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Design and Realization of Mobile 
Terminal Side Time Synchronization 
Based on FPGA 

Qi Liu, Xiangchao Meng, and Xiaosong Cao 

Abstract In order to solve the current demand of high precision time synchro-
nization modularization of mobile terminals, the problem that mobile network stan-
dard cannot provide high precision time synchronization ability is solved. Based 
on the capability of the existing mobile communication system, this project will 
design a time synchronization module of the mobile terminal side based on field 
programmable gate array (FPGA) by studying the airport timing and the terminal 
side’s airport timing process. 

19.1 Introduction 

With the rapid development of network technology and integrated circuits, mobile 
terminals have also broken free from their constraints and experienced significant 
growth [1]. In the face of massive interactions and collaborative cooperation among 
mobile devices, time synchronization has become particularly important, and its 
accuracy has become a goal pursued by humans. Whether its email communication, 
telephone billing, campus card authentication, or mobile gaming, time synchroniza-
tion is essential. Without accurate time synchronization or if the precision is too low, it 
would lower our quality of life [2]. Nowadays, there are various time synchronization 
methods such as global navigation satellite system (GNSS), network time protocol 
(NTP), and precision time protocol (PTP), each shining in their respective domains, 
but with certain limitations [3]. For example, GNSS is constrained by costs, and NTP 
lacks high precision. Currently, absolute time synchronization requirements can be
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achieved in scenarios like wired symmetric link networks. However, in scenarios 
with long-distance wireless link networks, due to the instability and asymmetry of 
the wireless links, most cannot achieve high-precision wireless time synchronization 
[4], which would negatively impact people’s daily lives due to poor user experience. 

This paper investigates the timing process on the air interface of mobile terminals 
and based on the interaction between field programmable gate array (FPGA) and 
the terminal designs an FPGA-based timing synchronization module for mobile 
terminals built upon existing mobile network devices and air interface links. The air 
interface timing not only ensures good measurement of uplink and downlink latency 
and channel delay in the existing air interface protocol stack (physical layer: PHY, 
media access control: MAC, etc.) but also achieves higher timing accuracy compared 
to technologies like NTP and PTP. This simple design enables high-precision time 
synchronization while ensuring good user experience and accommodating a large 
number of users. It also reduces costs by utilizing existing or planned network devices 
such as mobile edge computing (MEC) [5], base stations, and terminals. With the 
development of 5G, high-speed, low-latency, and high-capacity communication is 
experiencing vigorous growth. This time synchronization technology can be applied 
in scenarios such as the Internet of Things and connected vehicles, ushering in a 
new era with the advent of 5G and allowing everyone to participate in the wireless 
network world. 

19.2 Related Theories 

19.2.1 End-to-End Delay Mechanism 

The basic principle of PTP synchronization is that the master and slave clocks 
exchange synchronization messages and record the transmission and reception time 
of these messages. The round-trip delay between the master and slave clocks is 
calculated by measuring the time difference between transmitting and receiving 
the messages. If the network is symmetrical, meaning that the transmission delays 
in both directions are the same, then the one-way delay is half of the round-trip 
delay. The clock offset between the master and slave clocks is equal to this one-way 
delay. By adjusting the local time based on the calculated offset, the slave clock can 
achieve synchronization with the master clock. The following Fig. 19.1 illustrates 
the implementation process of the end-to-end delay mechanism in the two-step mode 
[6].

In the two-step mode of the end-to-end delay mechanism, the timestamp t1 of the 
Sync message is carried by the Follow_up message, and t4 and t5 are carried by the 
Pdelay_Req and Pdelay_Resp_Follow_UP messages, respectively. 

The implementation process of the end-to-end delay mechanism in the two-step 
mode is as follows:
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Fig. 19.1 Implementation process of the end-to-end delay mechanism in the two-step mode

• The master clock sends a Sync message to the slave clock and records the trans-
mission time t1. The slave clock, upon receiving the message, records the reception 
time t2. 

• After sending the Sync message, the master clock immediately sends the Follow_ 
up message containing t1. 

• The slave clock sends a Pdelay_Req message to the master clock to initiate the 
calculation of the reverse transmission delay. The slave clock records the trans-
mission time t3, and upon receiving the message, the master clock records the 
reception time t4. 

• Upon receiving the Pdelay_Req message, the master clock replies by sending a 
Pdelay_Resp message with t5 as the transmission time. The slave clock records 
the reception time t6 upon receiving this message. 

• After replying to the Pdelay_Req message, the master clock sends a Pdelay_ 
Resp_Follow_UP message containing t5. 

At this point, the slave clock has obtained six timestamps: t1 to t6. Using these 
timestamps, the round-trip delay between the master and slave clocks can be calcu-
lated as [(t4 – t3) + (t6 – t5)], and assuming a symmetrical network, the one-way 
delay between the master and slave clocks is [(t4 – t3) + (t6 – t5)]/2. Therefore, the 
clock offset between the slave and master clocks is Offset = (t2 – t1) − [(t4 – t3) + 
(t6 – t5)]/2.
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19.2.2 Air Interface Timing Overview 

At the network level, air interface timing has already had mobile network air links, 
and the physical layer and data link layer of the air interface protocol stack can ensure 
relatively good measurement of delay variations and channel delays for uplink and 
downlink. In future applications, due to the large number of users in air interface 
timing, there will be significant demand and user volume in areas such as connected 
vehicles, IoT, and artificial intelligence. Moreover, network equipment such as base 
stations, terminals, MEC, etc., can utilize existing or upcoming equipment from 
operators to save costs. Air interface timing can achieve higher timing accuracy 
using air interface wireless signals, albeit compared to technologies like NTP and 
PTP which have relatively lower accuracy. Figure 19.2 shows the timing network 
structure: 

In this timing network structure, atomic clock hardware and timing services 
interact and influence each other. The core network and base stations in the figure 
achieve time synchronization monitoring and reduce dependence on satellites, 
thereby achieving higher precision timing using the network. In the future, it can 
be applied to industries such as autonomous driving in 5G networks and timing for 
IoT devices. 

For the network timing system, the following design plan is proposed, as shown 
in Fig. 19.3.

Master Clock → Core Network → Base Station/MEC: Using optical network 
and PTPv2 technology. 

Base Station → UE/Gateway: Air interface physical layer for signal timing. 
Clock Hierarchy:

Fig. 19.2 Timing network structure 
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Fig. 19.3 Timing system overview

• GM (Grandmaster Clock): Has the highest stability, precision, and reliability. 
• BC (Boundary Clock): Can establish various branch points in different layers of 

the structure. 
• TC (Transparent Clock): Can measure and compensate for the time consumed by 

PTP event information in the device. 

19.2.3 Air Interface Timing Principles and Process 

Basic principle: Air interface timing is based on periodic, low-latency physical layer 
synchronization signals. The base station records the time of the signal transmission 
and sends that time through a physical broadcast channel or a physical downlink 
shared channel (PDSCH) channel. The terminal blindly detects the signal and records 
the received time. Afterwards, the base station provides feedback on the uplink delay 
measurement through a RandomAccessResponse. The terminal predicts and modifies 
the timing error.
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Fig. 19.4 Flowchart of time 
synchronization process 

19.3 System Design 

19.3.1 Design of Time Synchronization System 

Overall scheme of Time Synchronization System based on the studied air interface 
timing process on the mobile terminal side, further design of the time synchronization 
system is carried out. Figure 19.4 shows the flowchart of the time synchronization 
process. 

The FPGA in the terminal needs to possess the following three capabilities: 

• The FPGA needs to retrieve the terminal’s local time when detecting radio resource 
control (RRC) signals, as well as the sending time of the broadcasted signals from 
the base station and the value of n_TA signal in random access response (RAR) 
signals or directly obtain the TimeAdvance value. 

• Based on the above data, calculate the adjustment value for the terminal’s local 
time. 

• Provide feedback of the adjustment value to the terminal. 

On the other hand, the terminal needs to open interfaces on the current basis to 
provide the aforementioned sending time, local time, and TimeAdvance value. This 
enables the terminal to correct its local time based on the adjustment value provided 
by the chip. Furthermore, the Verilog [7] language is used to implement the required 
functionalities of the FPGA. 

19.3.2 FPGA-Based Time Synchronization Module 
for Mobile Terminals 

Regarding the FPGA-based time synchronization module on the mobile terminal 
side, a rough overall design including the terminal’s timing system is developed 
based on existing resources. 

The total TimeAdvance value is recorded to represent the accumulated results from 
the timing chip based on all the baseband signals. This result is obtained through
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the TimeAdvanceCommand calculation according to the 3GPP standard process, 
denoted as: 

TAtotal = TARA +
∑

i 

TAi (19.1) 

Equation (19.1) serves as an estimation of uplink delay. TAtotal is indicated the 
total TimeAdvance value. TARA is indicated the resource allocation of TimeAdvance. 
TAi is indicated the Time Advance. 

t0 represents the delay of hardware data transmission and processing, such as the 
baseband module and timing chip. Since it is relatively fixed and may vary across 
different hardware, it needs to be determined in advance. If the current channel delay 
condition is unstable and the Nb timing signals sent by the base station cannot meet 
the timing conditions set by the chip, the module sends a termination command to 
the timing chip. The timing chip judges and calculates based on the input system 
frame number (SFN) and system information block (SIB_t) signals. If the SFN does 
not match the rSFN in the signal, the current signal is discarded, and the next timing 
signal is received and processed. For valid timing signals, toffset is calculated based on 
the formula shown in the figure. The timing chip outputs absolute time information 
and PPS second pulse based on toffset and ends the current timing process, waiting 
for the start of the next timing process. The clock adjustment amount for the timing 
terminal is toffset. Figure 19.5 shows a rough flowchart of the FPGA-based timing 
process on the mobile terminal side. 

Fig. 19.5 Rough flowchart of FPGA-based timing process on the mobile terminal side
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Fig. 19.6 FPGA terminal 
timing process 

It involves measuring the hardware transmission and processing delays of the 
baseband module and timing chip, estimating the transmission delay TA caused by 
distance, recording the local absolute time of the receiving end, and responding with 
the sending time of the transmitting end. Due to network symmetry, the required 
adjustment for the terminal’s time is calculated. The specific design between the 
FPGA and the terminal is shown in Fig. 19.6: FPGA Terminal Timing Process. 

toffset = tue − tSIB_t − TAtotal/2 − t0 (19.2) 

Through the interaction between the FPGA and the terminal, the FPGA obtains 
TimeAdvance value, value, local reception time, and signal transmission time from 
the interface. After calculating the adjustment value using Eq. 19.2, the result is 
displayed on the digital display and returned to the terminal. 

19.4 Hardware and Software Resources 

The FPGA [8], short for Field Programmable Gate Array, is a type of semiconductor 
digital integrated circuit that is also a field-programmable gate array, allowing many 
of its internal circuit functions to be modified based on specific requirements. In 
the past, PLD (Programmable Logic Device) and ASIC (Application-Specific Inte-
grated Circuit) could only perform their respective roles without fully utilizing their 
advantages. However, with the emergence of FPGA, it combines the strengths of 
PLD and ASIC. It can have thousands or even millions of logic gates while still
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Fig. 19.7 FPGA structure 

being programmable on the field, enabling larger and more complex functionali-
ties. Additionally, FPGA design costs are relatively lower compared to ASIC, and 
making changes to previous designs in FPGA is relatively easier. FPGA’s main 
market used to be in the communication and networking fields, but with the passage 
of time and technological advancements, FPGA applications have explosively grown 
in consumer electronics, automotive, electrical, and other sectors. 

The simplified structure of an FPGA consists of six main components: the 
FPGA chip itself, programmable Input/Output Modules (IOB) for interfacing with 
the external world, programmable Logic Modules (CLB), embedded Block RAM 
(BRAM), interconnect resources for connecting all parts of the FPGA internally, 
underlying logic elements, and dedicated hard cores. The figure below shows the 
structure of an FPGA in Fig. 19.7. 

In general, the design flow of an FPGA includes several steps, such as defining 
design inputs according to design specifications, RTL simulation, synthesis of the 
design, performing placement and routing, conducting timing simulation, analyzing 
timing, and performing board-level verification. The FPGA design process is shown 
in Fig. 19.8.

19.5 Interaction Between FPGA and Terminal 

In FPGA applications such as traffic lights and digital displays, the system clock 
cannot be used directly, and sometimes multiple clock pulses of different frequencies 
are required as driving sources in a digital system. One of FPGA’s features is its 
ability to process clock signals. Therefore, the concept of frequency division comes 
into being, and the frequency divider has a fundamental and important role in FPGA 
design. Generally, there is an integrated Phase-Locked Loop (PLL) in FPGA to 
achieve clock multiplication, frequency division, phase shift, and programmable
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Fig. 19.8 FPGA design 
process

duty cycle functions. However, a PLL or IP core resource can also be excluded in 
designs that do not demand high clock accuracy. 

Frequency dividers are mainly divided into even and odd divisions, and rela-
tively speaking, even division principles are simple and easier to master. It can be 
achieved by counting with a counter. When using N times even frequency division, 
the clock triggers the counter for counting, and only needs to flip the output clock 
when counting to N/2 − 1, and so on. Figure 19.9 shows the simulation diagram of 
a four-fold frequency divider. 

For odd frequency division, if you want to implement odd-frequency division with 
a 50% duty cycle, you cannot flip the clock at the midway point of the counter as 
with even division, as this method cannot obtain a 50% duty cycle clock. If you use a 
method similar to even frequency division to trigger the rising edge of a frequency-
divided clock, you will get a clock signal with a duty cycle that is not 50%. If the

Fig. 19.9 Simulation diagram of four-fold frequency divider 
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Fig. 19.10 Five-fold frequency divider 

clock is triggered again on the falling edge, another clock signal with a duty cycle 
that is not 50% will be obtained. By performing logical operations on these two clock 
signals, a clock with a 50% duty cycle can be flexibly obtained. That is, to perform 
M-fold odd-frequency division on a clock with a duty cycle of 50%, first perform 
modulo M counting on the rising edge trigger, select a value for clock inversion 
output, and then perform another clock inversion output on (M − 1)/2, obtaining an 
odd-m frequency clock with a duty cycle that is not 50%. Next, at the same time, 
perform modulo M counting on the falling edge trigger, and when the clock inversion 
output value is the same as that selected for the rising edge trigger, start performing 
clock inversion output on the output clock, and then perform another clock inversion 
output on (M − 1)/2, obtaining an odd-m frequency clock with a duty cycle that is not 
50%. Perform logical operations on two m frequency clocks (with a duty cycle not 
equal to 50%), taking the AND operation for positive periods and the OR operation 
for negative periods, to obtain an odd-m frequency clock with a duty cycle of 50%. 
Figure 19.10 shows the simulation diagram of a five-fold frequency divider. 

19.6 Software Design for Time Synchronization 

Schematic Diagram. In this design, the upper computer (Friendly Serial Debugging 
Assistant) sends four data to the FPGA in hexadecimal format. These data include 
the local reception time of the terminal for the signaling, the transmission time of the 
base station for sending the signaling [9], the TimeAdvance value, and the hardware 
data transmission and processing delay t0 of the baseband module, timing chip, and 
other components. In this design, they are respectively named as A, B, C, and D. 

After receiving these four data, the FPGA calculates the adjustment value based 
on the time synchronization principles and procedures stated in Sect. 19.3, using  the  
formula A − B − C/2 − D [10]. The calculated adjustment value will be displayed
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Fig. 19.11 RTL schematic diagram 

on the digital display (in decimal format) and sent back to the upper computer (in 
hexadecimal format). Figure 19.11 shows the RTL schematic diagram of this design. 

19.7 Simulation Testing and On-Board Debugging Results 

Based on the principles and specific implementation of the above schematic and code, 
the upper computer in this design sends interface data to the FPGA and completes 
the calculation of the adjustment value. The adjustment value is then sent back to the 
upper computer and displayed on the digital display. 

The upper computer sends 200, 12, 50, 100 to the FPGA, and after the adjustment 
value calculation, it is displayed on the digital display [11]. According to the previous 
formula, the adjustment value should be 63. The hexadecimal representation of 200, 
12, 50, 100 is C8, C, 32, 64. The simulation result is shown in Fig. 19.12.

The interface of the Serial Debugging Assistant is shown in Fig. 19.13.
It can be seen that when the upper computer sends the four data in hexadecimal 

format as C8, 0C, 32, 64 to the FPGA, the FPGA calculates and returns the hexadec-
imal data 3F, which is equivalent to decimal 63, to the upper computer. Figure 19.14 
shows the display on the digital display.

It can be seen that the displayed number on the digital display is 63. 

19.8 Conclusions 

The upper computer serves as a simulated terminal to provide and send four data to 
the FPGA, including the local reception time of the received signal at the terminal, the 
base station sending time of the signal, the delay of hardware data transmission and 
processing such as baseband module and timing chip, and the TimeAdvance value 
(estimated value of uplink delay). The FPGA processes and calculates the four data
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Fig. 19.12 Simulation result

Fig. 19.13 Debugging 
assistant interface

Fig. 19.14 Digital display
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based on the aforementioned time synchronization principles and sends the calcula-
tion result as an adjustment value to the upper computer, which is then displayed on 
the digital display. This completes the basic process of time synchronization. 

Looking ahead, with the continuous advancement of mobile networks, it is 
expected that more efficient and accurate time synchronization methods will be 
developed to meet the increasing demands of information exchange and terminal 
interaction. 
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