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Abstract Sparse weighted multilinear least-squares is a generalization of the sparse 
multilinear least-squares problem, where prior information about, e.g., parameters 
and data is incorporated by multiplying both sides of the original problem by a 
typically diagonal weights matrix. However, the introduction of arbitrary diagonal 
weights would result in a non-Kronecker least-squares problem that could be very 
large to store or solve practically. In this paper, we generalize our recent Tensor 
Least Angle Regression (T-LARS) algorithm to efficiently solve either L0 or L1 

constrained multilinear least-squares problems with arbitrary diagonal weights for 
all critical values of their regularization parameter. To demonstrate the validity of 
our new Weighted Least Angle Regression (WT-LARS) algorithm, we used it to 
successfully solve three different image inpainting problems by obtaining sparse 
representations of binary-weighted images. 

3.1 Introduction 

Weighted least squares is a generalization of the least-squares (LS) problem, where 
prior information about parameters and data is incorporated by multiplying both sides 
of the original LS problem by a typically diagonal weights matrix. Applications of 
weighted least-squares in Signal Processing include signal restoration [1, 2], source 
localization in wireless networks [3–6], adaptive filters [4, 7–9], and image smoothing 
[10]. In Statistics, weighted least-squares regression is often used to reduce bias from 
non-informative data samples [11, 12]. Also, a best linear unbiased estimator (BLUE) 
is obtained by using the inverse of the data covariance matrix as the weights matrix 
[13]. 

Recently, sparsity has become a commonly desired characteristic of a least-squares 
solution [14, 15]. Because of its relatively small number of non-zero values, a sparse
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solution could result in faster processing with lower computer storage requirements 
[14, 15]. A sparse solution is usually obtained by solving a least-squares problem 
while minimizing either the L0 norm of the solution (non-convex optimization 
problem) or minimizing the L1 norm of the solution (convex optimization problem), 
where the L0 norm of a vector is its number of non-zero elements and the L1 norm 
of a vector is the sum of the magnitude of its elements [14]. 

Several methods have been proposed to solve sparse least-squares problems, 
including the Method of Frames [16], Matching Pursuit (MP) [17], Orthogonal 
Matching Pursuit (OMP) [18], Best Orthogonal Basis [19], Least Absolute Shrinkage 
and Selection Operator (LASSO) that is also known as Basis Pursuit [20, 21], and 
Least Angle Regression (LARS) [21]. Both MP and OMP solve the L0 constrained 
least-squares problem [22] using sequential heuristic steps that add solution coeffi-
cients in a greedy, i.e., non-globally optimal, way. LASSO relaxes the non-convex L0 

constrained least-squares problem to solve the convex L1 constrained least-squares 
problem instead [20]. Among the above solution methods, only Least Angle Regres-
sion could efficiently solve both the L0 and, with a slight modification, L1 constrained 
least-squares problem for all critical values of their regularization parameters. This 
parameter is required to balance the minimization of the LS residual with the 
minimization of the norm of the solution [21]. 

In addition to incorporating a priori information, weights also could be introduced 
to sparse least-squares problems to improve the L1 minimization problem results 
[23, 24]. Candès et al. also used a reweighted L1 minimization approach to enhance 
sparsity in compressed sensing [25]. Also, weighted L1 constrained least-squares 
regression has been used to extract information from large data sets for statistical 
applications [26, 27]. We note that sparse weighted least-squares problems could be 
solved using any of the above optimization methods. 

Multilinear least-squares is a multidimensional generalization of least-squares 
[28–30], where the least-squares matrix has a Kronecker structure [31, 32]. Sparse 
multilinear least-squares could be either an L0 constrained or an L1 constrained 
multilinear least-squares problem. Caiafa and Cichocki introduced a generalization 
of OMP, Kronecker-OMP, to solve  the  L0 constrained sparse multilinear least-squares 
problem [32]. Elrewainy and Sherif [33] developed Kronecker Least Angle Regres-
sion (K-LARS) to efficiently solve both L0 and L1 constrained sparse least-squares 
having a specific Kronecker matrix form, A ⊗ I , for all critical values of the regular-
ization parameter. To overcome this limitation, the authors further developed Tensor 
Least angle Regression (T-LARS) [30], a generalization of K-LARS that does not 
require any special form of the LS matrix beyond being Kronecker. T-LARS solves 
either large L0 or large L1 constrained, sparse multilinear least-squares problems 
(underdetermined or overdetermined) for all critical values of the regularization 
parameter λ with significantly lower computational complexity and memory usage 
than Kronecker-OMP. 

Weighted multilinear least-squares is a generalization of multilinear least-squares 
that introduces a typically diagonal weight matrix to both sides of the original LS 
problem. Since an arbitrary diagonal weight matrix would not be Kronecker, the
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weighted LS matrix would lose its original Kronecker structure, resulting in a poten-
tially very large non-Kronecker LS matrix. Thus solving these weighted sparse multi-
linear least-squares problems could become highly impractical, as it would require 
significant memory and computational power. 

Therefore, in this paper, we extend T-LARS to Weighted Tensor Least Angle 
Regression (WT-LARS) that could solve efficiently both L0 and L1 constrained 
sparse weighted multilinear least-squares problems for all critical values of the regu-
larization parameter. It is organized as follows: Sect. 3.2 includes a brief introduction 
to the sparse weighted multilinear least-squares problem. In Sect. 3.3, we describe 
our new Weighted Tensor Least Angle Regression (WT-LARS) algorithm in detail. 
Section 3.4 provides results of applying WT-LARS to solve three different image 
inpainting problems by obtaining sparse representations of binary-weighted images. 
We present our conclusions in Sect. 3.5. 

3.2 Problem Formulation 

3.2.1 Sparse Weighted Multilinear Least-Squares Problem 

A multilinear transformation of a tensor X could be defined as, Y = 
X×1Φ

(1)×2 · · · ×NΦ(N ) , where Y ∈ RJ1×···×Jn×···×JN and X ∈ RI1×...×I n×···×IN are 
Nth order tensors, with the equivalent vectorized form

Φvec( X ) = vec(Y) (3.1) 

where Φ ∈ RJ×I , and Φ = Φ(N ) ⊗  · · ·  ⊗ Φ(1) , and ⊗ is the Kronecker product 
operator [34]. 

Let W = SH S, be a diagonal weight matrix. We could obtain a weighted linear 
transformation [35] of (1)  as  

SΦvec(X ) = Svec(Y) (3.2) 

A sparse solution of the weighted linear system in (2) could be obtained by solving 
an L p (p = 0 or p = 1) minimization problem, 

∼ 
X= argmin 

X
∥SΦvec(X ) − Svec(Y)∥2 2 + λ∥vec(X )∥p (3.3) 

where λ is a regularization parameter. 
If S is a Kronecker matrix, then SΦ = (

S(N )Φ(N ) ⊗  · · ·  ⊗  S(1)Φ(1)
)
and we could 

use T-LARS [30] to obtain a sparse solution for either L0 or L1 optimization problem 
in (3) efficiently. However, S is not typically Kronecker, so SΦ would not have a 
Kronecker structure, and (3) should be solved as a potentially very large vectorized
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(one-dimensional) sparse least-squares problem which could be very challenging in 
terms of memory and computational power requirements. Therefore, in this paper, we 
develop Weighted Tensor Least Angle Regression (WT-LARS), a computationally 
efficient method, to solve either L0 or L1 constrained sparse weighted multilinear 
least-squares problems in (3) for an arbitrary diagonal weights matrix W = SH S ∈ 
R

J ×J . 

3.3 Weighted Tensor Least Angle Regression 

In this section, we develop Weighted Tensor Least Angle Regression (WT-LARS) by 
extending T-LARS to solve the sparse weighted multilinear least-squares problem 
in (3), for weights W = SH S and Kronecker dictionaries Φ. 

Inputs to WT-LARS are the data tensor Y ∈ RJ1×···×Jn×···×JN , mode-n dictio-
nary matrices Φ(n); n ∈ {1, · · ·  , N } where Φ = Φ(N ) ⊗  · · ·  ⊗ Φ(1) , the diagonal 
weight matrix W = SH S, and the stopping criterion as a residual tolerance ε or the 
maximum number of non-zero coefficients K (K-sparse representation). The output 
is the solution tensor X ∈ RI1×...×I n×···×IN . 

WT-LARS requires weighted data Svec(Y), and columns of the weighted dictio-
nary SΦ to have a unit L2 norm. Normalized weighted data could be easily calculated 
by YW = Svec(Y)/∥Svec(Y)∥2. However, the dictionary matrix SΦ does not have 
a Kronecker structure. Hence, normalizing mode-n dictionary matrices Φ(n) does 
not ensure normalization of the columns of SΦ. Therefore, in WT-LARS, we use 
the normalized weighted dictionary matrix ΦW = SΦQ instead of the normalized 
dictionary matrix Φ in T-LARS, where Q is a diagonal matrix, 

Qi,i = 1
∥(SΦ)i∥2 (3.4) 

where (SΦ)i is the i
th  column of the weighted dictionary matrix SΦ. We can 

efficiently calculate the diagonal matrix Q as, 

diag( Q) = 1./
/(

Φ∗2)T diag(W ) (3.5) 

where, Φ∗2 [36] denotes the Hadamard square of Φ, such that Φ∗2 
i, j =

(
Φi, j

)2 
, "./" 

denotes elementwise division, and diag( Q) and diag(W ) are diagonal vectors of 
Q and W respectively. We could efficiently calculate

(
Φ∗2)T diag(W ) using the full 

multilinear product. 
WT-LARS solves the L0 or L1 constrained minimization problems in (3) for all 

critical values of the regularization parameter λ. WT-LARS starts with a large value 

of λ, that results in an empty active set I = {}, and a solution ∼ 
X t=0 = 0. The  set  I 

denotes an active set of columns of the dictionary ΦW , i.e., column indices where 

the optimal solution 
∼ 
X t at iteration t , is nonzero, and I c denotes its corresponding
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inactive set. Therefore, ΦW I contains only the active columns of the dictionary ΦW 

and ΦW I c contains only its inactive columns. 
At each iteration t , a new column is either added (L0) to the active set I or a new 

column is either added or removed (L1) from the active set I , and λ is reduced by a 
calculated value δ∗

t . 
As a result of such iterations, new solutions with an increased number of coeffi-

cients that follow a piecewise linear path are obtained until a predetermined residual 
error ε or a predetermined number of active columns K is obtained. 

The regularization parameter λ is initialized to the maximum of the correlation 
c1, between the columns of ΦW and the initial residual r0 = vec(Y). 

c1 = ΦT 
W r0 (3.6) 

Since ΦT 
W = QΦT S, we can easily calculate ΦT Sr0 using the full multilinear 

product as 

C '
1 = RS0 ×1 Φ(1)T ×2 . . .  ×N Φ(N )T (3.7) 

where vec
(RS0

) = Sr0 and c1 = Qvec
(C '

1

)
. The column index corresponding to 

the maximum correlation c1 is added to the active set. For a given active set I , the  

optimal solution 
∼ 
X t at any iteration t , could be written as 

vec

( ∼ 
X
t

)
=
 (

ΦW T It
ΦWIt

)−1 (
ΦW T It 

vec(Y) − λtzt
)
, on I 

0, Otherwise 
(3.8) 

where, zt is the sign sequence of ct on the active set I , and ct = ΦT 
W r t−1 is the 

correlation vector of all columns of the dictionary ΦW with the residual r t−1 at any 
iteration t. 

The optimal solution at any iteration, t must satisfy the following two optimality 
conditions,

ΦW 
T 
It r t = −λt zt (3.9)

∥ΦW 
T 
I c t 
r t∥∞ ≤ λt (3.10) 

where, r t = vec(Y) − ΦW vec
( ∼ 
X t

)
is the residual at iteration t , and zt is the sign 

sequence of the correlation ct at iteration t , on the active set I . The condition in (9) 
ensures that the magnitude of the correlation between all active columns of ΦW and 
the residual is equal to |λt | at each iteration, and the condition in (10) ensures that the 
magnitude of the correlation between the inactive columns of ΦW and the residual 
is less than or equal to |λt |.
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At each iteration t , λt is reduced by a small step size, δ∗
t , until a condition in 

either (9) or (10) violates. For L0, and L1 constrained minimization problems, if an 
inactive column violates the condition (10), it is added to the active set, and for L1 

constrained minimization problems, if an active column violates the condition (9), 
it is removed from the active set. 

As λ is reduced by δ∗
t , the solution 

∼ 
X t changes by δ∗

t d t along a direction d t , where 
d I c t = 0 and d It = G−1 

t zt , and G−1 
t is the inverse of the Gram matrix of the active 

columns of the dictionary Gt = ΦW 
T 
ItΦW It . 

The size of this Gram matrix would either increase (dictionary column addition) 
or decrease (dictionary column removal) with each iteration t . Therefore, for compu-
tational efficiency, we use the Schur complement inversion formula to calculate G−1 

t 
from G−1 

t−1 thereby avoiding its full calculation [30, 37]. 
The smallest step size for L1 constrained sparse least-squares problem δ∗

t = 
min

{
δ+
t , δ

−
t

}
is the minimum of δ+

t , minimum step size for adding a column, and δ−
t , 

minimum step size for removing a column. The minimum step size for removing a 
column from the active set is given by, 

δ−
t = min 

i∈I

{
− xt−1(i ) 

d t (i)

}
(3.11) 

The minimum step size for adding a new column to the active set is given by, 

δ+
t = min 

i∈I c
{

λt−ct (i ) 
1−vt (i ) , 

λt+ct (i ) 
1+vt (i)

}
(3.12) 

where 

vt = ΦT 
WΦW d t (3.13) 

Since ΦW = SΦQ, We can efficiently calculate vt using two full multilinear 
products. 

Let vt = Qvec(Vt '), where 

V '
t = Uwt ×1 Φ(1)T ×2 . . .  ×N Φ(N )T (3.14) 

and vec
(Uwt

) = Wvec
(Dt ' ×1 Φ(1) ×2 . . .  ×N Φ(N )

)
, and vec(Dt ') = Qd t . 

The residual r t+1 is calculated at the end of each iteration using, 

r t+1 = r t − δ∗
t ΦW d t (3.15) 

where we can efficiently calculate ΦW d t using

ΦW d t = Svec
(Dt ' ×1 Φ(1) ×2 · · ·  ×N Φ(N )

)
(3.14) 

WT-LARS stops at a predetermined residual error r t+1 ≤ ε or when a 
predetermined number of active columns K is obtained.
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3.3.1 Weighted Tensor Least Angle Regression Algorithm 

Algorithm 1: Weighted Tensor Least Angle Regression (WT-LARS) 

Input: WT-LARS_mode = or , normalized tensor Mode-n 
dictionary matrices ; 

Diagonal Weights Matrix Stopping criterion: residual 
tolerance: or number of non-zero coefficients: 

Initialization: Residual: ; ; ; 
1. 

2. 

3. 

4. 

5. 

6. 

7. while : 
8. = sign ( ) 
9. updateWeightedInverseGramMatrix( , , , { }, I, 

add_column, column_idx) % See reference [30] 

10. 

11. 

12. 

13. 

14. 

15. 

16. = ./ % “./” - Elementwise division 
17. = ./ 
18. 

19. 

20. add_column == True 
21. if WT-LARS_mode == && min ( : 
22. = min ( 
23. add_column = False 
24. end 
25. 

26. 

27. 

28. 

29. 

30. if add_column == True: 
31. else: end 
32. end while 
33. return ,
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3.4 Experimental Results 

In this section, we present experimental results for WT-LARS as a tensor completion 
problem [38–40], using inpainting as an example. Image inpainting has progressed 
significantly during last few years, specifically using machine learning methods [41– 
43]. However, as far as we know, no other tensor-based method is available for solving 
the image inpainting problem as a weighted tensor least squares problems. 

For experiments shown in Figs. 3.2 and 3.1, we obtained fenced images from 
the Image datasets for MSBP deformable lattice detection Algorithm [44], and for 
the experiment shown in Fig. 3.1, we obtained a landscape image from the DIV2K 
dataset [45]. 

Our experimental results were obtained using a MATLAB implementation of 
WT-LARS using the MATLAB version R2017b on an MS-Windows machine: 2 
Intel Xeon CPUs E5-2637 v4, 3.5 GHz, 32 GB RAM, and NVIDIA Tesla P100 GPU 
with 12 GB memory.

Fig. 3.1 a Original image with a fence b weights image with zero weights for the fence c WT-LARS 
reconstructed image (Fence Removed) 

Fig. 3.2 a Original image with a fence b weights image with zero weights for the fence c WT-LARS 
reconstructed image (Fence Removed) 
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3.4.1 Inpainting 

In this experiment, we use WT-LARS for inpainting. We obtained a sparse repre-
sentation of the inpainted image using WT-LARS after applying zero weights to the 
missing data. 

In our experimental results shown in Figs. 3.1 and 3.2, we obtained a fenceless 
image by considering pixels behind the fences as missing data. Figures 3.1a and 3.2a 
show the original image with a fence, and Figs. 3.1b and 3.2b show the respective 
masks applied to each pixel of the original image, where black indicates zero and 
white indicates one. Figures 3.1c and 3.2c show the obtained sparse representation 
of images behind fences using WT-LARS. 

We obtained RGB image patches, 200× 200× 3 pixels, from the original images 
in Figs. 3.1a and 3.2a. For each patch, we obtained a weighted K-sparse repre-
sentation using WT-LARS, with 10% nonzero coefficients, for three fixed mode-n 
overcomplete dictionaries, Φ(1) ∈ R200×400, Φ(2) ∈ R200×400 and Φ(3) ∈ R3×4, by  
solving a L1 constrained sparse weighted least squares problem. Weights consists 
of zeros for the pixels that belong to the fence in the original images and ones for 
everywhere else. Used fixed mode-n overcomplete dictionaries were a union of a 
Discrete Cosine Transform (DCT) dictionary and a Symlet wavelet packet with four 
vanishing moments dictionary. In the experimental results shown in Figs. 3.1 and 
3.2, the RGB patches with the minimum number of nonzero samples had 79, 834 
and 92, 748 nonzero samples, respectively. We collected 60 image patches from the 
image in Fig. 3.1a and 35 image patches from the image in Fig. 3.2a, where on 
average WT-LARS took 476 s to collect 12,000 (10% of 200 × 200 × 3) non-zero 
coefficients from each image patch. 

In the experimental results shown in Fig. 3.3, we use WT-LARS to obtain a 
landscape image occluded by a person in Fig. 3.3a. Figure 3.3b shows the weights, and 
Fig. 3.3c shows the inpainting result after removing the person from the foreground 
of the landscape image. 

The RGB images in Fig. 3.3a is a scaled version of the original image with 
200 × 300× 3 pixels. We obtained a weighted K-sparse representation for the scaled 
image in Fig. 3.3a using WT-LARS, with 20% non-zero coefficients, for three fixed 
mode-n overcomplete dictionaries, Φ(1) ∈ R200×400, Φ(2) ∈ R300×604 and Φ(3) ∈

Fig. 3.3 a Original image with a person b weights image with zero weights for the person c WT-
LARS reconstructed image (Person Removed) 
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R
3×4, by solving a weighted L1 constrained sparse least squares problem. Weights 

consist of zeros for the pixels belonging to the person in the original image and ones 
for everywhere else. Used fixed mode-n overcomplete dictionaries were a union of a 
Discrete Cosine Transform (DCT) dictionary and a Symlet wavelet packet with four 
vanishing moments dictionary. In the experimental results shown in Fig. 3.3, a total of 
170,829 nonzero samples have been used to obtain the sparse signal representation 
of the landscape image. The WT-LARS took 20,625 s to collect 36,000 non-zero 
coefficients, which is 20% of the size of the image tensor in Fig. 3.3a. Therefore, 
inpainting results in, Figs. 3.1c, 3.2c and 3.3c clearly show that WT-LARS can be 
successfully used to approximate missing/incomplete data. 

3.5 Conclusions 

Sparse weighted multilinear least-squares is a generalization of the sparse multilinear 
least-squares problem, where both sides of the Kronecker LS system are multiplied 
by an arbitrary diagonal weights matrix. These arbitrary weights would result in a 
potentially very large non-Kronecker least-squares problem that could be impractical 
to solve as it would require significant memory and computational power. 

This paper extended the T-LARS algorithm, earlier developed by the authors [28], 
to become the Weighted Tensor Least Angle Regression (WT-LARS) algorithm that 
could solve efficiently either L0 or L1 constrained multilinear least-squares problems 
with arbitrary diagonal weights for all critical values of their regularization parameter. 
To validate our new WT-LARS algorithm, we used it to solve three image inpainting 
problems. In our experimental results using WT-LARS shown in Figs. 3.1 and 3.2, 
we obtained the exact sparse signal representation of RGB images behind fences 
after applying zero weights to the pixels representing the fences. In the experimental 
result using WT-LARS shown in Fig. 3.3, we successfully obtained an exact sparse 
signal representation of an RGB landscape image occluded by a person by applying 
zero weights to the pixels representing this person. These results demonstrate the 
validity and usefulness of our new Weighted Least Angle Regression (WT-LARS) 
algorithm. 

Possible future applications of WT-LARS include efficiently solving weighted 
least-squares applications for tensor signals. Such examples include tensor comple-
tion, image/video inpainting, image/video smoothing, and tensor signal restorations. 

A MATLAB GPU-based implementation of our Weighted Tensor Least Angle 
Regression (WT-LARS) algorithm, Algorithm 1, is available at https://github.com/ 
SSSherif/Weighted-Tensor-Least-Angle-Regression.

https://github.com/SSSherif/Weighted-Tensor-Least-Angle-Regression
https://github.com/SSSherif/Weighted-Tensor-Least-Angle-Regression
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