
Chapter 17 
Handwritten Mathematic Expression 
Conversion to Docx 

Bharti Sharma, Tripti Rathee, Minakshi Tomer, and Parvinder Singh 

Abstract This paper aims to embed Handwritten Mathematical Expressions (HME) 
directly into a Docx document. Writing Mathematical Expressions within a 
WYSIWYG (what you see is what you get) editor is a cumbersome task which 
requires a lot of manual effort, which this paper tries to automate. Methods: The task 
of Recognizing Mathematical Expression is bifurcated into two sub-tasks i.e. struc-
tural analysis and symbol recognition. This paper proposes to use deep learning 
techniques to do these sub-tasks using an end-to-end Densenet based encoder 
and Attention-Based decoder model, respectively. Findings: The model is trained 
on CROHME (Competition on Recognition of Online Handwritten Mathematical 
Expressions) dataset which consists of InkML files. These InkML files are initially 
processed to generate images and MathML from them. Novelty: We have been 
successful in creating docx from HME with accuracy trade-off of 1–2% by signif-
icantly reducing computational complexity than any other Web application based 
pre-existing techniques. 

17.1 Introduction 

Mathematics is called the “handmaiden of science”, hence it plays a pivotal role 
in all scientific research done. Mathematics always presents itself in the form of 
equations, and Handwritten Mathematical expressions are the primary method of 
writing equations, which later is encoded in LaTeX or mathML for proper rendering 
on digital documents. However, automatically recognizing and converting them to

B. Sharma · T. Rathee (B) · M. Tomer 
Maharaja Surajmal Institute of Technology, New Delhi, India 
e-mail: rathee.tripti@gmail.com 

B. Sharma 
e-mail: bhartisharma@msit.in 

P. Singh 
Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
R. Kountchev et al. (eds.), New Approaches for Multidimensional Signal Processing, 
Smart Innovation, Systems and Technologies 385, 
https://doi.org/10.1007/978-981-97-0109-4_17 

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0109-4_17&domain=pdf
mailto:rathee.tripti@gmail.com
mailto:bhartisharma@msit.in
https://doi.org/10.1007/978-981-97-0109-4_17


218 B. Sharma et al.

an appropriate format remains a difficult task because of the nature of Handwritten 
Mathematical Expressions (HMEs). These problems include the two-dimensional 
nature of HMEs [1, 2] i.e. it tends to be related in a spatially. 

Solving the HMEs problem can be broken down into two major stages, symbol 
recognition and structural analysis. Structural analysis may be done in two ways, 
which is sequentially and globally. Sequential analysis [3] first deals with symbol 
recognition and then proceeds to structural analysis. Whereas the global approach 
tends to deal with both of them at the same time. Sequential analysis and global 
analysis come with their own share of problems such as they require prior knowl-
edge about the type of expressions to be generated for generating the parser. The 
complexity of the parser increases with increase in symbols dealt by the parser. They 
do not take into consideration the semantic context among associated symbols to 
deal with ambiguous symbols in case of sequential parsers. 

In the last decade or so, encoder-decoder model have been utilized to solve the 
problem of HMEs because of its application in machine translation [4]. We propose a 
variation of encoder-decoder model which requires less time and has less complexity 
during the training phase. The model is trained to take as input images of HMEs and 
produce mathML strings which can be directly embedded within any word processor 
that accepts mathML. The overall goal of this is to generate document file such 
as .docx which a WYSIWYG text editor containing the mathematical expression 
since complex mathematical expressions are more often required within scientific 
documents and writing mathematical equations within the document with the present 
methods of manually adding expressions within the document is a hassle which we 
are trying to solve. MathML is a XML based document and since most text editors 
are XML based indirectly the conversion is a trivial task provided that the text editor 
supports that symbol and there exists a XLTS transformer that can convert MathML 
to a format used by the word processor. 

The rest of the paper is organized as follows: Sect. 17.2 describes the related work 
summary. Section 17.3 describes the proposed methodology. Section 17.4 discusses 
the results and comparison, and finally Sect. 17.5 concludes this paper. 

17.2 Related Work Summary 

HMER consists of two elemental components that are symbol recognition and struc-
tural analysis. Provided the two dimensional nature of a mathematical expression 
for its structural analysis, many researchers prefer approaches based on predefined 
grammars as natural way to solve the problem. Several types of math grammars 
have been scrutinized. Chan and Yeung [5] have used definite clause grammars in 
their paper. However, their system works only on online mathematical expression; 
they have not demonstrated it on offline data set. The authors in [7] showed the 
fruitfulness of stochastic context-free grammars on various systems as they typically 
performed great in the CROHME competitions. Approaches based on probabilistic 
context-free grammars analyses the structure of mathematical expression and deals



17 Handwritten Mathematic Expression Conversion to Docx 219

with ambiguities in handwritten data, such an approach based on PCFG was proposed 
by [6, 8]. However, the proposed approach deals with only online maths expressions 
and in their future work they intend to apply it in offline mathematical expression 
recognition for both printed and hand written. The authors in [9] have proposed a 
novel neural network framework, namely encoder-decoder for sequence to sequence 
learning. The encoder decoder model has many applications including [10–12]. 

17.3 Methodology 

17.3.1 Overview 

The encoder within our model is a pretrained Densenet [13] model with two subse-
quent Fully Convolutional Layer (FCN) [14] that results in encoded image features. 
The decoder is Recurrent neural network (RNN) [15] with gated recurrent units 
(GRU) [16] that converts the encoded image features into mathML string which is 
our desired output. The resultant model is (1) end-to-end trainable. (2) Produces 
expression based on data rather than predefined grammar (3) takes into account the 
semantic context of the symbol to choose the best symbol and position. The data 
used for the training and validations is CROHME dataset which consists of stroke 
metadata (pen-up, pen-down sequence) during generation of expression as well as 
the ground truth in the form of MathML. The flowchart of the proposed methodology 
is represented in Fig. 17.1.

17.3.2 Dataset Preprocessing 

The handwritten expression are usually stored in images that can vary in quality and 
size, and image preprocessing is done to prepare images in specific format to feed 
into the encoder. The preprocessing includes image resizing image, center cropping 
and normalizing the image pixel values to keep values in range. The MathML corre-
sponding to each image expression is stored separately with same name as image 
file. The MathML expression is consist of predefined tags, operator symbols, operand 
symbols following the pattern of one symbol at a between tags (opening and closing). 
MathML is a 2 dimensional representation of the input handwritten expression. The 
mathml expression is divided into tokens of tags, operator symbols, and operand 
symbols.



220 B. Sharma et al.

Fig. 17.1 Flowchart of 
proposed model

17.3.3 Encoder 

The Encoder takes transformed image to convert the 3 channel image to N channel 
feature matrix which is an intermediate form for decoder input. The encoder is consist 
of Densenet and convolution layers stacked over one another. The Densenet consist of 
denseblocks, in each denseblock the concatenation of the outputs of preceding layers 
is fed as input in succeeding layers. Let Hl(.) denote the convolution functionof the 
lth layer, then the output of layer l is represented as: 

xl = Hl
([
x0; x1; x2; . . .  ; xl−1

])
(17.1) 

where x0, x1, …,  xl denote the output features produced in layers 0, 1, …, l, “;” 
denotes the concatenation operation of feature maps. 

The connections established between layers enables Densenet to use features 
extracted in previous layers and easy gradient propagation to initial layers. Also, this 
mechanism strengthens features extraction in Densenet without implementing much 
deeper convolution layers. 

In this paper, pre trained Densenet model provided by pytorch has been used. 
Using pre trained Densenet has its advances as it reduces the cost of training such 
complex and memory consuming architecture is easier to load. The output produced 
by Densenet is larger in size. CNN has been largely used to reduce the size of



17 Handwritten Mathematic Expression Conversion to Docx 221

representational n-dimensional matrix without affecting features represented by the 
n-dimensional matrix. Thus, the last layers of Densenet model are removed to make 
model work as a feature extractor instead of a classifier. Then two convolution 
layers are layered over output of Densenet to reduce the size of output to optimal 
feature representation. The proposed model takes as input a raw expression image 
and generates corresponding MathML sequence. 

17.3.4 Decoder 

The input block of the decoder provides one-hot encoding of the input word to the 
embedding layer. The embedding layer converts the one-hot encoding of input word 
to word embedding of hidden_size, H length vector. Word embedding is an efficient 
way to represent relation between words in a vocabulary. Embedding is a dense 
vector of floating points that represents a word’s features and more importantly, 
these features can be learned via training of the embedding layer. The working of 
decoder has been shown in Fig. 17.2. 

Let xi be the one hot encoding of input word and Oen represent the encoder output. 
Then, Oe represent the output of embedding layer which takes as input a vector of 
vocabulary size and gives output vector of H size. 

Oemm = Wemmxi (17.2) 

The previous hidden state ht−1, a vector of size H that corresponds to the last 
hidden state generated by the GRU.

Fig. 17.2 Decoder 



222 B. Sharma et al.

xattn1 = {Oemm; ht−1} (17.3) 

Then, xattn1 is the concatenation of the embedding output and previous hidden state. 
Attention block which is a linear layer which takes input of size 2*H and gives output 
of size H is applied on xattn1. 

Oattn1 = softmax(Wattn1xattn1 + battn1) (17.4) 

Oattn1 represents the output of attention block which act as attention weights for the 
encoder output. 

Softmax activation function is used to convert real values to probabilities so it can 
be applied on encoder output. 

xin = Oattn1 ⊗ Oen (17.5) 

xin is the element-wise multiplication of attention weights and encoder output 

xout = {Oemm; xin} (17.6) 

xout represents the concatenation of embedding output and xin, , which is input to 
second attention block called attention combined which is also a linear layer which 
takes input of size 2*H and gives output of size H. 

Oattn2 = RELU(Wattn2xout + battn2) (17.7) 

The rectified linear activation function (RELU) is used as it is a piecewise linear 
function that will output the input directly if is positive; otherwise, it will output zero. 
Oattn2 is the output of combined attention layer, and it is a vector of size H. Oattn2 is 
the input to GRU block of the decoder. 

xt = Oattn2 (17.8) 

GRU is an improved version of RNN which solves the problems of vanishing and 
exploding gradients. Let xt be given input to GRU and the output ht is computed as: 

ht = GRU(xt , ht−1) (17.9) 

Softmax activation function is applied on GRU output to generate vector of output 
probabilities, and argmax is applied to predict the output word.



17 Handwritten Mathematic Expression Conversion to Docx 223

17.3.5 Document 

The predicted mathml is parsed to a tree structure and inserted into a word document 
using python libraries i.e. python-docx, xET. 

17.4 Result and Comparison 

This section describes the system settings for the experimentation purpose and the 
evaluation matrices used 

17.4.1 Experimental Setup 

The system is implemented on Intel(R) Core(TM) i5, 3.30 GHz CPU, 4 cores and 8 
GB RAM. During training of the model the factors considered are loss and Validation. 

The red line in Fig. 17.3 represents the value of Log loss, and the blue line 
represents validation loss. 

Figure 17.4 shows decrease in loss in Red and increase in Bleu score on Test set 
in Blue curve with epochs.

Model comparison By Bleu Scores (see Table 17.1):
Initial predictions—<mrow><mi><mi></mi><mrow><mo><mi></mi> 
<mrow><mi><mo></mi></mrow> 
Original value—<mrow><mi> x</mi> <mrow> <mo> + </mo> <mi> y </mi></ 

mrow></mrow> 
The resultant output of Fig. 17.5 image comes out to be x + y.

Fig. 17.3 Loss and 
validation graph 



224 B. Sharma et al.

Fig. 17.4 Loss and BLEU 
score

Table 17.1 Comparison 
results After epochs Multi-scale model Encoder-decoder model 

10 0.36 0.32 

20 0.43 0.47 

30 0.55 0.56 

40 0.59 0.62

Fig. 17.5 Input handwritten 
expression 

17.5 Conclusion 

In this paper, we concluded that using a pre-trained dense encoder model we can train 
an attention model with features to provide good accuracy. Densenet provides better 
image features than most of the state of the art models present for image segmentation 
and feature extraction. This reduces the computational cost significantly that is used 
to train a Densenet. Also, the MathML conversion of feature vectors provides a base 
for conversion to other standard formats of mathematical expressions. Also, the GRU 
based Architecture of Decoder is uniquely defined and experiments have been done 
regarding its effectiveness.



17 Handwritten Mathematic Expression Conversion to Docx 225

References 

1. Anderson, R.H.: Syntax-directed recognition of hand-printed two-dimensional mathematics. 
In: Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings 
of the Association for Computing Machinery Inc. Symposium, pp. 436–459 (1967) 

2. Belaid, A., Haton, J.P.: A syntactic approach for handwritten mathematical formula recognition. 
IEEE Trans. Pattern Anal. Mach. Intell. 1, 105–111 (1984) 

3. Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical expressions using tree 
transformation. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1455–1467 (2002) 

4. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., 
Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine 
translation (2014). arXiv:1406.1078 

5. Chan, K.F., Yeung, D.Y.: Error detection, error correction and performance evaluation in on-line 
mathematical expression recognition. Pattern Recogn. 34(8), 1671–1684 (2001) 

6. Álvaro, F., Sánchez, J.A., Benedí, J.M.: An integrated grammar-based approach for mathemat-
ical expression recognition. Pattern Recogn. 51, 135–147 (2016) 

7. Sako, S., Nishimoto, T., Sagayama, S.: On-line recognition of handwritten mathematical expres-
sions based on stroke-based stochastic context-free grammar. In: Tenth International Workshop 
on Frontiers in Handwriting Recognition. Suvisoft (2006) 

8. MacLean, S., Labahn, G.: A new approach for recognizing handwritten mathematics using 
relational grammars and fuzzy sets. Int. J. Doc. Anal. Recognit. (IJDAR) 16, 139–163 (2013) 

9. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and 
translate (2014). arXiv:1409.0473 

10. Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y.: End-to-end attention-based 
large vocabulary speech recognition. In: 2016 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), pp. 4945–4949. IEEE (2016) 

11. Chan, W., Jaitly, N., Le, Q.V., Vinyals, O.: Listen, attend and spell (2015). arXiv:1508.01211 
12. Luong, M.T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare word 

problem in neural machine translation (2014). arXiv:1410.8206 
13. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: Densenet: 

implementing efficient convnet descriptor pyramids (2014). arXiv:1404.1869 
14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431– 
3440 (2015) 

15. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent neural network 
based language model. In: Interspeech, vol. 2, no. 3, pp. 1045–1048 (2010) 

16. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural 
networks on sequence modeling (2014). arXiv:1412.3555

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.01211
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1404.1869
http://arxiv.org/abs/1412.3555

	17 Handwritten Mathematic Expression Conversion to Docx
	17.1 Introduction
	17.2 Related Work Summary
	17.3 Methodology
	17.3.1 Overview
	17.3.2 Dataset Preprocessing
	17.3.3 Encoder
	17.3.4 Decoder
	17.3.5 Document

	17.4 Result and Comparison
	17.4.1 Experimental Setup

	17.5 Conclusion
	References


