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Abstract. Survival analysis is a statistical method used in computa-
tional biology to investigate the time until the occurrence of an event
of interest, such as death or disease recurrence. It plays a crucial role in
analyzing and understanding time-to-event data in various medical and
biological studies. Deep learning, as a subset of artificial intelligence, has
shown remarkable success in diverse domains, such as image recognition
and natural language processing. Its ability to automatically extract com-
plex patterns and features from high-dimensional data makes it highly
promising for enhancing survival analysis. While existing reviews have
primarily focused on traditional statistical methods and conventional
machine learning approaches in survival analysis, a critical aspect that
has been largely overlooked is the integration of deep learning techniques.
We not only considered traditional statistical methods and conventional
machine learning approaches but also further incorporated deep learning
methods. With this review article, we hope to provide researchers, doc-
tors, and biologists with a comprehensive framework for understanding
survival analysis and to foster the development of survival prediction and
personalized medicine.
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1 Introduction

Survival analysis is a statistical method used to analyze the probability and
influencing factors of survival or experiencing a particular event for individuals
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or groups within a given time period [1]. In fields such as medicine, biology, and
social sciences, survival analysis methods are widely applied in assessing treat-
ment effectiveness, predicting risks, and studying disease progression, among
others [2]. Through survival analysis, doctors and researchers can predict the
survival time of patients, develop personalized treatment plans, and evaluate
the effectiveness of different treatment approaches based on patient character-
istics and clinical data [3]. Additionally, survival analysis can help researchers
explore the patterns and pace of disease development, identify genetic variations
or biomarkers associated with survival time, and provide scientific evidence for
clinical decision-making [4].

However, despite the widespread application of survival analysis methods in
various fields, there is relatively limited literature that simultaneously review
two different branches of survival analysis, i.e. individualized time-to-event pre-
diction and survival clustering. Except some non-parametric models such as a
Kaplan-Meier model, most methods fall into the former branch. They formu-
late the survival prediction as a regression problem with censored data points
and map from the covariates to the estimated risk of an individual, e.g. Cox
proportional hazards models. Others, in contrast, are proposed as a unsuper-
vised or semi-supervised clustering task which stratifies patients into subgroups
with distinct survival distributions. Although these methods belong to totally
different machine learning categories, an integrative overview that comprehen-
sively review both branches of approach can provide deeper insights into survival
analysis.

Furthermore, deep learning techniques have shown great promise in enhanc-
ing the accuracy and performance of predictive models, especially when dealing
with complex and high-dimensional datasets. Its ability to automatically extract
relevant features and patterns from raw data has opened up new opportunities
for understanding the underlying mechanisms of survival outcomes and identi-
fying critical prognostic factors. Unfortunately, previous reviews and analyses of
the literature have provided limited coverage of state-of-the-art deep models in
survival analysis.

Therefore, the objective of this review is to systematically review recent
advance in survival analysis boosted by deep learning techniques from two dif-
ferent modeling perspectives, including “time-to-event” prediction and survival
clustering. We will discuss the applications of statistical methods, traditional
machine learning, and deep learning methods in each branch, and explore the
advantages, limitations and suitable scenarios for various methods.

The organization of the subsequent sections of this article is as follows: Sect. 2
provides the necessary background knowledge. Section 3 provides an overview of
predicting Time to Event. Section 4 introduces risk-based clustering methods.
Section 5 concludes the entire article.
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2 Preliminaries

In the study of survival analysis problems, it is possible that the event of interest
is not observed in certain cases. This can occur due to limited observation time
windows or other unobserved events that result in missing information. This
concept is referred to as censoring [5]. Censoring can be classified into three
groups based on the type of truncation of the event [6]: (I) right censoring,
where the observed survival time is less than or equal to the true survival time;
(II) left censoring, where the observed survival time is greater than or equal to
the true survival time; and (III) interval censoring, where we only know that the
event occurred within a given time interval. It is important to note that the true
event times are unknown in all three cases. Among these, right censoring is the
most common scenario in many practical problems [7]. Therefore, this article will
primarily focus on the analysis of survival data with right-censored information.

For survival problems, the time to the event of interest (T ) is precisely known
only for those instances in which the event occurs during the study period. For
the remaining cases, we can only observe a censoring time (C) as we may lose
track of them within the observation time or their event occurrence time exceeds
the observation time. In the context of survival analysis, they are considered cen-
sored instances. In other words, for any given instance i, we can only observe
either the survival time (Ti) or the censoring time (Ci), but not both simulta-
neously. The dataset is referred to as right-censored only when yi = min(Ti;Ci)
can be observed during the study. In right-censored survival problems, since the
samples are entered into the study randomly, and the randomness of the censor-
ing time, the censoring time of the sample is also a random variable. Therefore,
in this article, we assume that censoring occurs randomly in survival problems.
For brevity, this article refers to randomly occurring right-censored instances as
censored instances.

Problem Statement: For a given instance i, it is represented by a triplet
(xi; yi; δi), where xi ∈ R1∗P is the feature vector, δi is a binary event indicator
such that δi=1 for uncensored instances and δi=0 for censored instances, and yi
represents the observation time, which equals the survival time Ti for uncensored
instances and the censoring time Ci for censored instances.Write

yi =

{
Ti if δi = 1
Ci if δi = 0

(1)

In survival analysis, the objective is to estimate the time from a new instance
j, characterized by feature predictors represented by Xj , to an event of interest,
Tj . Xj is the variable input to the model. It can be data of various types such
as transcriptomics data, medical images, and so on. It is important to note that
in survival analysis, the value of Tj is both non-negative and continuous.
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3 Time to Even Prediction

Time-to-event prediction, as an application of survival analysis, aims to forecast
the probability of a specific event (e.g., death, failure, cure) occurring within a
future period. This time frame can be measured from the start of a study or
from a particular event’s occurrence. Time-to-event prediction holds significant
practical significance as it assists in understanding the probability and timing of
an event, enabling individuals to make more informed decisions.

3.1 Statistics Based Methods

Statistical methods in survival analysis can be classified into three major cat-
egories: (I) parametric methods, (II) non-parametric methods, and (III) semi-
parametric methods. Parametric methods are highly effective and accurate in
predicting event times when assuming that the data set follows a specific distri-
bution. For instance, if the time in the examined data set follows a well-known
theoretical distribution such as the exponential distribution, it is straightfor-
ward to use it for estimating event durations. However, in real-life data sets, it
is often challenging to obtain data that precisely conforms to known theoretical
distributions. In such cases, non-parametric methods can be employed, as they
do not rely on assumptions about the underlying distribution of event times.
The Kaplan-Meier (Kaplan and Meier, 1958) method is one of the most popular
approaches in this category [8]. The Nelson-Aalen (NA) estimator is another
non-parametric estimator based on modern counting process techniques [9]. The
log-rank test is an application of the Kaplan-Meier method for interval-grouped
survival data [10]. The third category comprises a combination of parametric and
non-parametric methods. Similar to non-parametric methods, semi-parametric
models do not require knowledge of the underlying distribution of event times.
The Cox proportional hazards model (Cox, 1972) is the most widely used semi-
parametric method in survival analysis [11]. It assumes that the attributes have
a multiplicative effect in the hazard function and remain constant over time. In
the Cox proportional hazards model, it is assumed that the hazard ratio between
two covariates is independent of time and is defined as follows:

λ (t|x) = λ0 (t) exp (h (x)) (2)

h(x) = θTx (3)

where λ0(t) is the baseline risk. h(x) is the risk function, which represents the
impact of covariates on an individual’s risk of death.θ = (θ1, θ2, ..., θn) can be
estimated using the maximum partial likelihood function. Partial likelihood is
the product of the probabilities of individual i being at risk at each event time Ti

and experiencing an event. The Cox partial likelihood function is parameterized
by θ and defined as follows:

L(θ) =
∏

i:E=1

exp
(
ĥ (xi)

)
∑

j∈R(Ti)
exp

(
ĥ (xj)

) (4)
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where Ti, Ei, and xi represent the event time, event indicator, and covariates,
respectively, for the i-th observation. The risk set R(t) represents the set of
patients who are still at risk of death at time t. The survival function proposed
by Cox is highly influential and widely incorporated in subsequent studies within
the field of computational biology.

Table 1. Dataset

Dataset Acronym

Worcester Heart Attack Study WHAS
Study to Understand Prognoses Preferences
Outcomes and Risks of Treatment

SUPPORT

The Molecular Taxonomy of Breast Cancer
International Consortium

METABRIC

The Cancer Genome Atlas TCGA
National Lung Screening Trial NLST

3.2 Traditional Machine Learning Based Methods

Although statistical techniques aim to characterize the distribution of event
times and the statistical properties of each (statistical) model’s parameters,
machine learning methods seek to predict event occurrences at given time points.
The decision tree algorithm (Bou-Hamad et al., 2011) is based on recursive par-
titioning with specific splitting criteria applicable to survival analysis [12]. Due
to the key feature of this algorithm being the splitting criterion, there has been
some research focused on finding effective splitting criteria for survival analysis
[13]. Random survival forests (RSF) employ the log-rank test as the splitting cri-
terion to construct random forests. It calculates the cumulative hazards of leaf
nodes and averages them over all elements [14]. The LASSO-COX model, utiliz-
ing the least absolute shrinkage and selection operator (LASSO), applies feature
selection to choose relevant subsets for cancer prediction [15]. SVRc improves
the loss function to handle truncated data [16]. It leverages the advantages of
standard Support Vector Regression (SVR) and makes it applicable to censored
cases through an updated asymmetric loss function that considers both uncen-
sored and censored instances in the model.

Bayesian analysis is one of the fundamental principles in statistics, linking
posterior probabilities with prior probabilities. Some studies employ this model
to predict the probability of the events of interest [17], benefiting from the desir-
able properties of Bayesian modeling, such as interpretability [18]. Features in
Bayesian networks can be interrelated at different levels and can be represented
graphically to depict the theoretical distribution of a set of variables. Bayesian
networks provide an intuitive representation of all relationships among variables,
making them interpretable for end-users. Knowledge information can be acquired
by estimating the network structure and parameters from a given dataset. (Fard
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et al., 2016) introduced a novel framework that combines the representational
power of Bayesian networks with the accelerated failure time (AFT) model by
extrapolating the prior probabilities to future time points [19]. The computa-
tional complexity of these Bayesian methods primarily depends on the type of
Bayesian techniques used in the model.

Support Vector Machine (SVM) is also a crucial class of machine learning
algorithm [20]. It can be used for both classification and regression tasks and has
been successfully applied to survival analysis problems [21]. (Van et al., 2007)
studied a learning machine designed for predictive modeling of survival data with
independent correct censoring by introducing a health index as a proxy between
instance covariates and outcomes [22]. (Van et al., 2011) presented an SVR-based
method that combines ranking and regression approaches within the context of
survival analysis [23]. On average, these methods have a time complexity of
O(N3), which is comparable to the time complexity of standard Support Vector
Machines.

3.3 Neural Network Based Methods

Currently, deep learning has emerged as a highly successful technique in machine
learning. It has demonstrated the ability to train complex models and extract
advanced features from real-world datasets. In deep learning, generative networks
can capture intricate relationships between features through deep neural network
structures, thereby enhancing the accuracy of predictions.

With the increasing prevalence and integration of various data types, such as
genomics, transcriptomics, and tissue pathology data, cancer treatment is shift-
ing towards precision medicine [24]. Utilizing and interpreting multiple high-
dimensional data types in translational research or clinical tasks requires a sig-
nificant amount of time and expertise. This necessitates modeling algorithms
capable of learning from a multitude of complex features. Excitingly, deep learn-
ing models have the potential to leverage this complexity to provide meaningful
insights and identify relevant granular features from diverse data types [25,26].
Whether it is tabular data or image data, the application of deep learning-based
survival analysis models can be achieved by constructing appropriate model
architectures and training processes. It is crucial to select suitable model struc-
tures based on specific data types and application scenarios, while also perform-
ing feature engineering and model optimization to obtain accurate survival pre-
dictions. We discuss deep learning-based survival analysis models from two per-
spectives: utilizing omics-data and image data. In Table 1, we have compiled the
datasets used in this study. The WHAS dataset comprises trends in cardiac event
occurrences, patient characteristics, and the quality of healthcare in the region.
The SUPPORT study aims to understand the communication and decision-
making processes among patients, their families, and healthcare providers. It
examines medical decisions related to various types of treatment interventions
and assesses the impact of these decisions on patient survival and quality of life.
METABRIC aims to investigate the classification and molecular characteristics
of breast cancer through molecular biology and genetics approaches. TCGA aims
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to improve the prevention, diagnosis, and treatment of various cancer types by
conducting in-depth research on the genomes and molecular characteristics of
cancer. TCGA data provides extensive information related to tumor genomics,
mutations, gene expression, methylation, and more. NLST aims to assess the
effectiveness of lung CT scans in lung cancer screening.

Table 2. Summary of omics-dataset.

Publication Type of Disease Dataset Variable of input

[27] Heart attack,
Breast(BRCA)

WHAS,
SUPPORT,
METABRIC

Age, sex, body-mass-index(BMI), left
heart failure complications (CHF), and
order of MI (MIORD)

[28] Pan-glioma
(LGG/GBM), BRCA,
Pan-kidney (KIPAN)

TCGA Gene expression features, protein
expression, copy number, age and stage

[29] BRCA METABRIC Tumor size, number of positive lymph
nodes

[30] Comprehensive CLINIC Physiologic variables
[31] BRCA TCGA Gene expression data, miRNA data,

Copy number burden (CNB), Tumor
mutation burden and clinical
information

[32] BRCA TCGA methylation and mRNA data

Omics-Data. Transcriptomics data is currently the most commonly used type
of Omics-data. Table 2 provides an overview of the omics data used in related
works. Transcriptomic analysis can be employed to assign cancer to clinically
meaningful molecular subtypes with diagnostic, prognostic, or therapeutic rele-
vance. Standard computational methods for cancer subtyping, such as SVM or k-
Nearest Neighbors (kNN), may be prone to batch effects and can be error-prone,
relying only on a small number of feature genes while disregarding important
biological information. Deep learning algorithms can overcome these limitations
by learning patterns across the entire transcriptome. DeepSurv, based on the
semi-parametric Cox proportional hazards model, uses a deep neural network
instead of a linear network for prediction [27]. DeepSurv has demonstrated the
significant role of deep neural networks in survival analysis tasks. However, this
prediction method has limitations when learning from high-dimensional profiles
generated from these platforms and relies on expert manual selection of a few fea-
tures to train the predictive model. SurvivalNet demonstrates how deep learning
and Bayesian optimization methods can be applied to predict cancer outcomes,
which have been successful in general high-dimensional prediction tasks [28]. Sur-
vivalNet is a Bayesian optimization-based deep survival model that successfully
transfers information across diseases to improve prognostic accuracy. However,
these models rely on strong parametric assumptions, which are often violated
in practice. DeepHit, on the other hand, does not make any assumptions about
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underlying stochastic processes and allows for the possibility of time-varying
relationships between covariates and risks [29]. Moreover, DeepHit handles com-
peting risks. It introduces a ranking loss in the loss function to address these
challenges. DeepHit effectively improves the prediction of correct order pairs by
optimizing this loss function:

Ak,i,j ≡ 1(k(i) = k, s(i) < s(j)) (5)

L = −
K∑

k=1

αk

∑
i�=j

Ak,i,j · η
(
Fk

(
s(i)|x(i)

)
, Fk

(
s(i)|x(j)

))
(6)

In this context, where k represents the occurrence of an event, s denotes the time
of event occurrence, x represents patient covariates, and F () is the prediction
function, F (s|x) represents the estimated risk of an event at time s for a given
patient. During the model training process, this function aims to make the model
predict patients with longer survival times and lower risk of death as indicated
by the labels.

Few studies have considered sequence patterns within the feature space. To
address this, (Ren et al., 2019) proposed a deep recursive survival analysis model
that utilizes deep learning for fine-grained conditional probability prediction of
the data, while incorporating survival analysis to address censoring issues [30].
This approach models the conditional probability of events for each sample,
capturing temporal dependencies to predict the likelihood of real event occur-
rences. It also estimates the survival rates over time for censored data, thereby
improving prediction accuracy.

Numerous studies have made further contributions to the richness of input
data, allowing the model training to encompass not only single-source data such
as gene expression data or biomarkers but also incorporate multiple omics data.
SAMMON has been proposed to aggregate and simplify gene expression data and
cancer biomarkers for prognostic prediction [31]. Experimental results demon-
strate that performance is improved when more omics data is used in model
construction. However, incorporating more data into the model also presents
challenges. Gene data is characterized by high dimensionality, non-linearity, and
sparsity. Directly training the model with these high-dimensional data does not
yield optimal results. (Bichindaritz et al., 2021) employed the local maximum
quasi-cliques merging (lmQCM) algorithm to reduce the dimensions of mRNA
and methylation features and extract clustered feature genes [32]. They intro-
duced an auxiliary ordinal loss on top of the original Cox model to enhance the
optimization learning process during training and regularization. The auxiliary
loss helps mitigate the problem of vanishing gradients in early layers and aids
in reducing the loss of the primary task. Finally, they constructed an ordered
Cox risk model for survival analysis and employed the Long Short-Term Memory
(LSTM) approach to predict patients’ survival risks.

Image Data. Convolutional neural network (CNNs) have been extensively
applied in the intersection of computer science and medicine. These end-to-end
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Table 3. Summary of image dataset.

Publication Type of Disease Dataset Variable of input

[34] Lung and brain cancers NLST, TCGA Whole Slide Histopathological
Images(WSIs)

[35] Lung cancer NLST The screening radiography arm of
the NLST

[36] Lung and colorectal cancers NLST WSIs
[37] BRCA TCGA WSIs
[38] Heart failure Clinical records The clinical information, cine MR

images, and clinic outcome
[39] Glioblastoma multiforme (GBM),

Lung squamous cell carcinoma
(LUSC)

TCGA WSIs

deep neural networks possess stronger feature extraction capabilities compared
to traditional methods [33]. Unlike manual feature selection, CNNs can automat-
ically extract the most discriminative features from images. The Table 3 provides
an overview of the imaging data used in the relevant studies. Moreover, they can
leverage pre-trained models trained on ImageNet during training, enabling them
to be quickly trained and optimized on medical image datasets with limited data,
yielding satisfactory results. However, in a high-resolution medical image, only
a small portion typically contains the relevant features. The prevalence of nega-
tive samples significantly outnumbering positive samples can lead to suboptimal
model performance in such scenarios. (Zhu et al., 2017) proposed an effective
whole slide image-based survival analysis framework (WSISA) to overcome the
aforementioned challenges [34]. To leverage WSIs for survival discrimination,
they first extracted hundreds of patches from each WSI through adaptive sam-
pling and then grouped these images into different clusters. Subsequently, they
trained an ensemble model to make patient-level predictions based on the cluster-
level deep convolutional survival (DeepConvSurv) predictions. This framework
efficiently mines and utilizes all discriminative patterns within WSIs to predict
patient survival status.(Lu et al., 2019) presented the prediction of patients’ mor-
tality risk using X-ray images [35]. Traditional image-based survival prediction
models rely on annotated discriminative markers, which limits their scalabil-
ity to large datasets. When there are no available annotations for the classifi-
cation task, the multiple instance learning (MIL) framework proves useful for
histopathological images. Unlike existing image-based survival models that are
restricted to extracting key patches or clusters obtained from whole slide images
(WSIs), DeepAttnMISL [36]effectively learns imaging features from WSIs by
introducing attention-based MIL pooling and aggregates WSI-level information
into patient-level predictions. In current survival models, attention-based aggre-
gation offers more flexibility and adaptability compared to traditional aggre-
gation techniques. (Liu et al., 2022) proposed and experimentally evaluated a
multi-resolution deep learning approach for breast cancer survival analysis [37].
This method integrates multiple resolution image data with tumor, lymphocyte,
and nucleus segmentation results from deep learning models. The results demon-
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strate that this approach significantly improves the performance of deep learning
models compared to using only raw image data. However, conventional images
capture two-dimensional spatial information as they only contain information
within the plane. They cannot capture the temporal trends of patients over
time. (Guo et al., 2023) proposed a predictive model based on cardiac images
that incorporates temporal sequence information [38]. By fusing the boundary
information of cardiac images with the motion field of the heart, they obtained
cardiac motion information, which improved the survival probability prediction
for heart failure patients. (Li et al., 2023) introduced a patch sampling strategy
based on image information entropy and constructed a multi-scale feature fusion
network (MSFN) using a self-supervised feature extractor [39]. Specifically, this
work employed image information entropy as a criterion to select representative
sampling patches, thereby avoiding noise interference caused by random sam-
pling in blank regions. Additionally, a pre-training process was performed on
the feature extractor using self-supervised learning mechanisms to enhance fea-
ture extraction efficiency. Furthermore, a global-local feature fusion prediction
network based on attention mechanisms was constructed to improve the survival
prediction of WSIs with comprehensive multi-scale information representation.

Table 4. Summary of multimodal dataset.

Publication Type of Disease Dataset Variable of input

[40] Lower-Grade Glioma (LGG)
and Glioblastoma (GBM)

TCGA Whole-slide images, clinical
and genomic data

[41] 20 cancer types TCGA MicroRNAs, gene expression
data, and clinical data

[42] Lung and colorectal cancers NLST CT scans, age, gender, and
smoking history

Multimodal Data. Multimodal fusion refers to the process of integrating infor-
mation from two or more modalities to make predictions. In prediction tasks,
individual modalities often do not contain all the necessary information required
for accurate prediction results. The process of multimodal fusion combines infor-
mation from multiple modalities to complement each other, expand the coverage
of information contained in the input data, enhance the accuracy of prediction
results, and improve the robustness of the prediction model (Fig. 1).

Simultaneously combining Omics-data and image data is a key factor in fur-
ther improving model performance. The Table 4 provides an overview of the mul-
timodal data used in the related studies.(Mobadersany et al., 2018) demonstrated
a computational approach that utilizes deep learning to learn patient outcomes
from digital pathology images by combining adaptive machine learning algo-
rithms with traditional survival models [40]. This work showcased how survival
convolutional neural networks (SCNNs) integrate information from histopatho-
logical images and genomic biomarkers into a unified framework to predict time-
to-event outcomes. It showed superior prediction accuracy for overall survival
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Fig. 1. Workflow for establishing a deep learning model for prognosis prediction.

of glioma patients beyond current clinical models. (Cheerla et al., 2019) further
developed a model based on a multimodal neural network that utilizes clinical
data, mRNA expression data, microRNA expression data, and WSIs to predict
survival of patients across 20 different cancer types [41]. They devised an unsu-
pervised encoder that compresses the four data modalities into a single feature
vector per patient, handling missing data using an elastic, multimodal dropout
approach. The encoding method is tailored for each data type - using deep high-
way networks to extract features from clinical and genomic data and employing
convolutional neural networks to extract features from WSIs. (Lu et al., 2023)
proposed a hybrid CNN-RNN approach to investigate the long-term survival
rates of subjects in lung cancer screening studies [42]. This method utilizes a
CNN model to capture imaging features from CT scans and employs an RNN
model to examine the time series aspect, thereby capturing global information.
By combining time series information with multimodal data, the performance of
the model is effectively improved.

4 Cluster Based Risk Profile

Clustering is an unsupervised learning method that can uncover hidden patterns
and structures within data. Clustering is a valuable tool for data-driven disease
discovery and classification. The objective of survival clustering is to map sub-
jects (e.g., users in a social network, patients in medical research) into K clusters
ranging from low-risk to high-risk.

4.1 Statistics Based Methods

(Li et al., 2004) proposed an approach to examine survival data by extending
the partial least squares (PLS) regression to the framework of the Cox model
[43]. They presented a parallel algorithm for constructing latent components.
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This algorithm utilized residual iterative least squares fitting and Cox regression
fitting to construct predictive components. These components could then be
used to build useful survival prediction models and also employed for clustering
survival data since the principal components were simultaneously constructed.

(Bair et al., 2004) were the first to explore clustering methods for survival
data, introducing a technique known as semi-supervised clustering (SSC) [44].
In their study, they proposed using risk scores from univariate Cox regression
as a preselection step to choose variables and then applied k-means cluster-
ing to the selected subset of features to discover patient subgroups. In the sec-
ond part of the method, they employed only clinical data to test the clustering
assignments. Using the clinical data, they treated the clustering assignments
as the outcome variable and applied a classification algorithm. The classifica-
tion algorithm performed well, indicating correct identification of the clustering
assignments. However, both the regression and survival models utilized principal
components. Since principal components may not capture a large portion of the
variance present in the data, these methods cannot guarantee that these com-
ponents are relevant to the outcomes. Therefore, (Bair et al. 2006) proposed a
semi-supervised approach called supervised principal components (SPC) [45]. In
this method, they computed univariate Cox scores for each feature and selected
the most important features by choosing only those with the best Cox scores.

Sparse clustering methods and semi-supervised clustering approaches rely
on the number of features that have been characterized as “salient,” and there-
fore, these methods have notable limitations. (Gaynor et al., 2017) proposed an
enhanced method called pre-weighted sparse clustering to overcome the limi-
tations of sparse clustering [46]. Its objective is to overcome the limitations of
traditional sparse clustering by identifying features that have different means
within clusters. This approach can identify features that exhibit variations in
their average values across clusters.

4.2 Traditional Machine Learning Based Methods

(Zhang et al. 2016) employed a hybrid approach consisting of statistical and
machine learning methods, focusing on cluster discovery in clinical and gene
expression data [47]. They utilized penalized logistic regression and penalized
proportional hazards models along with an expectation-maximization algorithm
to select only the most relevant clinical features associated with the event of
interest. This approach allowed them to identify the most important clinical fea-
tures specifically related to the event of interest. (Mouli et al., 2017) proposed
a decision tree-based method aimed at achieving survival clustering [48]. The
ultimate goal was to cluster examination data and identify two or more popu-
lations with different risk levels. The objective was to determine clusters where
the survival distributions differed. (Ahlqvist et al., 2018) utilized Cox regression
to explore differences between subgroups of diabetes patients discovered through
k-means and hierarchical clustering [49]. This method divided patients into five
subgroups based on distinct disease progression and risk of diabetes compli-
cations. This novel subtyping could potentially contribute to personalized and
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targeted early treatments for patients who would benefit the most, representing
an initial step towards precision medicine in diabetes.

Table 5. Summary of cluster dataset.

Publication Type of Disease Dataset Variable of input

[50] Nondisease Friendster age, gender, marital status,
occupation, and interest

[51] Acute coronary syndrome Private disease types,
demographics, personal
disease history,
comorbidities, habits,
laboratory test results, and
procedures

[52] Type2 diabetes, heart dise FLCHAIN,
SUPPORT, SEER,
EHR, SLEEP,
FRAMINGHAM

serum data, breast cancer
subcohort and clinical data

[53] BRCA SUPPORT,
METABRIC,
SEER

Age, gender, race,
education, income,
physiological
measurements,
co-morbidity information,
gene expressions, and
clinical variables

[54] Alzheimer’s disease(AD) EHR demographic information,
laboratory tests, and
diagnoses and symptoms

[55] Cardiovascular disease ALLHAT-A,
ALLHAT-B,
ACCORD

Clinical information on the
use of different
concentrations of drugs

[56] 22 high-grade glioma patients, non-small cell SUPPORT, HGG,
Hemodialysis,
FLChain, NSCL

Observational cohort and
CT image

4.3 Neural Network Based Methods

Deep neural networks play a significant role in the advancement of clustering
tasks. They are commonly used to handle large-scale and high-dimensional data,
such as images, speech, and textual data, in the field of computational biology.
The Table 5 provides an overview of the data used in deep learning clustering
research. Traditional survival methods assume the existence of explicit end-of-
life signals or introduce them artificially using predefined timeouts (Mouli et
al., 2018). They proposed a deep clustering approach that distinguishes long-
term and short-term survivors based on a modified Kuiper statistic, even in
the absence of end-of-life signals [50]. In their study, they introduced a loss
function that utilizes an enhanced Kuiper statistic to differentiate the empirical
survival distributions of clusters. By optimizing this loss, a deep neural network
is learned to softly cluster users into survival groups. (Xia et al., 2019) employed
a multi-task learning approach for outcome-driven clustering of patients with
acute coronary syndrome [51]. The proposed method utilized an attention-based
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multi-task neural network as the modeling framework, which includes patient
state learning, cluster analysis, and feature importance analysis.

However, traditional survival analysis methods estimate risk scores or per-
sonalized event time distributions that depend on covariates. In practice, due to
(unknown) subpopulations having different risk profiles or survival distributions,
there often exists substantial population-level phenotypic heterogeneity. There-
fore, in survival analysis, there is an unmet need to identify subgroups with dis-
tinct risk profiles while simultaneously considering accurate personalized event
time predictions. Methods addressing this need may improve the characteriza-
tion of individual outcomes by leveraging the regularities within subpopulations,
thereby accounting for population-level heterogeneity. (Chapfuwa et al., 2020)
proposed a Bayesian nonparametric method that represents observations (sub-
jects) in a clustering latent space and encourages accurate time-to-event pre-
dictions and clustering (subpopulations) with distinct risk profiles [52]. (Nagpal
et al., 2021) have explored similar techniques, introducing a finite mixture of
Weibull distributions known as the Deep Survival Machine (DSM) [53]. DSM
fits a survival regression model mixture on the representations learned by an
encoder neural network. From a modeling perspective, the aforementioned meth-
ods focus on outcome-driven clustering, where they fully recover clusters with
distinct survival distribution characteristics. In this work, the Deep Cox Mix-
ture (DCM) is introduced, which jointly fits a VAE and Cox regression mixture
without specifying a generative model. The loss of DCM is derived by combining
the VAE loss and likelihood estimation of survival time.

Previous research has primarily utilized imaging or cognitive data, with limi-
tations in data breadth and sample size. Data-driven models have not been able
to perform well in these cases. Certain diseases exhibit a high degree of het-
erogeneity, such as Alzheimer’s disease (AD), where different trajectories and
outcomes are observed in clinical populations. (Alexander et al., 2021) identi-
fied AD patients using a previously validated rule-based phenotype algorithm
from the Clinical Practice Research Datalink (CPRD), which contains primary
care electronic health records [54]. They extracted and incorporated a range of
comorbidities, symptoms, and demographic features as patient characteristics,
thus expanding the breadth of data. However, this approach did not consider the
evaluation of treatment effects concerning clinical interventions involving contin-
uous time-to-event outcomes, such as time to death, readmission, or composite
events that may be subject to review. In such cases, counterfactual inference is
required to disentangle the effects of confounding physiological features affecting
baseline survival rates from the effects of the interventions being evaluated. (Nag-
pal et al., 2022) proposed a latent variable approach to simulate heterogeneous
treatment effects, suggesting that an individual can belong to one of several
latent clusters with different response characteristics [55]. Experimental results
demonstrate that this latent structure can modulate baseline survival rates and
help determine the effects of interventions. However, clustering of survival data
remains an underexplored problem. In this scenario, only a few methods have
been proposed, either with limited scalability in high-dimensional unstructured
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data or focused on discovering purely outcome-driven clusters, i.e., clusters solely
based on survival time as the defining feature. The latter may fail in applications
where individual survival distribution information alone is insufficient for strati-
fying the population. For example, patient groups with similar survival outcomes
may exhibit vastly different responses to the same treatment. To address these
challenges, (Manduchiy et al., 2022) introduced a novel survival data clustering
approach called Variational Deep Survival Clustering (VaDeSC), which discovers
patient groups with distinct characteristics in terms of the underlying mecha-
nisms generating survival outcomes [56]. It extends previous variational methods
used for unsupervised deep clustering by incorporating survival models specific
to each cluster within the generative process. VaDeSC focuses not only on sur-
vival but also captures the heterogeneity in the relationship between covariates
and survival outcomes.

5 Conclusions and Future Directions

Despite the numerous scientific reports on the application of machine learning
techniques for time-to-event prediction, there has been relatively less research
on survival clustering techniques. Survival clustering techniques are particularly
useful when there is a need to identify unknown subpopulations within an entire
dataset. They can discover clusters with significantly different survival capabili-
ties, which cannot be achieved by traditional clustering techniques. These tech-
niques focus on finding clusters with distinct survival distributions, providing a
unique perspective to understand the characteristics of the dataset.

Many research works in the field of survival analysis are currently exploring
the application of deep learning methods, which have powerful modeling capa-
bilities and predictive performance. However, a major limitation of deep learning
models is their lack of interpretability. This means that although deep learning
models can generate accurate prediction results, it is often challenging to explain
how the model arrives at those predictions and what features and patterns it
relies on for decision-making. Further more, the research efforts in exploring key
biomarkers are also relatively scarce in the field.

Enhancing Model Interpretability: One significant challenge in the appli-
cation of machine learning models to survival analysis lies in their inherent com-
plexity and the difficulty in understanding how they arrive at specific predictions.
As the use of machine learning in this domain continues to grow, there is a press-
ing need to develop interpretable models that can provide meaningful insights
into the underlying biological mechanisms governing survival outcomes. Future
research efforts should focus on incorporating techniques such as feature impor-
tance analysis, attention mechanisms, and visualizations to shed light on the
decision-making processes of these models. By achieving better interpretabil-
ity, researchers can gain a deeper understanding of the relationships between
genomic, clinical, and imaging features, ultimately leading to more reliable and
clinically actionable predictions.
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Identifying Novel Biomarkers: While machine learning techniques have
shown great promise in survival analysis, there remains untapped potential in the
discovery of novel and robust biomarkers that can accurately predict patient out-
comes. Leveraging multi-omics data integration and advanced feature selection
methods can facilitate the identification of previously unrecognized biomarkers
with strong prognostic significance. Additionally, collaborative efforts between
computational biologists, bioinformaticians, and domain experts can drive the
development of innovative approaches to uncover hidden patterns and relation-
ships within complex biological datasets. The integration of these novel biomark-
ers into clinical practice has the potential to revolutionize patient risk stratifica-
tion, enabling tailored treatment strategies and personalized medicine.

By addressing these challenges, it not only contributes to enhancing the fea-
sibility and acceptability of survival analysis methods in medicine and other
fields but also promotes the advancement of survival analysis techniques to meet
broader application needs. Furthermore, it provides more reliable decision sup-
port for clinical practice and disease management.
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