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Abstract. Exploring the potential efficacy of a drug is a valid approach for
drug discovery with shorter development times and lower costs. Recently, sev-
eral computational drug repositioning methods have been introduced to learn
multi-features for potential association prediction. A drug repositioning knowl-
edge graph of drugs, diseases, targets, genes and side effects was introduced in
our study to impose an explicit structure to integrate heterogeneous biomedical
data. We revealed drug and disease embeddings from the constructed knowledge
graph via a two-layer graph convolutional network with an attention mechanism.
Finally, KGCN-DDA achieved superior performance in drug-disease association
prediction with an AUC value of 0.8818 and an AUPR value of 0.5916, a relative
improvement of 31.67% and 16.09%, respectively, over the second-best results
of the four existing state-of-the-art prediction methods. Meanwhile, case studies
have verified that KGCN-DDA can discover new associations to accelerate drug
discovery.
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1 Introduction

In recent decades, drug discovery techniques and biological systems have been inten-
sively studied by multidisciplinary researchers. However, drug development is still a
time-consuming, costly and labor-intensive process. Drug repositioning is a strategy for
identifying new uses for approved or investigational drugs that are outside the scope of
the original medical indications [1]. It could ease the drug development process, shorten
the required time to 6.5 years, reduce costs to $300 million and reduce the risk of failure.

In recent years, computational drug repositioning methods [2] have attracted con-
tinuous attentions with explosive growth of large-scale genomic and phenotypic data.
The previous computational methods can be roughly divided into three categories: com-
plex network method [3], machine learning method [4], and deep learning method [5].
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Besides, the knowledge organization method [6], for example ontologies and knowl-
edge graph, has also been gradually applied to the research of drug disease relationship
prediction recently.

With the explosion of the total amount of drug discovery knowledge, the relationships
between entities, such as drugs, diseases, targets, symptoms, etc., become progressively
more complex. There is a wealth of associations hidden in literature, clinical guidelines,
encyclopedias, and structured databases. Semi-structured and unstructured knowledge
needs further exploration and exploitation. More hidden drug-disease associations can
be found by fully utilizing public databases and literature knowledge related to drug
development and disease treatment. This can reduce the risk of failure, shorten the
time needed for research and development, and save money, manpower, and material
resources. In this study, we first construct a drug repositioning knowledge graph and
then propose a novel drug-disease association prediction method called KGCN-DDA
based on multiple features in the knowledge graph and graph convolutional neural net-
work. KGCN-DDA has achieved good performance in the prediction of unknown drug
disease association. This method can find new indications of drugs, and also provide
methodological reference and theoretical basis for drug relocation.

2 Methods and Materials

2.1 Dataset

Data for drug repositioning knowledge graph construction were primarily collected from
various data sources including Comparative Toxicology Database (CTD), Drugbank,
SIDER, MeSH and PubMed scientific literature from PubMed. Taking as a starting point,
269 drugs, 598 diseases and 18416 drug-disease associations originated from Compara-
tive Toxicology Database (CTD). We extracted drug-target associations from Drugbank
and drug-side effect associations from SIDER for drug repositioning knowledge graph
construction. Biological semantic relationships between drugs, diseases, targets, genes,
and side effects were also discovered from 12056 PubMed scientific literature which titles
or abstracts containing drugs or diseases from the CTD dataset. Besides, drug chemical
structures (represented by SMILES) from Drugbank, and diseases’ tree numbers from
MeSH served as entities attributes to in our study.

2.2 Drug-Disease Association Prediction Based on Knowledge Graph and GCN

In this study, we presented a comprehensive knowledge graph of drug repositioning with
relevant drugs, diseases, targets, genes and side effects. Meanwhile, graph convolutional
neural network worked as an efficient way to extract multi-features from the constructed
knowledge graph. The workflow of KGCN-DDA was briefly shown in Fig. 1.

Drug Repositioning Knowledge Graph Construction. Our drug-centric knowledge
graph data model comprised five types of entities includes drugs, diseases, and other
entities that interact with the two entities, such as targets, side effects and genes. It curates
and normalizes data from the four publicly available databases mentioned above, as well
as information from PubMed publications based on a pre-training and fine-tuning BERT
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Fig. 1. The workflow of KGCN-DDA

model. The eight relationship types in drug repositioning knowledge graph include treat
(between drugs and diseases), interact (between two drugs), cause (between drugs and
side effects), target (between drugs and targets), associate (between drugs and genes),
associate (between two genes), biomarker (between diseases and genes), and target
(between diseases and targets).

Drug-Disease Feature Representation and Association Prediction. We calculated
drug-drug similarities and disease-disease similarities based on multi features based
on the drug repositioning knowledge graph, including: (1) drug-side effect associ-
ations, drug-target associations, drug-gene associations, drug molecular fingerprints,
(2) disease-target associations, disease-gene target associations, disease MeSH tree-
numbers. We then proposed this multi-feature fusion similarities and drug-disease asso-
ciations in the knowledge graph to compute an association feature matrix. Finally, two
GCN layers were applied to learn drug and disease embeddings of with an attention
mechanism. An inner product decoder was used to discover unknown drug-disease
associations.
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3 Results and Discussion

3.1 Performances and Comparison with State-of-the-Art Methods

In this study, we constructed a drug repositioning knowledge graph based on structured
knowledge and semantic information from biomedical literature. Specifically, a knowl-
edge graph of drugs, diseases, targets, genes and side effects was constructed. There
are in total of 8374 entities (269 drugs, 598 diseases, 266 targets, 3793 side effects,
and 2938 genes) and 67350 triples (18416 drug-disease, 43508 drug-side effect, 722
drug-target, 4081 disease-gene, and 623 disease-target) in knowledge graph. For fea-
ture fusion and similarity computation, an adjusted weight for each measurement was
applied to achieve optimal performance by a step of 0.01. Finally, the AUC and AUPR
of our predictive model reached 0.8801 and 0.5961 optimality. Compared with four
existing state-of-the-art prediction methods [7-10], KGCN-DDA achieved superior per-
formance in drug-disease association prediction, shown in Table 1, which were 33.89%
and 16.09% relative improvements than the second-best result.

Table 1. Performance compared with 4 baseline methods

Methods AURP AUC F1 Acc Rec Spe Pre

DDA-SKF 0.2521 |0.7006 1 0.3281 |0.7900 |0.4478 |0.8342 |0.2591
DRHGCN 0.5063 |0.8529 |0.5013 |0.8746 | 0.5503 |0.9166 |0.4604
LAGCN 0.5135 |0.8045 0.4699 |0.7966 | 0.6005 |0.8220 | 0.4198

DRWBNCF 0.4552 |0.8375 04739 0.8646 |0.5321 |0.9076 |0.4280
KGCN-DDA [0.5961 | 0.8818 |0.5655 |0.8885 |0.6287 |0.9224 | 0.5154

Footnotes: The best results are in bold faces and the second-best results are underlined.

3.2 Case Study

To demonstrate KGCN-DDA’s ability to discover new indications and new therapies,
we conducted three case studies with validation from clinical indications already in
use, Clinical Trials, CTD and public literature from PubMed: (1) Top 10 drug—disease
associations, (2) Top 10 associated diseases for given drugs (Doxorubicin).

We listed the top 10 drug-disease associations predicted by KGCN-DDA in Table 2,
and seven out of them can be demonstrated by the verification methods mentioned
above. For example, we found olanzapine and fluoxetine together are more effective
than duloxetine alone for treating severe depression in terms of improving physical and
sleep quality [11]. Researchers examined how rosiglitazone inhibits hepatocellular car-
cinoma and showed that the medication can cause liver cancer cells to undergo apoptosis
[12]. According to study from Johns Hopkins University in the United States, taking a
certain amount of caffeine might enhance the body’s memory function temporarily [13].
Cimetidine is a medication that can be used clinically to treat arrhythmia and chronic
hepatitis B hepatitis. This therapeutic approach aligns with the expected management
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of inflammation and cardiac disease. Besides, several predictions have been confirmed
effective by ClinicalTrials and CTD records.

Table 2. Predicted drug-disease association

No Drug Name Disease Name Evidence

1 Olanzapine Sleep wake disorders PMID: 25062968

2 Rosiglitazone Carcinoma, Hepatocellular | ClinicalTrials/PMID:
26622783

3 Docetaxel Eosinophilia ClinicalTrials/CTD

4 Venlafaxine Hydrochloride Catalepsy —

5 Caffeine Amnesia CTD/PMID: 24413697

6 Enalapril Angina pectoris ClinicalTrials/CTD

7 Propranolol Urticaria —

8 Cimetidine Heart diseases Clinical indications

9 Cimetidine Inflammation Clinical indications

10 Nifedipine Anxiety disorders —

The top 10 combinations in drug-disease prediction were examined from the view-
point of a single medication, using doxorubicin as an example (Table 3). Doxorubicin is
an anti-tumor medication that mostly inhibits DNA synthesis, but it can also limit RNA
synthesis as well. It has a broad anti-tumor range and is mostly used in clinical practice to
treat individuals with acute leukemia, including acute lymphocytic leukemia and acute
myeloid leukemia. Combinations 1, 2, 3, 6, 8 [14—18] have been clinically treated and
validated by literature, including doxorubicin, which has a certain ameliorative impact
on non-small cell lung cancer, acute myeloid leukemia, trigeminal neuralgia, glioma, and
osteosarcoma. Meanwhile, the remaining three combinations have not received much
attention but have been predicted by the KGCN-DDA model. To some extent, this might
give researchers fresh ideas for drug repositioning. As a result, it is feasible to predict
drug-disease association by KGCN-DDA.
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Table 3. Drug-disease association prediction for doxorubicin

Drug Name |No |Disease Name Evidence

Carcinoma, Non-small-cell lung | ClinicalTrials/PMID: 33075540
Leukemia PMID: 32949646/Clinical indications
Trigeminal neuralgia CTD/PMID: 30235706

Doxorubicin

Hemolytic-uremic syndrome ClinicalTrials/CTD

Glioma ClinicalTrials/CTD/PMID: 33475372

Myocardial ischemia —

Osteosarcoma ClinicalTrials/CTD/PMID: 31802872

1
2
3
4
5 Cerebral hemorrhage —
6
7
8
9

Atherosclerosis —

10 | Vascular diseases Clinical indications

4 Conclusions

In this study, we proposed a method called KGCN-DDA for drug-disease association pre-
diction. Due to the huge amount of information contained in biomedical public databases
and scientific literature, we constructed a drug repositioning knowledge graph and com-
pute drug-drug and disease-disease similarities by knowledge graph multi-feature fusion.
Two GCN layers were utilized to capture structural embeddings from association feature
matrix. The proposed method achieved superior performance compared to four state-of-
the-art methods, and we demonstrated its potential for identifying novel drug-disease
associations in clinical practice.

However, there are still some limitations in our work that require an in-depth investi-
gation. First, more association features should be further considered in our work. We can
collect more prior biological knowledge from literature or datasets, such as drug-protein,
drug-gene, disease-gene and drug-pathway from DisGeNET, Gene Ontology (GO) and
so on, to improve similarity accuracy. Second, the two-layer GCN is a basic model for
learning on graph-structured data, while some other graph neural network models are
worth investigating in the future.

Above all, KGCN-DDA is able to learn scattered multidimensional information
from heterogeneous networks and identify latent drug-disease associations. It gives
researchers, pharmacologists, and pharmaceutical companies a tremendous opportu-
nity to study and validate predictive associations that are more likely to exist. We expect
KGCN-DDA to be an efficient approach that can improve drug repositioning in the future
and shorten its cost and time.
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