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Deep Representation and Analysis 
of Visual Information, Based on the IDP 
Decomposition 

Lakhmi C. Jain, Roumen K. Kountchev, and Roumiana A. Kountcheva 

Abstract We present contemporary methods for image decomposition analysis in 
the spectrum domain, based on the Inverse Difference Pyramid (IDP) decomposition. 
The basic IDP implementations in various aspects of visual information processing 
and analysis are discussed, in the range from 2D images to third-order tensors. 
Special attention is paid to the main IDP features, which are compared with those of 
the famous pyramidal decompositions. The basic IDP modifications are presented: 
the Reduced Branched IDP, which could be implemented on the basis of various 
2D orthogonal transforms (WHT, discrete Fourier transform DFT, DCT, KLT, etc.), 
and the upgrade to the Adaptive IDP, based on neural networks integration. Special 
approaches are introduced for the IDP-based decomposition for sequences of corre-
lated images, and some important applications in multidimensional image tensor 
representation are given; the compression of single and groups of correlated multi-
spectral, multi-view, and computer tomography images; and the faster object search 
in large image databases. The experimental results obtained by the approaches based 
on the IDP decomposition, confirm its efficiency which is very high for some image 
classes. In the conclusions the analysis results and the trends for future investigations 
and implementations are explained.
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1.1 Introduction 

The widely used methods for hierarchical image decomposition, based on the pyra-
midal representation in the pixel domain, comprise of two main approaches, the 
Non-orthogonal Pyramids and the Orthogonal Pyramids [1, 2]: 

– Non-orthogonal Pyramids belong the Gaussian/Laplacian Pyramid (GP/LP); the 
Reduced/Enhanced Laplacian Pyramid, the Reduced-Sum/Reduced-Difference 
Pyramid, the Hierarchy-Embedded Differential Pyramid, etc., 

– Orthogonal Pyramids are mainly represented by the Sub-Band Decomposition 
based on filter banks: the Orthonormal Wavelet Pyramid, the Steerable Pyramid 
(based on directional filter banks), the Curvelets Pyramid, the Ridgelet Pyramid, 
etc. 

The approaches, based on the Laplacian/Gaussian decompositions are well-known 
and multiple applications already exist for image compression, analysis, machine 
learning, etc. [1–3]. Specific for these decompositions is, that in the lowest decom-
position level the number of components is the largest, and decreases in each consec-
utive level (Fig. 1.1). The decomposition ends after the last coefficients of the highest 
level are calculated. Besides, these decompositions require the execution of multiple 
decimations and interpolations. Unlike this the IDP decomposition starts with a rela-
tively low number of decomposition components and each level contains a larger 
number, but the decomposition can stop before the last possible level is executed, 
depending on the needed quality of the restored image.

The Inverse Difference Pyramid [4] is a kind of hierarchical image decomposition, 
based on pyramidal representation in the spectrum domain. The IDP structure is based 
on orthogonal deterministic or statistic transforms, such as the Discrete Fourier Trans-
form (DFT), the Discrete Cosine Transform (DCT), the Walsh-Hadamard Transform 
(WHT), the Complex Hadamard Transform (CHT), the Karhunen–Loeve Transform 
(KLT), etc. One modification of IDP is the Adaptive Inverse Difference Pyramid 
(AIDP), which could be based on the following: Back-Propagation Neural Networks 
(BPNN), Gaussian Radial Basis Function Networks (GRBFN), Self-Organizing 
Feature Mapping Vector Quantization (SOFM-VQ). Another kind of IDP decompo-
sition is the Non-linear Inverse Difference Pyramid (NL-IDP), based on the Discrete 
Modified Mellin-Fourier Transform (MMFT). 

A simplified structure of the basic IDP decomposition is shown on Fig. 1.2.
The processing of the input (original) 2D image starts at the lowest level. For this, 

the image is represented by the matrix, [B]. To simplify the calculations, the image 
is divided into smaller pieces (sub-blocks), each of size 2n × 2n, and on the figure 
is shown the processing of one of these blocks only. For the decomposition any 2D 
orthogonal transform could be used like the Walsh-Hadamard Transform (WHT), 
the Discrete Fourier Transform (DFT), the Discrete Cosine Transform (DCT), the 
Karhunen–Loève Transform (KLT) or Principal Component Analysis (PCA), etc. 
In order to reduce the number of calculated transform coefficients, the “truncated” 
orthogonal transform is used, i.e., part of the coefficients are not calculated because
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Fig. 1.1 Image decomposition based on Gaussian/Laplacian pyramid

(after analysis) their values are evaluated as too small to influence the quality of 
the restored image. The corresponding block in the figure is denoted as Truncated 
Orthogonal Transform, “TOT”. The values of the calculated coefficients are saved 
in the block [ ̂S] (in the figure are used correspondingly: [ ̂S0]—for the start level; 
[ ̂S1]—for level 1, etc.). From the start level in this example 4 coefficients are retained, 
ŝ0(u, v)  only, as shown in the lower right part of the figure. The processing continues 
with the preparation of the data for the next decomposition level. For this, on the 
coefficient s0 Inverse Orthogonal Transform (the block “IOT”) is executed, and the 
first is obtained, which is the coarse approximation of the processed image block, 
[ ̂B0]. This approximation (i.e., the restored image sub-block) is subtracted from the 
original in “

∑
” and the difference (error) image is calculated. For this level, the 

“Error” image matrix is denoted as [E0]. In the second level it is divided into smaller 
sub-blocks, of size 2n−1 × 2n−1, and after that processed with TOT again. The values 
of the calculated coefficients are saved in the corresponding blocks [ ̂S1]. The calcu-
lated 16 coefficients for this level, are saved in the block ŝ1(u, v). The coefficients 
in the next level are calculated in a similar way and the obtained corresponding 256
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Fig. 1.2 Basic structure of the inverse difference pyramid

coefficients are retained and saved in the block ŝ2(u, v). As it is shown, the number 
of coefficients is higher in each consecutive decomposition level, and this is why the 
decomposition is called “Inverse Difference Pyramid”. The decomposition can stop 
in any decomposition level, depending on the achieved quality of the restored image, 
or on the values calculated for the “difference” image. When the decomposition is 
stopped, the values of the coefficients, retained in all levels, are arranged in accor-
dance with their spatial frequencies and are then losslessly coded through Adaptive 
Run-length Encoding (ARLE), followed by a Modified Huffman (MH) coding. The
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ARLE and the MH coding were specially developed for the IDP decomposition, 
in accordance with the specifics of the processed data [5]. The restoration of the 
decomposed image is executed in reverse order. 

The main advantage of IDP is its efficiency when used for the compression of 2D 
or 3D visual information. Unlike Laplacian/Gaussian pyramids, the IDP decomposi-
tion does not use decimations and interpolations, because it is based on some kind of 
orthogonal transform. The computational cost of the process depends on the number 
of needed operations, analyzed in previous research of the authors [6]. The authors 
also proved theoretically the low computational complexity for the tensor represen-
tation of multidimensional visual information [7, 8]. One important disadvantage of 
IDP is, that if all coefficients are retained, the decomposition is over-complete. To 
avoid this, the properties of the used orthogonal transform, are used. For example, for 
the WHT it is not necessary to calculate all neighbor coefficients in a group, because 
for each 4 coefficients is necessary to calculate 3 only (the fourth is calculated by 
using the values of the remaining three). On the basis of this property, the problem 
with the decomposition over-completeness, is solved. 

1.2 Branched IDP 

To achieve a better performance for the processing and analysis of sequences of corre-
lated images, the Branched Inverse Difference Pyramid (BIDP) was developed. This 
approach is extremely useful for processing sequences of medical images (computer 
tomography images, magnetic resonance images, etc.), and groups of multispectral 
or multi-view images. In all these cases, the processed groups of images have high 
mutual correlation. The BIDP block diagram is shown on Fig. 1.3. In this case, the 
basic IDP diagram is retained (the red rectangle), but some new relations between 
images in the processed group, are introduced.

In the case shown on Fig. 1.3, one sequence of (2N+ 1) images (representing same 
object or scene) is processed bound together by similarity, and one of the images is 
used as a reference. 

To select the reference image, various approaches could be used, for example, 
through PSNR comparison, etc. For video sequences, the middle image in the group 
is usually the most suitable, and this is the easiest solution. Another approach is based 
on the analysis of the images histograms for the group: the image, whose histogram 
is most similar with these of the remaining in the group, is chosen to be used as a 
reference (R). 

The image decomposition starts with this reference image, which is processed with 
some kind of orthogonal transform, using a limited number (preset) of transform 
coefficients. After inverse transform of the so calculated coefficients, the coarse 
approximation of the processed image is obtained. The IDP decomposition then 
branches out into several decompositions, whose number corresponds to the number 
of images in the group. The first approximation for all multispectral images is that 
calculated for the reference image. In case that IDP comprises of 2 levels only, each
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Fig. 1.3 Block diagram of BIDP

branch is built individually in the next level. For IDP of more levels, the reference 
image approximation could be used also in the second level, etc. The similarity 
between the processed images, permits the same coarse approximation to be used 
for the whole group. Depending on the visual contents, the number of images in 
one group could be different and is set in relation to their mutual correlation. For 
example, for video sequences, the highest correlation usually exists between each 
8–12 sequential frames, and for CT and MRI sequences, longer groups could be used. 
Due to the result of the processing based on BIDP, high compression and very good 
visual quality of the restored images are achieved, as confirmed by the experimental 
results.
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1.3 Multi-layer Tensor Decomposition Trough 3D IDP 

The common practice in image representation is based on the use of a 2D matrix, 
where each pixel corresponds to one matrix element. Together with this, many 
contemporary applications exist, where video sequences and groups of correlated 
images, obtained from various sources must be stored, analyzed or searched, and 
for this, the most suitable approach is that they are to be treated as 3D arrays of 
matrices. Recently tensors, and specially the third-order tensors, are most suitable 
to represent such sequences. The main obstacle for the wide tensor decomposi-
tion implementation in real time applications is the high computational complexity. 
Tensor decompositions are usually based on deterministic discrete transforms of the 
kind: Discrete Wavelet Transform (DWT), or the Discrete Cosine Transform (DCT) 
followed by SVD in the frequency domain [9]. In part of the related publications 
[10–13], algorithms are proposed for cubical decomposition based on the 3D sepa-
rable discrete transforms: Discrete Fourier Transform, Discrete Hartley Transform, 
Discrete Cosine Transform, etc. To reduce the computational complexity, in many 
cases “fast” algorithms are used, one of which is the 3D Fast Fourier Transform (FFT). 
Compared to the SVD/PCA-based algorithms, the tensor decomposition based on 
deterministic orthogonal transforms offers lower energy concentration in the first 
decomposition components but accelerates the computations. This is why, the tensor 
decomposition based on orthogonal transforms is reasonable in cases when real-time 
processing of various multidimensional data is needed. 

The approach, presented here, is the hierarchical third-order tensor decomposition 
based on the 3D-IDP. For this, the tensors are transformed into the 3D-WHT spectrum 
space. The basic concept is to represent each third-order tensor X of size N × N × N 
through a 3D Reduced IDP (3D-RIDP) [14] of the kind, shown on Fig. 1.4. For this, 
the tensor X is initially divided into Q sub-tensors Xq for q = 1, 2, …, Q, each of size 
M × M × M, where M = |

N/ 3
√
Q

|
. The  value of  M is defined in accordance with 

the condition M = 2m. For the calculation of each sub-tensor Xq of size N × N × N 
(N = 2n) is built the individual n-level 3D-RIDP. In result, the tensor X is transformed 
into the corresponding spectrum tensor S, which comprises n levels of coefficients. 
The coefficients in the initial level have the highest energy concentration, while 
the energy in the next levels decreases quickly. In correspondence with Parseval’s 
theorem, where the total energy of the coefficients of the tensor S is equal to that of 
the elements of the tensor X, but is redistributed. The main advantages of the method 
are the lower computational complexity because the only mathematical operations, 
which are needed, are “additions” and their number is relatively low. Furthermore, the 
main part of the tensor energy is concentrated in a small number of coefficients from 
the first pyramid level which permits significant information redundancy reduction, 
after neglecting the low-energy elements.

The properties of the 3D-RIDP open new possibilities for implementation in 
various application areas related to processing and analysis of 3D data: sequences of 
correlated images (video, multi-spectral, multi-view, medical images from various 
sources), multichannel signals, etc.
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Fig. 1.4 Block diagram of 3D reduced IDP

1.4 Multi-layer Tensor IDP, Based on Hierarchical SVD 

To achieve computational complexity reduction, a new non-iterative approach for 
multi-dimensional tensor representation based on the Multi-layer Tensor Spectrum 
Pyramid (MLTSP) [15] is proposed, with embedded 3D orthogonal transforms (3D 
OT) and Hierarchical Tensor SVD (HTSVD) [8]. This approach is illustrated by 
an example for the representation of a tensor of size 8 × 8 × 8 through a two-
layer tensor spectrum pyramid (2LTSP), with embedded 3D Frequency-Ordered Fast 
Walsh-Hadamard Transform (3D FO-FWHT) [7] and HTSVD for a tensor of size 2 
× 2 × 2 (HTSVD2×2×2) [8]. To explain the multi-layer TSP structure, as an example 
here is used the two-layer tensor spectrum pyramid (2LTSP), which comprises a 
coder and a decoder. The structure of the decoder is mirror-symmetrical to that of 
the coder. Both block diagrams are shown on Fig. 1.5, a, b. The block diagram of the 
computational graph of the algorithm HTSVD2×2×2 of two hierarchical levels for 
the decomposition of the elementary tensor S2×2×2 of size 2 × 2 × 2, is shown in 
Fig. 1.6. The decomposition is based on SVD for the matrix [X] of size 2  × 2, denoted 
as SVD2×2. The SVD2×2 decomposition is executed through simple relations, of low 
computational complexity [15]. After the decomposition of S2×2×2 is finished, the 
tensors in the resulting sum are arranged following the decrease of the variances for 
the sub-matrices obtained after the unfolding.
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Fig. 1.5 2LTSP based on 3D OT and HTSVD2×2×2 for input tensor X of size N × N × N, for  N 
= 8

The voxels of higher values in the S2×2×2 decomposition in Fig. 1.6, are colored 
in red, and these of lower—in blue. The main advantages of the MLTSP algorithm 
are the low computational complexity, the high flexibility regarding the choice of 
their parameters, and the high ability for information redundancy reduction in the 
input tensor. 

1.5 3D Adaptive Inverse Difference Pyramid 
with Convolutional Auto Encoder/Decoder 

This adaptive IDP version is based on the use of a Convolutional Auto Encoder/ 
Decoder (CED) [16]. The two components of the CED neural network are ained by 
deep learning. These are the Convolutional Coder (CE), is used to compress the input 
data, and the Convolutional Decoder (CD), which restores the already compressed 
input data. On Fig. 1.7, the block diagram of one multi-layer CED is shown, of the 
kind m3 → n → m3, i.e., it comprises m3 input cells, n cells in the hidden layer (the
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Fig. 1.6 HTSVD2×2×2 algorithm for the tensor S2×2×2 decomposition

output of the coder and the input of the decoder, respectively), and m3 output cells. 
After the end of the iterative CED training, the values obtained for the output cells 
approximate these from the input cells, at minimum root mean square error.

Two new approaches are offered here for the compression of a single third-order 
(cubical) tensor. 

The First approach is based on the Adaptive Inverse Difference Pyramid (AIDP) 
structure, combined with CED. On Fig. 1.8 the corresponding three-level block 
diagram is shown. Here the third-order tensor of size m × m × m, enters the AIDP 
input. In the initial (zero) hierarchical AIDP level, the elements of the input tensor 
are arranged as a sequence of length m3, following a preselected rule. This sequence 
defines the m3-dimensional vector, which enters the auto-encoder CED-0. In this 
case, the hidden layer contains n cells (for n << m3), while the output layer is of m3 

cells. From them, after inverse rearrangement, the output third-order tensor of size m 
×m × m is restored. After the CED-0 self-training is finished, the so obtained output 
tensor approximates the input tensor, of size m × m × m. In the first summator (∑1), 
the approximated tensor is subtracted element-by-element from the input tensor, and 
as a result the difference tensor is obtained, which corresponds to the approximation 
error. In the first hierarchical AIDP level, the difference tensor is divided into 8 sub-
tensors, each of size (m/2) × (m/2) × (m/2). The elements of these sub-tensors are
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Fig. 1.7 Convolutional E/D (CED)

transformed into eight (m3/8)-dimensional vectors respectively. They enter sequen-
tially the input of CED-1, whose hidden layer contains (n/2) cells, and the output 
layer—(m3/8) cells. After the self-training of CED-1 for these sub-tensors is finished, 
the corresponding 8 sub-tensors of length (m3/8) are restored, which comprise the 
approximating difference tensor. In the second summator (∑2), the approximated 
difference tensor is subtracted element-by-element from the first approximation, and 
in the end the second difference tensor, i.e., the second approximation of the tensor is 
obtained. In the second hierarchical AIDP level, the difference tensor is divided into 
64 sub-tensors, each of size (m/4) × (m/4) × (m/4), which are then transformed into 
the corresponding (m3/64)-dimensional vectors. They enter sequentially the auto-
encoder CED-2, whose hidden layer comprises (n/4) cells, and the output layer, (m3/ 
64) cells.

After the end of the CED-2 self-training, from the so calculated 64 output vectors 
of length (m3/64), the corresponding 64 sub-tensors are restored which build the 
approximated second difference tensor. Each of the restored tensors in the AIDP 
levels, has a corresponding feedback to the CED-0, CED-1, and CED-2 coders. 
These connections are used in the self-training process of the auto-encoders. At the 
output of the AIDP zero level, an n-dimensional vector is obtained, which comprises 
the cells of the hidden layer of the trained CED-0. At the output of the AIDP first 
level, the (4n)-dimensional vector which is the concatenation of the elements of the 
8 vectors is obtained, each of length (n/2), built by the cells of the CED-1 hidden
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Fig. 1.8 Block diagram of the two-level adaptive IDP with convolutional Encoder/Decoder

layer, for the corresponding input vector. At the output of the AIDP second level, 
the (16n)-dimensional vector is obtained which is the concatenation of the elements 
of the 64 vectors, (each of length (n/4), built by the cells of the hidden layer of 
the trained CED-1, for the corresponding input vector. The output n-dimensional 
vector for the zero AIDP level is the shortest, but it carries the largest information 
volume for the input tensor of size m × m × m. The output vectors from the first 
and second AIDP level, are correspondingly 4 and 16 times longer than these from 
the zero level, but they carry much less information about the input tensor. This 
permits significant reduction of the data obtained from the AIDP outputs, without 
noticeable information loss; i.e., the meaningless information is filtered (neglected). 
The number of AIDP levels together with the size growth of the input third-order 
tensor, should be increased. 

The Second approach, aimed at tensors sequence compression (for example, color 
RGB images), as illustrated in Fig. 1.9. Here, a tensor decomposition is shown, based 
on the 2-level 3D Branched IDP (3D BIDP). The levels numbers are p = 0.1 [17], 
in correspondence to the block diagram from Fig. 1.3. Each tensor is of size M × 
N × 3; the input sequence is denoted as X t−1, X t , X t+1 for k = 1, and in the time 
moments t − 1, t, t + 1, where it contains 3 matrices of size M × N. For the moment, 
at the input of the trained CED arrives the tensor X , and at the output is obtained 
the approximated tensor, X̂ . The approximation accuracy depends both on the CED 
training, and on the neuron number (n) in the hidden layer. These neurons are the 
components of the corresponding output n-dimensional vector, s.
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Fig. 1.9 Block diagram of the two-level 3D BIDP based on the convolutional Encoder/Decoder 

Due to the result of the 3D BIDP implementation for the tensor sequence X t−1, 
X t , X t+1, the output vectors s0,t , ∆si 1,t−1, and ∆si 1,t+1 for i = 1, 2, 3, 4 are obtained 
of total length n + 4n + 4n + 4n = 13n. Due to high correlation existing between the 
sequential tensors X t−1, X t , X t+1, the values of the significant part of the components 
in the difference vectors ∆si 1,t+1 and ∆si 1,t+1 are close to zero. In this way, the input 
tensors are transformed into an output vector of small length which contains many 
zero values, i.e., the features’ space is reduced at minimum computational cost. For 
the calculations reduction the mutual correlation between the tensors is used, which 
determines the relation X̂ t ≈ X̂ t−1 ≈ X̂ t+1. In the result, the calculation of tensors 
X̂ t−1 and X̂ t+1 through the corresponding CEDs, is not necessary. In the second level 
(p = 1) of the 3D BIDP, each difference tensor E0,t = X t − X̂ t , E0,t−1 = X t−1− X̂ t , 
and E0,t+1 = X t+1 − X̂ t , is divided into four sub-tensors of size (M/2) × (N /2) × 
3, and for each, a corresponding CED is used. The neurons in the hidden layers of 
all CED in the level p = 1 are represented by the vectors s1,t , s1,t−1, and s1,t+1.
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Applications 

In this part of our work, the experimental results obtained for some of the most 
important applications are shown: for compression and image content protection, 
and for efficient object search in large image databases. 

1.5.1 Compression of Multidimensional Images 

The compression algorithms are developed both for single images, and for groups 
of correlated images or sequences. The approach is based on the IDP decomposition 
with Back Propagation Neural Networks (BPNN). In Table 1.1 are shown some 
comparison results obtained for several widely used test images, when approximately 
the same quality of the restored images is achieved. The results for the IDP-BPNN 
decomposition are given for two-level IDP with initial sub-blocks of size 8 × 8. As it 
could be noticed, the compression ratio for IDP-BPNN for most of the test images is 
approximately two times higher, while the quality of the restored images (evaluated 
by their PSNR) is close or better than this for JPEG 2000.

The use of the BIDP for sequences or groups of correlated images offers 
similar results, part of which are given in Table 1.2. For the evaluation were used 
various kinds of medical images. The following abbreviations are used: CT— 
computer tomography; MG—mammography; NM—nuclear magnetic; US—ultra-
sound; dcm—Dicom; and jp2—JPEG2000. The “idp” format was specially created 
for the IDP decomposition [18]. The header contains detailed information about 
the decomposition structure—the number of levels, the used transform for each 
level (for example, DCT WHT, etc.), the arrangement of the retained coefficients, 
and the kind of lossless compression applied on the compressed image data. The 
lossless compression method is based on adaptive run-length coding, which corre-
sponds to the data statistics. The results show that IDP offers higher compression 
ratio than Dicom, and is comparable in efficiency with JPEG 2000, but at lower 
computational cost (the wavelet transform is more complicated than WHT or DCT). 
Additional advantage of IDP is the sub-block structure, which offers high flexibility 
in observing medical images, and permits enlargement (on request) of a selected 
Region Of Interest (ROI). This is an important feature in case of remote diagnostics 
and medical decision support applications.

1.5.2 Content Protection of Visual Information 

The IDP-based decomposition permits the insertion of invisible resistant watermark 
(WM) [19]. The block diagram of a two-level WM insertion algorithm, is shown in 
Fig. 1.10. In this case, the IDP structure is retained, but the decomposition is based on 
the Complex Hadamard Transform (CHT). The watermark is prepared in the same
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Table 1.1 Comparison results for JPEG2000 and IDP-BPNN 

No Name 8 bpp 
512 × 512 

JPEG 2 K (Matlab) IDP-BPNN(8 × 8) 
CR PSNR [dB] CR PSNR [dB] 

1 Boy 25.23 28.98 60.40 29.05 

2 Fruits 32.64 32.69 60.29 32.89 

3 Tracy 54.13 35.66 59.93 35.32 

4 Vase 35.75 27.20 60.18 26.83 

5 Clown 31.71 31.47 60.01 31.81 

6 Peppers 38.39 30.70 60.23 30.94 

7 Text 17.86 18.35 60.22 18.69 

8 Lena 32.10 29.20 59.57 29.15

way, as the image (i.e. decomposed into 2 or 3 levels), and in the watermarking 
process, its coefficients are added to the image decomposition coefficients. To retain 
the image quality unchanged (i.e., “invisible” watermarking), the WM information 
is inserted in the phases of selected coefficients, and could be extracted by using a 
special decoding software. The watermark “depth” depends on the phase rotation
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angle, for example, for rotations in the range 0–20°, the PSNR is always higher 
than 35 dB, i.e., the visual quality of the watermarked test images is retained. In 
Fig. 1.10, the following notations are used: w0(r)—the decomposed watermark data 
for level 0; w1(r)—the decomposed watermark data for level 1; Z0(r)—the calcu-
lated coefficients for the initial (zero) level, with the inserted watermark; Z1(r)—the 
calculated coefficients for level 1, with the inserted watermark. For a decomposition 
of higher number of levels, the structure is retained. The so calculated coefficients 
are arranged following their spatial frequency, and are losslessly coded. With this, 
the coding procedure is finished. The decoding is executed in reverse order. 

The main advantages of the algorithm [19], are: 

– The algorithm is highly resistant against attacks, based on high-frequency filtration 
(JPEG compression), which is confirmed by the almost constant MSE value for 
the extracted watermark. 

– The algorithm permits insertion of significant amounts of data (the number of 
inserted bits could be approximately equal to ¾ of the total number of pixels). 

– The algorithm is highly resistant against attacks related to image editing of the 
kind: crop, rotations, etc. 

– The algorithm permits to insert different watermarks in each consecutive 
decomposition level, which is an additional tool to ensure hierarchical access 
control.

Fig. 1.10 Block diagram for 2-layer WM insertion in one IDP sub-block of size 8 × 8 
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1.5.3 Object Search in Large Image Databases 

Contemporary databases contain huge number of images, video sequences, etc., and 
sometimes the search needs too much time. The layered structure of the IDP-based 
decomposition gives significant abilities for the search process enhancement. 

For this, the images in the database and the query image are decomposed in 
a similar way. The retained decomposition coefficients from all decomposition 
levels, which represent the query image, constitute the “Cognitive 3D IDP model” 
(Fig. 1.11). The retained coefficients are used for the layer-by-layer comparison and 
evaluation in the search process. 

In case that the search is aimed at a specified group of images, the method permits 
to select in advance the most suitable group of coefficients (which ensure the highest 
similarity), so as to enhance the process significantly. 

The model is based on the n-level IDP decomposition under Neural Network 
(NN) control, shown on Fig. 1.12. The accuracy of the 3D model in the IDP level 
p is defined by the NN in the preceding level p − 1, and as a result the minimum

Fig. 1.11 Creation of the cognitive 3D IDP model 
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mean-square approximation error in the restored image for the corresponding level 
is obtained. 

The comparison starts in the initial (lowest) decomposition level. The similarity 
of the first approximations of the query image and the images in the database is 
evaluated, and for the search in the next level the closest images only are retained. 
Thus, the number of analyzed images in each consecutive level is reduced, which 
enhances the process efficiency.

Fig. 1.12 Block diagram of the algorithm for layered IDP-based object search 
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1.6 Conclusions 

In this work, the basic IDP implementations in various aspects of visual information 
processing and analysis are discussed, starting with single images, and upgrading 
to the third-order tensor representation of multidimensional visual information. The 
main advantages of IDP compared to other well-known decompositions, are the lower 
computational complexity, the feasible hardware implementation and the application 
flexibility. Very good results are achieved in processing and compression of correlated 
sequences of medical images. 

The analysis and the related experiments show that the basic pyramidal struc-
ture of the IDP decomposition suits the 2D and 3D (tensor) implementations in 
various applications: compression of visual information; content protection, effi-
cient object search, etc. The layered architecture permits adaptive processing and 
flexible approach, with changeable structure. 

The future work will be mostly aimed at the implementation in new medical 
devices based on the IDP decomposition, which will support remote diagnostics and 
medical decision support integrated in the contemporary smart communications. 
Special interest attract some new technologies, which need processing of continu-
ously changing information, among which are the Digital twins and the Mip-Map 
technology. The flexibility of the IDP structure permits easy development of adaptive 
decomposition architectures. 
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