M × N, whose pixels have m
= 2b intensity levels in the range (0 to m − 1), coded through 24 bpp, for b =
8. The objective of this work is to present and analyze some basic algorithms for
locally-adaptive processing of color tensor images represented as vector fields, and
to evaluate the advantages in some basic operations for various applications, such as:
contrast enhancement, noise filtration, contours extraction, areas segmentation, etc.
In many publications [1–6] related to color images processing, used the approach in
which the RGB color model is transformed by using some other models: YCrCb,
HSV, HSI, Lab, KLT, etc. [7]. In these cases, the chosen operations are applied on
the most powerful component of the new model, after which the original RGB model
is inversely restored. Such approach implies the use of direct and inverse transform
of the color model, which increases significantly the computational complexity of
the processing. In [8], a method is described to improve the quality of RGB images
through saturation increase and retaining the hue, but without brightness preserving.

In this work, a new approach is offered for locally-adaptive processing of color
images, represented as matrices of the modules of the color vectors, framed by a
sliding window. This approach is highly efficient and adaptive, which opens wide
abilities in various application areas. The proposed algorithms do not need direct and
inverse transform of the color model and ensure hue and brightness preservation in
the processed image. These properties of the introduced algorithms are based on the
new form for color tensor image presentation, i.e.—the vector field, which comprises
the colors of all pixels. The paper is structured as follows: in Sect. 7.2, the tensor
image representation as a vector field is explained; in Sect. 7.3—the essence of the
proposed new approach is given; in Sect. 7.4, the image color vectors’ modules are
defined through 2D-DFT; in Sect. 7.5, the local histograms of color vectors’ modules
are calculated; Sect. 7.6 is about the local cumulative histograms application; in
Sect. 7.7 are given the details of the locally-adaptive filtering for tensor images,
represented as vector fields; and the conclusions are in Sect. 7.8.

7.2 Color Image Tensor Representation as a Vector Field

7.2.1 Color Vectors Presentation in Orthogonal Coordinate
System Framed by a RGB Cube

In Fig. 7.1a, an RGB cube is shown, into which are defined the color vectors Ck,i for
the pixels (k,i) of the color tensor image of size M × N × 3, 24 bpp. One example
vector placed in the color cube is shown, denoted as C0. The color vector Ck,i in the
orthogonal RGB coordinate system, is defined by the relation:

7 Locally Adaptive Processing of Color Tensor Images Represented … 89

Fig. 7.1 RGB cube in a sphere with a radius MC = 442 and the color vector

Ck,i = [Rk,i , Gk,i , Bk,i]T for k/ i = 0, 1, 2, . . . , (M − 1)/(N − 1). (7.1)

7.2.2 RGB Image Representation as a 2D Vector Field

The tensor RGB image representation as a 2D vector field in the 3D spherical coor-
dinate system, is defined by the modules and the phase angles of the color vectors,
Ck,i .

The color vector Ck,i(denoted as C0 on Fig. 7.1) could be represented in the
spherical polar coordinate system, in accordance with the relation below:

Ck,i=[MC(k, i), aC(k, i), bC(k, i)]T for MC (i, j) = 0, 1, 2, . . . , 255
√
3, (7.2)

where (255
√
3 ≈ 441.6 ≈ 442) and 0 ≤ αC(k,i) ≤ π/2; 0 ≤ βC(k,i) ≤ π/2.

C0 = [RC0, GC0, BC0]T , colored in red (in the RGB cube).
The module, and the orientation angles of the color vector Ck,i, are defined by the

relations:

MC (k, i) =
∥
∥Ck,i

∥
∥ =

/

R2
k,i + G2

k,i + B2
k,i (7.3)

90 L. C. Jain et al.

αC (k, i) = arcsin[BC (k, i)/MC (k, i)] (7.4)

βC (k, i) = arcsin{GC (k, i) /
/

[RC (k, i)]2 + [GC (k, i)]2} (7.5)

As a result, the matrices [R(k, i)],[G(k, i)], and [B(k, i)], each of size M × N,
are replaced by two matrices: of the modules [MC (k, i)], and of the color vectors’
angles [θ C(k,i)] = [αC (k), βC (i)], both of size M × N . The relationship between
the orthogonal and the spherical coordinate systems (R, G, B) and (MC,αC,βC), is:

RC = MC cos α sin β; GC = MC cos α cos β; B C = MC sin α; (7.6)

MC =
/

R2
C + G2

C + B2
C ; αC = arccos(RC /

/

R2
C + G2

C);βC = arcsin(BC /MC).
(7.7)

Then, the color vector could be represented as follows:

Ck.i = MC (k, i)e j θC(k,i) = MC (k, i)e j [αC (k),βC (i)]

7.3 The Essence of the New Approach

The new approach is based on the replacement of the three matrices of the tensor
image RGB components by a single matrix, which comprises the modules of the
color vectors of the pixels. The locally-adaptive processing is applied on the module
of the vector, corresponding to the pixel placed in the center of a sliding window. The
processing is based on the well-known algorithms used for halftone matrix images,
which are the particular case of the color tensor images, when the vertices of all
color vectors are placed on the diagonal between the black and white areas in the
RGB cube. For such vectors, the three components are equal, i.e. R = G = B, =
αβ = π /4, and their modules are in the range from 0 up to (m − 1)

√
3 (here m

denotes the number of values for each component R, G, and B). Depending on the
processing algorithm used, the magnitudes of part of the so calculated color vectors
could get too large values, and as a result, their ends will be placed out of the RGB
cube: this happens if at least one of the R, G, B components is larger than (m − 1).
The colors of the corresponding image pixels could not be reproduced accurately,
and produced noticeable color distortions. To solve the problem, the largest color
component should be corrected, so as to get a new value, equal to (m − 1). Then, to
avoid additional color distortions in the restored image, all color vectors placed in
and out of the cube, should be corrected accordingly. As a result, the brightness is
changed too. To retain the pixel brightness, additional correction is needed (which

7 Locally Adaptive Processing of Color Tensor Images Represented … 91

follows the color correction). Both corrections (color and brightness) are needed
only in case that the number of vectors placed out of the color cube is higher than a
pre-defined threshold. In the text below are given the specific features of the basic
algorithms for locally-adaptive processing of color images, applied on the matrices
of the color vectors’ modules, framed by the sliding window.

7.4 Definition of the Image Color Vectors’ Modules
Through 2D-DFT

To define the image color vectors’ modules, forward 2D Discrete Fourier Trans-
form (2D-DFT) is executed for the modules MC (k.i) of the color vectors Ck,i, in
correspondence with the relation:

sC (q, p) = 1

M × N

M−1
∑

k=0

N−1
∑

i=0

MC(k, i)e−2π j
(
qk
M + pi N

)

for q/ p = 0, 1, .., (M − 1)/(N − 1).

(7.8)

Here, sC (q, p) is the spectrum color coefficient. The inverse 2D-DFT is defined by
the relation:

MC (k, i) =
M−1
∑

q=0

N−1
∑

p=0

sC (q, p) e2π j (qk M + pi N) fork/i = 0, 1, .., (M − 1)/(N − 1).

(7.9)

Each spectrum coefficient sC (q, p) is represented as a vector in the complex space:

sC (q, p) = Re(sC (p, q)) + jIm(sC (p, q)) = ∥sC (p, q)∥ e j φ(p,q) (7.10)

where ∥sC (p, q)∥ =
√

Re2 (sC (p, q)) + Im2 (sC (p, q)) is the amplitude 2D spec-

trum, and φ(p, q) = arctg
[
Im(sC (p,q))
Re(sC (p,q))

]

is the phase 2D spectrum of the matrix

[MC (k, i)], which comprises the color vectors’ modules.
In general, the 2D-DFT in a sliding window could be used for homomorphic

locally-adaptive filtering of the existing multiplicative or convolutional noises in the
color image, retaining the saturation transitions. To accelerate the 2D-DFT calcu-
lation, the well-known algorithm for 2D fast Fourier transform (2D-FFT) is used
[9].

92 L. C. Jain et al.

Fig. 7.2 The vector field Ck,i for the pixels of the color tensor image of size M × N × 3, and the
sliding window Wk,i, used for the local processing

7.5 Calculation of the Local Histograms of Color Vectors’
Modules

7.5.1 Local Histogram

The local histogram of the modules of image color vectors Ck,i in the sliding window
Wk,i of size (2b + 1) × (2b + 1) (framed in red on Fig. 7.2 for the case b = 1), is
defined by the relation:

hk.i (r) =
N k,i MC

(r)
(2b + 1)2

forr = 0, 1, 2, . . . , (7.11)

where m '' =
|

255
√
3 + 0.5

|

= 442, when m − 1= 255; • denotes the “rounding”
operator; N k,i MC

(r) is the number of pixels, for which the value of the module MC (k, i)
for the corresponding color vector Ck,i, is equal to r.

7.5.2 Local Modified Histogram

The local modified histogram of the modules of color vectors Ck,i of the tensor RGB
image framed by the sliding window Wk,l, is defined as follows:

– the adaptive threshold CLk,i is calculated, which limits the local histogram, hk,i (r).
The area of the histogram, which is above this limiting value, is represented as a

rectangle of same area, which has one side of length m ' =
|

m
√
3 + 0.5

|

. The

7 Locally Adaptive Processing of Color Tensor Images Represented … 93

so calculated rectangle area is added to the part placed under the threshold and is
obtained from the so-called “modified local histogram”, hM

k,i (r). The equalization
of this modified histogram is much more accurate than that of the initial local
histogram, hk,i (r). The value (CLk,i) is automatically calculated following the
conditions to equalize the histogram areas placed above, and below the threshold
[10], i.e.:

m ''
∑

r=0

h'
k,i (r) =

m ''
∑

r=0

h''
k,i (r) = 0.5 for h'

k,i (r) + h''
k,i (r) = hk,i (r). (7.12)

Accordingly, the parts of the histogram hk,i (r), which are above and below the
threshold value, are defined by the relations:

h'
k,i (r) =

hk,i (r) − CLk,i for hk,i (r) ≥ CLk,i ;
0 for hk,i (r) < CLk,i ;

h''
k,i (r) =

CLk,i for hk,i (r) ≥ CLk,i ,
hk,i (r) for hk,i (r) < CLk,i

.
(7.13)

To calculate CLk,i in accordance with Eq. (7.12), the following iterative algorithm
is proposed [10]:

Let CLk,i = x , with initial values x = 0, and = δ0.01(experimentally set).
Step 1.x = x + δ;.
Step 2.D(x) = ∑m ''

r=0 [hk,i (r) − x] for hk,i (r) ≥ x;

Step 3.If D(x)

⎧
⎨

⎩

> 0.5 return in step 1,
< 0.5, then x = x − δ and return in step 2,
≈ 0.5 go to step 4;

.

Step 4. Stop and set CLk,i = x ..

– to accelerate the calculation of CLk,i , the image is divided into square sub-blocks.
For each sub-block are calculated the local histogram hk.i (r) of the color vectors’
modules and the adaptive threshold CLk,i , regarding the corresponding central
element, MC (k, i). For each of the remaining matrix elements [MC (k, i)], an indi-
vidual threshold is calculated through bilinear interpolation, by using the thresh-
olds calculated for the central elements of the neighbor sub-blocks in horizontal
and vertical directions.

– after the threshold CLk,i is calculated, the modified local histogram is defined, in
accordance with the relation:

hM
k,i (r) = (1/m ')

m ''
∑

i=0

h'
k,i (i) + h''

k,i (r) (7.14)

where m ' =
|

256
√
3 + 0.5

|

= 443, for m = 256.

94 L. C. Jain et al.

7.5.3 Local Cumulative Histogram

The local cumulative histogram of the vectors’ modules Ck,i framed by the window,
is calculated:

Hk,i
MC

(r) =
r
∑

l=0

hM
k,i (l) = [(r + 1)/m ']

m ''
∑

l=0

h'
k,i (l)

+
r
∑

l=0

h''
k,i (l) =

⎧
⎨

⎩

(r + 1)/m ' for hk,i (r) ≥ CLk,i ;
r∑

l=0
hk,i (l) for hk,i (r) < CLk,i ;

(7.15)

for r = 0,1,2,…, m''
From the above relation, it follows that the local cumulative histogram Hk,i

MC
(r) is

a linear function of the current value of r. This is why, for the above-threshold area,
full equalization of the modified local histogram hM

k.i (r) is achieved, which does not
depend on its distribution. In the sub-threshold area, however, the equalization of
hM
k.i (r) depends on the histogram hk.i (r) and sometimes it is not full.

7.5.4 Computational Cost

The computational cost [10] of the operations, needed to define the cumulative
histogram Hk,i

MC
(r), is reduced through recursive calculation of hM

k,i (r):

hM
k+1,i (r) = hM

k,i (r) − hM
k−d,i (r) + hM

k+d+1,i (r) for r = 0, 1, 2, .., (7.16)

After summing up for both sides of Eq. (7.16), is obtained:

Hk+1,i
MC

(r) = Hk,i
MC

(r) − Hk−d,i
MC

(r) + Hk+d+1,i
MC

(r) (7.17)

7.6 Applications of the Local Cumulative Histograms

7.6.1 Local Contrast Enhancement

The local contrast of the color image is enhanced by using the local cumulative
histogram Hk,i

MC
(r), in correspondence with the relation:

7 Locally Adaptive Processing of Color Tensor Images Represented … 95

gr (k, i) =

⎧
⎨

⎩
442 for

|

442 Hk,i
MC

(r) + 0.5
|

> 442;
|

442 Hk,i
MC

(r) + 0.5
|

- in all other cases,
(7.18)

for r = 0,1,…,442, when m = 256.
Here gr (k, i) is the new value for the element (k,i), which replaces the original

value r.
To avoid false contours appearance in the processed image, it is supposed here

to increase the number of bits used for image elements’ coding: for example, if the
values r of the elements MC(k,i) in the original matrix were coded with 10 bits, after
the processing, 12-bits coding for the new elements, zr(k,i) is supposed to be used:

zr (k, i) =
|

m
'' × Hk.i

MC
(r) + 0.5

|

for r = 0, 1, 2, . . . , m '' ;
(

m
'' = 1.73(m − 1) + 0.5

) (7.19)

In this case, the number of levels m = 212 = 4096 and m '' = 1.73.4095 + 0.5 =
7086, correspondingly.

7.6.2 Calculation of the RGB Vectors of the Enhanced Image

For this, the following relation is used:

CE
κ,i =

[

RE
κ,i , G

E
κ,i , B

E
κ,i

]T
for k/i = 1, 2, . . . , M/N (7.20)

where RE
κ,i = zr (k,i)

MC (k.i) Rk,i;GE
κ,i = zr (k,i)

MC (k.i) Gk.,;BE
κ,i = zr (k,i)

MC (k.i) Bk,i,
for r = 0,1,…, m''

7.6.3 Adaptive Color Correction

The adaptive color correction of vectors CE
k,i is done on the basis of the vectors,

whose ends are out of the RGB cube. For this, the following steps are performed:
Step 1. For all CE

κ,i vectors is checked if their ends are out of the RGB cube,
and if there is at least one of their components, whose magnitude is larger than the
maximum value, m − 1. After that is checked if the condition NC ≥ δ is satisfied, in
which NC is the number of color vectors CE

κ,i which are out of the RGB cube, and δ
is the pre-selected threshold. If these two conditions are satisfied simultaneously, the
vector CE

κ0,i0
= [RE

k0,i0
, GE

k0,i0
, BE

k0,i0
]T is detected, which has at least one component

larger than all other components.

96 L. C. Jain et al.

Step 2. In case, that the component RE
k0,i0

of the vector CE
κ0,i0

is larger than the
maximum value, then RE

k0,i0
= max (RE

k,i , GE
k,i , BE

k,i) > m − 1 for k/i = 0, 1, 2,
…, (M − 1)/(N − 1). For the components of this vector, the following correction is
done:

RE
k0,i0 (cor) = m − 1, GE

k0,i0 (cor) = GE
k0,i0 /(R

E
k0,i0 /m − 1),

BE
k0,i0 (cor) = BE

k0,i0 /(R
E
k0,i0 /m − 1).

(7.21)

The brightness of the pixel (k0,i0), in which color vector CE
k0,i0

(cor) is corrected,
is defined by the relation:

Y E i0, j0 (cor) = 0.21 × (m − 1) + 0.72 (m − 1) (GE
i0, j0 /R

E
i0, j0)

+ 0.07 (m − 1) (BE
i0, j0 /R

E
i0, j0)

(7.22)

Taking into account that (in accordance with [10, 11]), the brightness of the
pixel (k0,i0) in the original image is defined by the relation: Yk0,i0 = 0.21 Rk0,i0 +
0.72 Gk0,i0

+ 0.07 Bk0,i0
, to retain the brightness of this pixel in the improved image,

must satisfy the equation:

Yk0,i0 = Y E k0,i0 (cor) = 0.21RE
k0,i0 (cor) + 0.72GE

k0,i0 (cor) + 0.07BE
k0,i0 (cor),

(7.23)

from which follow the relations:

RE
k0,i0 (cor) = m − 1,GE

k0,i0 (cor) = (m − 1)(GE
k0,i0 /R

E
k0,i0),

BE
k0,i0 (cor) = (m − 1)(BE

k0,i0 /R
E
k0,i0).

(7.24)

For the remaining vectors CE
k,i = [RE

k,i , GE
k,i , BE

k,i]T , to retain the brightness of their
pixels (k,i) for k/i = 0,1,2,.., (M − 1)/(N − 1), the components of the corresponding
corrected vectors CE

k,i (cor) must be calculated accordingly:

RE
k,i (cor) = (m − 1)(RE

k,i /R
E
k0,i0), G

E
k,i (cor)

= (m − 1)(GE
k,i /R

E
k0,i0), B

E
k,i (cor) = (m − 1)(BE

k,i /R
E
k0,i0).

(7.25)

Step 3. In case, that the maximum value of one of the components GE
k0,i0

or BE
k0,i0

is higher than m − 1, it should be corrected in a way, similar to the correction done
for the maximum component, RE

k0,i0
> m − 1. The correction of the components of

the remaining color vectors CE
k,i is done by analogy with Eq. (7.25).

To illustrate the presented algorithm, in Fig. 7.3a are shown the original medical
tensor R, G, B images, and in Fig. 7.3b—same images, after local contrast
enhancement with a sliding window of size 33 × 33 (experimentally set).

7 Locally Adaptive Processing of Color Tensor Images Represented … 97

a b

Fig. 7.3 Medical R, G, B images: a originals; b after local contrast enhancement with a sliding
window Wk,i of size 33 × 33

7.7 Locally-Adaptive Filtering for Tensor Images,
Represented as Vector Fields

In this section, some of the well-known algorithms [1–6, 9, 12–14] for locally-
adaptive linear and non-linear filtering are investigated for the case, when they are
applied on the matrix [MC (k, i)] of size M × N, if its elements are quantized at m'
levels.

7.7.1 Linear 2D Filtering

The linear 2D filtering of color tensor image is represented through the modules of
the color vectors framed by the sliding window Wk,l, of size (2b + 1) × (2h + 1):

FC (k, i) = MC (k, i) ∗ f (k, i) =
b
∑

s=−b

h
∑

l=−h

MC (k + s, i + l) f (s, l) (7.26)

for k/i = 0,1,…, (M − 1)/(N − 1), where f (s,k) denotes the kernel of the 2D filter,
defined in the window Wk,i; FC (k, i) is the filtered value of the elements MC (k, i),

98 L. C. Jain et al.

framed by the window, and “*” denotes the operator for 2D convolution of MC (k, i)
and f (s,k). The kind and the size of the kernel f (s,k) determine the filtration result.

• To achieve higher sharpness (saturation changes) in the image, is used the
algorithm, based on the Laplacian operator. The following assumptions are set.

Let:

FC (k, i) = (1 + 4α)MC (k, i) − α [MC (k − 1, i)
+ MC (k + 1, i) + MC (k, i − 1) + MC (k, i + 1)], (7.27)

where the window Wk,i is of size 3 × 3 (for b = h = 1). If = α1 is set, the filter
kernel is defined by the corresponding matrix,

[fα(k, i)] =

⎡

⎣
0 −α 0
−α (1 + 4α) −α
0 −α 0

⎤

⎦ =

⎡

⎣
0 −1 0
−1 5 −1
0 −1 0

⎤

⎦ .

In the general case, the sharpness increase is achieved through the algorithm for
adaptive unsharp masking, in accordance with which:

FC (k, i) =

F '
C (k, i) for|MC (k, i) − MC (k, i)| ≥ δ,

MC (k, i) in other cases,
(7.28)

where F '
C (k, i) = (1 + α)MC (k, i) − αMC (k, i); 0 < α ≤ 1; δ is the threshold value,

and MC (k, i) is the mean value of the elements, framed by the sliding window Wk,i

of size (2h + 1)(2b + 1):

MC (k, i) =
1

β

b
∑

s=−b

h
∑

l=−h

MC (k + s, i + l) for β = (2h + 1)(2b + 1) (7.29)

The algorithm, described above, is illustrated by Fig. 7.4: in Fig. 7.4a is shown
the original image, and in Fig. 7.4b—the result of the local sharpness enhancement
with a sliding window of size 3 × 3.

To accelerate the calculation of MC (k, i), two-dimensional recursion is used,
based on the relation:

MC (k, i) = MC (k − 1, i) + MC (k, i − 1)
− MC (k − 1, i − 1) + (1/β)[MC (k + b, i + h)
− MC (k + b, i − h − 1) − MC (k − b − 1, i + h)
+ MC (k − b − 1, i − h − 1)].

(7.30)

As a result, the mean value MC (k, i) is recursively calculated by only 7 operations
instead of adding all pixels in the sliding window. In the last case, the number of

7 Locally Adaptive Processing of Color Tensor Images Represented … 99

ba

Fig. 7.4 Medical R,G,B image: a original; b same image, after local sharpness enhancement for a
filter kernel of size 3 × 3

needed operations is (2b + 1) × (2h + 1) − 1 (for example, if b = h = 5, we
get (2b + 1) × (2h + 1) − 1 = 120, and then the acceleration of the calculations
MC (k, i) is 120/7 = 17.14 times).

The recursive calculation of F '
C (k.i) in the relation (7.28) for the unsharp masking,

is executed in correspondence with the equation:

F '
C (k.i) = (1 + α)MC (k, i) − α[MC (k − 1, i)

+ MC (k, i − 1) − MC (k − 1, i − 1)] − (α/β)[MC (k + b, i + h)
− MC (k + b, i − h − 1) − MC (k − b − 1, i + h)
+ MC (k − b − 1, i − h − 1)].

(7.31)

• The locally-adaptive image filtering aimed at the additive Gaussian noise
reduction, is performed in accordance with the relation:

F f C (k, i) =

⎧
⎨

⎩
MC (k, i) +

σ 2 MC
(k,i) − v2

σ 2 MC
(k,i) [MC (k, i) − MC (k, i)] for σ 2 MC

(k, i) ≥ v2;
MC (k, i) for σ 2 MC

(k, i) < v2,
(7.32)

where: F f C (k, i) is the filtered element MC (k, i); MC (k, i) denotes the mean value
of the element MC (k, i) in the sliding window Wk,i of size (2b + 1) × (2h +
1); σ 2 MC

(k, i) = [(1/β)
∑b

s=−b

∑h
l=−h M

2
C (k + s, i + l)] − MC (k, i) is the local

variance of the element MC (k, i) in the sliding window Wk,i; v2 = (1/M ×
N)

∑M
i=1

∑N
j=1 σ 2 MC

(k, i) is the mean noise variance in the input matrix [MC (k, i)].
To accelerate the calculation of the mean value MC (k, i) for all elements, except those
on the first row and first column of the input matrix [MC (k, i)], recursive relation
is used in accordance with Eq. (7.30). When compared to the well-known adaptive
Wiener filter [12], the main advantage of the new filter is, that it is adaptive to the
relation of the local variation to the global one, in result of which the transitions in
the image are retained, and the noise is suppressed.

100 L. C. Jain et al.

7.7.2 Weighted Median Filtering

The weighted median filtering of pulse noises in the color tensor image, represented
through the matrix [MC (k, i)] of the color vectors’ modules, framed by the sliding
window Wk,l of size (2b + 1) × (2h + 1), is executed in accordance with the relation:

FWM
C (k, i) = MedW MC (k, i) = Med [t (s, l) × MC (k + s, i + l) : s, l ∈ Wk,i],

(7.33)

where s = - b, - b + 1,.., 0,..,b−1,b; l = - h, - h + 1,.., 0,..,h−1,h. The coeffi-
cients t(s,l) show how many times appears the corresponding element MC (k+s, i +l)
in the monotonic increasing sequence xp for p = 1,2,…,P, from which is defined the
weighted median function, xWM:

x1 ≤ x2 ≤ ... ≤ xWM ≤ ...xP−1 ≤ xP forP = (2b + 1)'(2h + 1). (7.34)

The filtered element (k,i) corresponds to the weighted median FWM
C (k, i) = xWM .

In accordance with Eq. (7.33), the sum of all elements t(s,l) is an odd number, and
the elements xp in Eq. (7.34) are defined by the modules MC (k + s, i + l) framed by
the window Wk,l, after rearrangement into an increasing monotonic sequence. The
size of the window is defined so as to frame the noise elements of average size, which
should be filtered.

The algorithm is illustrated in Fig. 7.5: in Fig. 7.5a is shown the noise image, and
in Fig. 7.5b—the filtered image.

ba

Fig. 7.5 Test R, G, B image: a The image with 1% additive pulse noise; b same image, after
weighted median filtering by using a window of size 3 × 3 (for b = h = 1)

7 Locally Adaptive Processing of Color Tensor Images Represented … 101

7.7.3 Suppression of Additive Pulse and Gaussian Noises

To suppress the additive pulse and Gaussian noises in a color image, and to retain
the existing transitions, the algorithm for vector median filtering is used [13].
For this, from the color vectors placed in the sliding window Wk,l (Fig. 7.1),
the sequence C1, C2, .., Cp, .., CP−1, CP is composed. For each vector from the
sequence Cp = [Rp, G p, Bp]T are calculated the distances Dp to all remaining
vectors, C j = [R j , G j , Bj]T , framed by the window Wk,l, i.e.:

Dp =
P
∑

j=1

/

(Rp − R j)2 + (G p − G j)2 + (Bp − Bj)2 for p /= j and p/j = 1, 2, .., P.

(7.35)

The so calculated distances Dp are arranged as an increasing monotonic sequence,
D1 ≤ D2 ≤ … ≤ DP. The index p0 of the filtered color vector Cp0 = [Rp0 , G p0 , Bp0]T ,
which replaces the vector Ck,i in the center (k,i) of window, is defined by the condition:

Dp0 = min{D j } forj = 1, 2, .., P. (7.36)

7.7.4 Morphological Filtration

For the morphological filtration of the color image A (represented as the matrix
[MC (k, i)]), is used the “flat” structuring element B with components b(s,l), defined
in a sliding window of size (2b + 1) × (2h + 1). The filtration is executed by using
the following basic morphologic operators [6, 14]:

- morphological dilatation and erosion:

D(A, B) = max [MC (k − s, i − l) + b(s, l)] = A ⊕ B (7.37)

E(A, B) = min [MC (k + s, i −+l) − b(s, l)] = AΘB (7.38)

where s = −b, −b + 1, .., 0, .., b − 1, b; l = −h, −h + 1, .., 0, .., h − 1, h.

- morphological opening and closing:

OP(A, B) = (AΘB) ⊕ B = AoB = D{E(QA, B), B} (7.39)

CL(A, B) = (A ⊕ B)ΘB = A · B = E{D(QA, B), B} (7.40)

102 L. C. Jain et al.

7.7.4.1 Operator for Morphological Noise Suppression

The operator for morphological noise suppression is represented as:

Fsm = Mor ph Smooth (A, B) = CL{OP(A, B), B} = (AoB) · B (7.41)

7.7.4.2 Morphological Gradient Operators for the Outer and Inner
Contours

The morphological gradient operators for detection of the outer and inner contours
of the objects are represented as follows:

Fext = DG(A) = D(A, B) − A; and Fint = EG(A) = A − E(A, B). (7.42)

7.7.4.3 Morphological Gradient Operators of Laplace, Bother, Li1

and Li2

The morphological gradient operators of Laplace, Bother, Li1, and Li2 for contours
detection are represented as follows:

FLap = DG(A) − EG(A); FBoth = DG(A) + EG(A); (7.43)

F1
Li = min[DG(A), EG(A)]; F2

Li = max[DG(A), EG(A)]. (7.44)

7.7.4.4 Morphological Operators Top Hat and Bot Hat

The morphological operators Top Hat and Bot Hat for detection of dark/light objects
on an irregular background, are defined as given below:

Top Hat (A, B) = CL(A, B) − A; Bot Hat (A, B) = A − OP(A, B). (7.45)

7.7.4.5 Morphological Operator for Sharpness Enhancement

The morphological operator for sharpness enhancement and for contrast enhance-
ment of the small details in the color image, respectively, is defined by the relation
below:

7 Locally Adaptive Processing of Color Tensor Images Represented … 103

Fms = Morph Sharpness (A, B) = A + [A − (AoB)] − [(A · B) − A].
(7.46)

7.7.4.6 Segmentation of Color Textures

The segmentation of color texture images is based on morphological filtration. The
following assumptions are set:

Let the color image A, represented by the matrix [MC (k, i)] contains two different
textures, each built by repetitive elements of different average sizes. To detect the
border, the following three steps are performed:

Step 1 : Sn 1 = E(A, nB1) = (((AΘB1)ΘB1)....)ΘB1 = AΘnB1 (7.47)

where n denotes the number of erosions, and B1 is the structuring element. Its shape is
chosen so that after the n-th erosion, the elements of one of the two textures disappear,
merging into a homogenous area, i.e.:

Step 2 : Sm 2 = D(Sm 1 , mB2) = (((Sm 1 ⊕ B2) ⊕ B2)....) ⊕ B2 = Sm 1 ⊕ mB2, (7.48)

where m denotes the number of dilatations, and B2 is the structuring element. Its
shape is chosen so that after dilatations, the elements of the second texture disappear,
merging into a homogenous area, i.e.:

Step 3 : S = Sm 2 − (Sm 2 ΘB1), (7.49)

where S is a color image, which contains the border between both textures, of width
one pixel only.

The shape and the size of the structuring elements B1 and B2 conform to the mean
values of the corresponding elements in the first and second textures. In this way, the
number of erosions and dilatations needed to execute steps 1 and 2, is reduced. In
particular, if B1 = B2 = B, the values of n and m increase, but the operations needed
for steps 1 and 2, are simpler.

In case that the color image contains more than two different textures, the presented
morphological algorithm for detecting the border between neighbor textures is
applied repeatedly, depending on the number of textures.

After each dilatation, needed for the morphological filtration or segmentation,
should be evaluated the number of color vectors, whose ends are out of the color
cube. In case that this number is higher than the preset threshold, color and brightness
correction of the vector field is needed, similar to that from Sect. 7.6 (the algorithm
for local contrast enhancement).

The algorithm for morphological filtration is illustrated in Fig. 7.6, where in
Fig. 7.6a is shown the original color image. It contains two textures with similar

104 L. C. Jain et al.

Fig. 7.6 Color texture image: a original; b after morphological segmentation by using a flat
structuring element B, shaped as a horizontal/vertical line and placed in a window of size 9 ×
9

color characteristics, but with different orientations of their elements (horizontal and
vertical). In Fig. 7.6b is shown the result obtained after a morphological segmentation
with a flat structuring element B, whose shape is a line (horizontal/vertical), defined
in a window of size 9 × 9. As a result of the segmentation, the elements of both
textures merge into two homogenous areas. If the color image contains two textures,
which comprise similar elements, distinguished by their hue, similar algorithm could
be used. However, in this case, the algorithm for morphological segmentation should
be applied on the matrix [θC(k,i)] of the angles (orientation) of the color vectors Ck,i

instead of the matrix [MC (k, i)], composed by the modules of these vectors.

7.8 Conclusions

The objective of this work is to formulate one new approach for locally-adaptive
processing of color third-order tensor RGB images represented in a vector form,
and to analyze the characteristics of the corresponding basic algorithms so that to
exploit efficiently the spatial and inter-channel correlation. These algorithms need
only operations executed on a single matrix image, which comprises the modules of
the corresponding color vectors. As a result, triple reduction of the computational
complexity is achieved, compared to algorithms executed on each color component
individually. Together with the reduced computations, the hue and the brightness of
the original image are retained.

The presented locally-adaptive algorithms are extremely efficient in the processing
of medical images, which have variable color characteristics (brightness, satura-
tion and hue). The new approach will be further investigated and extended, aiming
at applications in various multidisciplinary areas. The future development of the
locally-adaptive algorithms will be mainly aimed at the integration with deep neural
networks with different architectures, so as to achieve higher flexibility in the adaptive
processing of color images.

7 Locally Adaptive Processing of Color Tensor Images Represented … 105

Acknowledgements This work was funded by the Bulgarian National Science Fund: Project No.
KP-06-H27/16: “Development of efficient methods and algorithms for tensor-based processing and
analysis of multidimensional images with application in interdisciplinary areas”.

References

1. Thyagarajan, K.: Digital Image Processing with Application to Digital Cinema. Focal Press,
Elsevier (2006)

2. Celebi, M., Lecca, M., Smolka, B. (eds.): Color Image and Video Enhancement. Springer,
Heidelberg (2015)

3. Jain, A.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ (2018)
4. Gomez-Agis, J., Kober, V.: Local adaptive image processing in a sliding transform domain.

In: Proc. SPIE 6696, Applications of Digital Image Processing, 669623, 24 (2007). https://doi.
org/10.1117/12.735044

5. Pratt, W.: Digital Image Processing. John Wiley & Sons Inc., Publication (2007)
6. Gonzales, R., Woods, R.: Digital Image Processing, 4th edn, Pearson Education (2019)
7. Renhard, E., Ward, G., Pattanaik, S., Devebec, P., Heidrich, W., Myszkowski, K.: High

Dynamic Range Imaging: Acquisition, Display, and Image-based Lighting. Morgan Kaufmann
Publications, Elsevier (2010)

8. Inoue, K., Jiang, M., Hara, K.: Hue-preserving saturation improvement in RGB color cube. J
Imaging 7, 150 (2021). https://doi.org/10.3390/jimaging7080150

9. Rao, K., Kim, D., Hwang, J.: Fast Fourier transform: algorithms and applications. Springer
(2010)

10. Kountchev R, Bekiarsky A, Mironov R, Bekiarska S.A.: Method for local contrast enhancement
of endoscopic images based on color tensor transformation into a matrix of color vectors’
modules using a sliding window. MDPI Symmetry 6, 14(12), 2582, Open access. https://doi.
org/10.3390/sym14122582

11. Recommendation ITU-R BT.709-5 (04/2002): Parameter values for the HDTV standards for
production and international programme exchange. BT Series Broadcasting service (television).
https://www.itu.int/pub/R-REC/en

12. Jin, F., Fieguth, P., Winger, L., Jernigan, E.: Adaptive wiener filtering of noisy images and
image sequences. In: Proceedings of the International Conference on Image Processing, 14–17
Sept. 2003, Barcelona, Spain, https://doi.org/10.1109/ICIP.2003.1247253

13. Lukas, R., Smolka, B.: Application of the adaptive center-weighted vector median framework
for the enhancement of cdna microarray images. Int. J. Appl. Math. Comput. Sci. 13(3), 369–
383 (2003)

14. Dougherty E. (Ed.) Mathematical morphology in image processing. CRC Press (2018)

https://doi.org/10.1117/12.735044
https://doi.org/10.1117/12.735044
https://doi.org/10.3390/jimaging7080150
https://doi.org/10.3390/sym14122582
https://doi.org/10.3390/sym14122582
https://www.itu.int/pub/R-REC/en
https://doi.org/10.1109/ICIP.2003.1247253

	7 Locally Adaptive Processing of Color Tensor Images Represented as Vector Fields
	7.1 Introduction
	7.2 Color Image Tensor Representation as a Vector Field
	7.2.1 Color Vectors Presentation in Orthogonal Coordinate System Framed by a RGB Cube
	7.2.2 RGB Image Representation as a 2D Vector Field

	7.3 The Essence of the New Approach
	7.4 Definition of the Image Color Vectors’ Modules Through 2D-DFT
	7.5 Calculation of the Local Histograms of Color Vectors’ Modules
	7.5.1 Local Histogram
	7.5.2 Local Modified Histogram
	7.5.3 Local Cumulative Histogram
	7.5.4 Computational Cost

	7.6 Applications of the Local Cumulative Histograms
	7.6.1 Local Contrast Enhancement
	7.6.2 Calculation of the RGB Vectors of the Enhanced Image
	7.6.3 Adaptive Color Correction

	7.7 Locally-Adaptive Filtering for Tensor Images, Represented as Vector Fields
	7.7.1 Linear 2D Filtering
	7.7.2 Weighted Median Filtering
	7.7.3 Suppression of Additive Pulse and Gaussian Noises
	7.7.4 Morphological Filtration

	7.8 Conclusions
	References

