
One-Phase Batch Update on Sparse
Merkle Trees for Rollups

Boqian Ma , Vir Nath Pathak , Lanping Liu, and Sushmita Ruj(B)

School of Computer Science and Engineering, University of New South Wales,
Kensington, NSW 2052, Australia

{boqian.ma,vir.pathak,sushmita.ruj}@unsw.edu.au,
lanping.liu@unswalumni.com

Abstract. A sparse Merkle tree is a Merkle tree with fixed height and
indexed leaves given by a map from indices to leaf values. It allows
for both efficient membership and non-membership proofs. It has been
widely used as an authenticated data structure in various applications,
such as layer-2 rollups for blockchains. zkSync Lite, a popular Ethereum
layer-2 rollup solution, uses a sparse Merkle tree to represent the state of
the layer-2 blockchain. The account information is recorded in the leaves
of the tree. In this paper, we study the sparse Merkle tree algorithms pre-
sented in zkSync Lite, and propose an efficient batch update algorithm
to calculate a new root hash given a list of account (leaf) operations.
Using the construction in zkSync Lite as a benchmark, our algorithm 1)
improves the account update time from O(log n) to O(1) and 2) reduces
the batch update cost by half using a one-pass traversal. Empirical anal-
ysis of real-world block data shows that our algorithm outperforms the
benchmark by at most 14%.

Keywords: Blockchain Scalability · Sparse Merkle Trees · Rollups ·
Layer-2

1 Introduction

Recent advances in distributed ledger technology have introduced a new
paradigm of applications called “decentralisation applications” (DApps) with
new use cases in areas such as finance [7,20], logistics [29], and Internet-of-
Things [26]. However, the increasing number of users and transactions on DApps
has also exposed the key limitation of the scalability of their underlying public
blockchain infrastructures [17]. Two of the largest public blockchians by market
capitalisation1, Bitcoin [24] and Ethereum [32], can only process 7 and 29 trans-
actions per second (TPS), which is far from their centralised payment provider
counterpart, Visa, which claims to have the capacity to process 65,000 TPS [30].

There are many ways to improve blockchain scalability. They can be broadly
grouped into two categories: on-chain and off-chain. On-chain research involves
1 https://coinmarketcap.com/ accessed on 23rd of August 2023.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
N. Dong et al. (Eds.): SDLT 2023, CCIS 1975, pp. 1–21, 2024.
https://doi.org/10.1007/978-981-97-0006-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0006-6_1&domain=pdf
http://orcid.org/0009-0007-5247-3001
http://orcid.org/0009-0008-4597-514X
http://orcid.org/0000-0002-8698-6709
https://coinmarketcap.com/
https://doi.org/10.1007/978-981-97-0006-6_1

2 B. Ma et al.

changing the underlying blockchain infrastructure to achieve better scalability.
Examples of on-chain research efforts include developing efficient consensus algo-
rithms [18,28], sharding [23,33], and changing block configurations [13]. On the
other hand, off-chain research efforts involve changing how we interact with the
blockchain (L1). Instead of performing all activities on-chain, we offload the
computation- and storage-intensive activities off-chain. Some existing solutions
include State Channels [25], Plasma [27], and rollups [11]. These scaling solutions
are known as “Layer-2” (L2) solutions.

The recent developments of L2 rollups such as zkSync Lite [21], Aztec Net-
work [9], Loopering [22], and Immutable X [1] has shown prominent results
toward increasing transaction throughput on Ethereum. Rollups execute trans-
actions off-chain and bundle the results of many L2 transactions into one L1
transaction. L1 cannot interpret L2 data, it only acts as a data availability layer
for L2 activity. Such techniques provide a reduction in computation to L1, while
also massively decreasing the transaction fees as one L1 transaction fee is shared
amongst all transactions bundled within it.

zkSync Lite [21], a widely used and well-documented zero-knowledge rollup
technique, has achieved a maximum observed TPS of 110 [2], making it almost 6
times faster than Ethereum. Following the success of rollups, Ethereum has intro-
duced a rollup-centric roadmap [12] specifically directing future scaling efforts
on Ethereum to maximise the use of L2 rollups.

In an L2 rollup, there are generally operators keeping the L2 state, processing
L2 transactions and communicating with L1 through a smart contract. Users
have accounts and balances of tokens. L2 users submit signed transactions to
the operators, who then collect those transactions and form L2 blocks.

Sparse Merkle trees (SMT) are widely used as authenticated data structures
to keep state information in rollups because of their simplicity and effectiveness.
The leaves of SMTs represent account-related information, such as balances and
nonce. The root hash of SMTs is a succinct representation of the state of all
account balances. Given a block of L2 transactions, the operators will calculate
a new root hash based on the result of these transactions. Generally, the process
of finding the root hash involves two parts: first, the account leaves need to be
updated. Then, the new root hash is calculated by updating the paths from the
updated leaves to the root.

The current implementation of this in zkSync Lite is to first go through the
transactions in a block sequentially to update the leaves individually and then
calculate the root hash. This solution involves traversing the SMTs twice for
every updated leaf, which is inefficient. We denote this as a two-phase algorithm.

To build on the above solution, this paper introduces the notion of
BatchUpdate on SMTs. The action of batching is defined as processing trans-
actions in a block all at once instead of individually. All accounts involved in
transactions in a block are updated together in a batch. Instead of traversing
the SMTs twice, we propose a new algorithm to update the leaves and interme-
diate hashes at the same time by traversing the SMTs only once. We name this
approach the one-phase batch update (OBU).

One-Phase Batch Update on Sparse Merkle Trees for Rollups 3

Our Contributions

1. We introduce an efficient SMT leaf update algorithm, SMT.UpdateLeaf, that
improves account update time from O(log n) to O(1).

2. Building on this, an SMT batch update algorithm, SMT.BatchUpate, is pro-
posed to calculate the root hash of an SMT, reducing the total number of
traversals by 50% from O(k log n) + O(k log n)H to O(k log n)H, where k is
the number of updates in a batch, n is the total number of leaves in the SMT,
and H is a hash operation.2

3. Performance analysis of our proposed algorithm was conducted using both
micro- and macro-benchmarks in single and multi-threaded scenarios.

4. In real-world macro-benchmark data, our algorithm outperformed the bench-
mark by up to 14%.

Organisation. The rest of the paper is organised as follows. Section 2 introduces
the preliminary information. Next, Sect. 3 discusses some related work. In Sect. 4,
we introduce the batch update algorithm. Section 6 outlines our experimental
results, followed by the conclusion and discussion in Sect. 7.

2 Preliminaries

2.1 Leaf Operation

Definition 1 (Leaf Operation). Given a Merkle tree (MT), T , with n leaf
nodes L = {leaf0, · · · , leafn−1} and their corresponding data items
D = {d0, · · · , dn−1} where leafj = H(dj), a leaf operation
oj ∈ {InsertLeaf, UpdateLeaf, RemoveLeaf} where 0 ≤ j < |D|, is a func-
tion that modifies the value of leafj. InsertLeaf inserts a new leaf, given
by leafj = H(dj), into the tree, UpdateLeaf updates the value of leafj, and
RemoveLeaf removes leafj and dj from the tree and D respectively.

2.2 Sparse Merkle Tree

Definition 2 (Sparse Merkle Tree). An SMT is an MT with a fixed depth of
N , and indexed leaves. Data items D = {d0, · · · , dn−1} where n < 2N are stored
in a map, M : {0, 1}2N → D mapping from leaf indices to data items. An SMT
is defined by the following set of algorithms on M :

1. Gen(N) → SMT: Algorithm that generates an empty SMT given a depth N .
2. SMT.Commit(M) → R′. Deterministic algorithm that inserts every key-value

pair in M into the tree and returns the new root hash.
3. SMT.ApplyOp(oi) → R′ Deterministic algorithm that applies the leaf oper-

ation oi and returns a new root hash R′. SMT.ApplyOp(oi) can be fur-
ther categorised into three methods depending on the operation type. They
are SMT.InsertLeaf(oi), SMT.UpdateLeaf(oi), and SMT.RemoveLeaf(oi).
A description of each of these operations can be found in Sect. 2.1.

2 Code at: https://github.com/Boqian-Ma/one-phase-batch-update-SMT.

https://github.com/Boqian-Ma/one-phase-batch-update-SMT

4 B. Ma et al.

4. SMT.MemberWitnessCreate(i) → wi: Deterministic algorithm that returns
the Merkle proof of M(i) consisting of a list of siblings nodes from leafi to
the root.

5. SMT.MemberVerify(wi, di) → {true, false}: Deterministic algorithm that
verifies whether di is a member of M .

SMTs have the same membership-proof construction as regular Merkle trees.
However, proving non-membership is more efficient on SMTs than on Merkle
trees, since a non-membership for a key k in an SMT is the membership proof
of the default value.

Fig. 1. A SMT of 3 levels. The ovals represent internal nodes. The squares represents
its value mapping M , where the numbers are the keys of M and the leaf indices. The
default value is represented as ∅. The highlighted nodes form leaf4’s membership proof.
Since leaf2 and leaf3 are empty, everything below their highest common parent, node5,
are pruned to increase storage efficiency.

Space Optimisation. Instead of storing the full SMT of 2N+1 − 1 nodes,
Bauer [10] presents a memory efficient way of storing an SMT by pruning empty
sub-trees. Referring to node 5, Fig. 1, following Bauer’s proposal, the subtree
of node 5 is replaced with the default hash. As such, the space can be greatly
reduced.

3 Related Work

This section introduces zkSync Lite [21] and its relevant SMT root hash update
algorithm, which we use as our benchmark.

One-Phase Batch Update on Sparse Merkle Trees for Rollups 5

ZkSync Lite. zkSync Lite [21] is an L2 rollup solution developed by Matter
Labs [3]. It supports simple transaction types including transfer or swap of ERC-
20 [31] tokens, and ERC-721 [15] token minting. Like most L2 solutions, zkSync
Lite has two main components: on-chain and off-chain. The on-chain component
includes several Solidity Smart Contracts deployed3 on Ethereum L1. The off-
chain component includes several micro-services that facilitate L2 transaction
executions and SNARK [16] generation. Detailed descriptions of the zkSync Lite
design are given in the Appendix A.1

Account Tree Construction. SMTs are used in three places in zkSync Lite:
account tree4, circuit account tree, and balance tree. The account tree is the
main data structure that keeps track of the account balances of its users. The
circuit account tree and the balance tree are derived from the account tree and
are used to build zero-knowledge block proofs. Here, we give descriptions of the
account tree in zkSync Lite.

The account tree is an SMT of depth N = 24. As such, it can store up to
225−1 accounts. The accounts are stored in a map M , mapping from leaf indices
to accounts. Each internal node, nodej , where 1 ≤ j ≤ 2N+1, nodej ’s direct
children are nodej ’s children are given by node2j and node2j+1 and nodej =
H(node2j‖node2j+1). nodej is also known as node2j and node2j+1’s parent node.
The root of the tree is node1, which also corresponds to the digest of T .

Each leaf node leafk where 0 ≤ k < 2N , corresponds to a key k and is labelled
with the value associated with that key if it exists or the hash of a default value
otherwise. Formally, if v = M(k) exists, leafk = v, else leafk = default, where
default is a predefined default value.

On the N th level of SMT (i.e. the leaf level), given by the set of 2N nodes
{nodeq}2N where 2N ≤ q < 2N+1, each nodej corresponds to a key k = (1 <<
N) + q and is labelled with the hash of the value associated with that key if it
exists, or the hash of a default value otherwise. Formally, if v = M(k) exists,
nodeq = H(v), otherwise nodeq = H(default).

For simplicity, we denote the nodes at the leaf level by L = {leaf0, · · · , leafk}
where 0 ≤ k < 2N .

Root Hash Update Algorithm. Here we outline the root hash update algo-
rithm implemented in zkSync Lite given a list of leaf operations. This algorithm
is divided into two phases. Consider an account tree T and a list of k operations
O = {oj}kj∈[0,2N). The first phase updates the leaves to their new values. For
each operation oj ∈ O, the algorithm traverses T from the root to leafj and
performs the operation. For example, if oj was an update balance operation,
then the balance of leafj is updated accordingly. At the end of this phase, all
accounts affected by O are updated. Note that when a leaf is updated to a new

3 https://etherscan.io/address/0xaBEA9132b05A70803a4E85094fD0e1800777fBEF.
4 https://github.com/matter-labs/zksync/blob/master/core/lib/types/src/lib.rs#

L84.

https://etherscan.io/address/0xaBEA9132b05A70803a4E85094fD0e1800777fBEF
https://github.com/matter-labs/zksync/blob/master/core/lib/types/src/lib.rs#L84
https://github.com/matter-labs/zksync/blob/master/core/lib/types/src/lib.rs#L84

6 B. Ma et al.

value, all nodes in its parent path need to be recomputed. This phase does not
concern the hash calculation and takes O(k log n) running time to perform k
updates.

The second phase re-computes the hashes of affected paths and returns the
new root hash. To compute the root hash, the algorithm traverses left and right
recursively from T ’s root to retrieve or compute the child hashes. Recursion
terminates when 1) an updated leaf is reached or 2) when all the child leaves of
the current nodes are unchanged from the first phase. In case 1), the leaf hash
is calculated and returned. In case 2), the current node hash is returned. As a
result of this recursive algorithm, the new root hash is calculated. This phase
takes O(k log n)H running time, where H is the running time of the chosen
hash function. Together, the root hash calculation process takes O(k log n) +
O(k log n)H.

The first phase occurs in the block producer module, while the second phase
occurs in the root hash calculator module. In the actual implementation, these
two phases are completed in two separate micro-services. The first phase occurs
in the “block producer” module, where the leaves are updates. Then, the second
phase happens in the “root hash calculator” module, where the new root hash
is computed. This separation takes the hash calculation computation overhead
away from the main service.

Inefficiencies. Above we described a two-phase algorithm implemented in
zkSync Lite to update the root state of the account tree given a list of k leaf
operations. As stated in the zkSync Lite code base5, there exists a bottleneck
that constrains the speed of the block producer producing blocks. If the block
producer’s speed exceeds the speed of root hash calculation, then the job queue
for the root hash calculator will increase indefinitely. Furthermore, we observe
that for each operation oj ∈ O, the path between the updated leafj and root
is traversed twice. The first traversal occurs when updating the account values
and the second time occurs when calculating the root hash.

4 One-Phase Batch Update on Sparse Merkle Tree

In this section, we first outline the basic functionalities of the three leaf
operations, SMT.InsertLeaf, SMT.UpdateLeaf and SMT.RemoveLeaf. Then, we
introduce a more efficient algorithm, SMT.BatchUpdate(O)→ R′ that takes in
a list of operations and returns the new SMT root. The pseudocode is outlined
in Algorithm 1.

4.1 Leaf Operation Algorithms

1. SMT.InsertLeaf(leafj) is a deterministic algorithm that inserts leafj into
the SMT by traversing from the root. It has a runtime of O(log n).

5 https://github.com/matter-labs/zksync/blob/master/core/bin/zksync core/src/
state keeper/root hash calculator/mod.rs#L21.

https://github.com/matter-labs/zksync/blob/master/core/bin/zksync_core/src/state_keeper/root_hash_calculator/mod.rs#L21
https://github.com/matter-labs/zksync/blob/master/core/bin/zksync_core/src/state_keeper/root_hash_calculator/mod.rs#L21

One-Phase Batch Update on Sparse Merkle Trees for Rollups 7

2. SMT.UpdateLeaf(leaf ′
j) is a deterministic algorithm that updates the value

of leafj to leaf ′
j . This algorithm assumes the existence of v = M(j). As such,

we can complete this algorithm in O(1).
3. SMT.RemoveLeaf(j) is a deterministic algorithm that updates the value of

leafj to default. Similar to SMT.UpdateLeaf, it assumes the existence of v =
M(j) and can be completed in O(1).

4.2 Batch Update Algorithm

SMT.BatchUpdate is based on bottom-up binary tree level-order traversal using
a queue data structure. It is broken down into two parts. In the first part (lines
4–9), we update the leaf nodes. In the second part (lines 10–19), we re-calculate
the hashes of nodes in the affected paths in a bottom-up fashion and eventually
return the new root hash. T.cache is a list of nodes that make up the tree.

Referring to lines 4 to 9, we first initialise an empty set parent set, which
we will use to store the indices of the direct parent nodes of the leaves that
we updated. We use a set data structure to avoid duplicated parents (i.e. if we
update both node4 and node5, then the parent node of both nodes, node2, will
only be added to the parent set once). Next, for each oj ∈ O, we apply oj to the
value M(j), calculate the new hash of leafj = H(M(j)) and add leafj ’s parent
node’s index to parent set. As a result of performing all operations, parent set
is filled with a set of node indices at a level above the leaf level (i.e. N − 1).

Referring to lines 10–19, given parent set, we first empty them into a queue
current level, which represents the indexes of the nodes we are updating. Next,
for each i ∈ current level we calculate and update H(nodei) by retrieving i’s chil-
dren hashes H(node2i) and H(node2i+1) from T . We are guaranteed to retrieve
the most recently updated children’s hashes because when we process indexes at
level n where 0 ≤ n ≤ N , nodes in n + 1 have already been updated. Then, we
add nodei’s parent index node�i/2� to parent set. We repeat this process until
we reach the root level of T . As a result, node1 (i.e. the root) will be updated
and returned.

Example. To illustrate the above algorithm, consider an SMT of depth 2 and
a list of operations O = {o0, o3, o1}. Figure 2 (A) shows the leaf level nodes that
are affected by O, they are L2 = {node4,node5,node7} and their corresponding
values in M (i.e. M(0),M(1),M(3)).

As a result of updating M and re-hashing L2 nodes, 2.B shows the updated
leaf nodes and M , and the parent nodes of L2 which are L1 = {node2,node3} as
dotted borders. Now, to re-hash node2, we retrieve node2’s children nodes which
are node′

4 and node′
5. The same can be done for node3. Figure 2 (C) shows the

result of re-hashing L1, and the parent nodes of L1, which is node1. In the end,
Fig. 2 (D) shows the final result of the algorithm and a new root hash.

8 B. Ma et al.

Algorithm 1. Sparse Merkle Tree Batch Update

1: Input: Sparse Merkle Tree T of depth N , List of leaf operations O = {oj}k
j∈[0,2N)

of size k.
2: Output: Root Hash H
3: procedure SMTBatchUpdate(T,O)
4: parent set ← Set()
5: for all oj ∈ O do
6: perform operation oj on leafj
7: calculate the new hash of leafj and update the value in T
8: parent set.add(leafj .parent)
9: end for

10: while parent set is non-empty do
11: current level = empty(parent set)
12: for parent pi in current level do
13: left child hash = get child hash(pi.left)
14: right child hash = get child hash(pi.right)
15: calculate the new hash of pi by using left child hash and right child hash

pi and update the value in T.
16: parent set.add(pi.parent)
17: end for
18: end while

return T.cache[ROOT index]
19: end procedure

4.3 Comparison

Table 1 compares the performance of the baseline and OBU for different types of
leaf operations, SMT.Commit, and SMT.BatchUpdate. The table assumes an SMT
of n leaves and a list of k operations. Although our SMT.BatchUpdate has the
same asymptotic time complexity, it is more efficient because the improvement
in SMT.UpdateLeaf and SMT.RemoveLeaf. Furthermore, the space complexity of
our algorithm remained the same as the baseline algorithm, which is O(2N).

Table 1. Asymptotic complexity comparison between OBU and the baseline. n is the
number of leaves, k is the number of operations in a block, and H is a hash operation.

Method zkSync Lite [21] OBU

SMT.InsertLeaf O(logn) O(log n)

SMT.UpdateLeaf O(logn) O(1)

SMT.RemoveLeaf O(logn) O(1)

|wi| O(logn) O(log n)

SMT.Commit O(k logn)H O(k logn)H

SMT.BatchUpdate O(k logn) +O(k logn)H O(k logn)H

One-Phase Batch Update on Sparse Merkle Trees for Rollups 9

Fig. 2. An illustration of the one-phase batch update example provided in Sect. 4.2.
Circle nodes are internal nodes, square nodes are data items with leaf indices, dotted
boarders represent the nodes that are currently in the queue, and an apostrophe on a
number represents the updated state of a node.

5 Experimental Analysis

We performed both micro- and macro-benchmarks to compare our algorithm
with the benchmark. The micro-benchmarks consisted of simple leaf operations
in single-threaded and multi-threaded settings. The macro-benchmark compared
the performance of the algorithms on real-world block data from zkSync Lite.
This section describes the experimental setup, the dataset used for the macro-
benchmark, and the multi-threading optimisation for SMT.BatchUpdate.

5.1 Experimental Setup

zkSync Lite is implemented in the Rust programming language [19] as an open
source project on Github6. We implemented Algorithm 1 on top of the existing
repository. Further, we also optimised our implementation for multi-threading
computation using the Rayon [4] library in rust.

The experiments are performed on an AWS c5.12xlarge Debian, 48 CPU, 96
GiB memory virtual machine. The SMT we used for our experiments has a depth
of 24, which is the same depth as the one in zkSync Lite. For each experiment,
we performed 10 runs and reported the average run time. The main metric we
use to compare performance is the percentage decrease in run time given by

%decrease in running-time =
new running-time − old running-time

old running-time
.

5.2 Dataset Collection

The macro-benchmark dataset contains 100 (block #299246- #299346) recent
blocks and their transactions which are collected through the zkSync Lite API [5]
and the zkSync Lite block explorer [6].

Of the 8376 transactions collected, 3971 are swap transactions, 1897 are
transfer transactions, 1428 are MintNFT transactions, 766 are ChangePubKey

6 https://github.com/matter-labs/zksync.

https://github.com/matter-labs/zksync

10 B. Ma et al.

transactions, 266 are deposit transactions, 47 are withdraw transactions, and
only 1 is a WithdrawNFT transaction. Details of these transaction types can be
found in Appendix C.

More than 70% of the transactions are dominated by ERC-20 token trans-
actions. To keep the experiments simple, we only considered the Transfer and
Swap transaction.

We also noticed that the transaction count for each block is inconsistent. The
maximum number of transactions observed was 133 while the minimum was 74.
This is the result of a combination of the gas limit reached and the appearance
of Priority Transactions such as Deposit and Withdraw during transaction pro-
cessing, which will cause the current block to be sealed and committed as soon
as it is processed (see Table 2).

We observed that there are many highly active accounts. In block # 299273,
out of 92 transactions, one leaf was included in 48 transactions, taking up more
than half of the block space. On average, each account produced 2.5 transactions
in our dataset (Fig. 3).

Fig. 3. Transaction count by type between
blocks 299264 and 299364

Table 2. Macro-benchmark dataset infor-
mation of zkSync Lite blocks 299246 -
299346

Statistic Value

Total # txs 8376

Max tx count in a block 133

min tx count in a block 74

Average tx count in a block 83

Unique accounts 3322

Average tx per account 2.5

5.3 Multi-threading Optimisation

Both the baseline and OBU can be optimised for multi-threading. In the baseline,
threads can be created in the recursive stage by visiting the child nodes. In OBU,
a thread can be created for every node that requires re-hashing in a level. Note
that in the baseline, the threads are nested as the tree is traversed deeper,
whereas in OBU, there are no nested threads.

6 Evaluation

6.1 Micro-benchmarks

In Sect. 2.1 we gave three categories of leaf operations: SMT.UpdateLeaf,
SMT.InsertLeaf, and SMT.RemoveLeaf. In the micro-benchmarks, we per-
formed simple leaf operations to demonstrate the effectiveness of our pro-

One-Phase Batch Update on Sparse Merkle Trees for Rollups 11

posed algorithm. Without losing generality, we did not include experiments for
SMT.RemoveLeaf operation as the implementation is similar to SMT.UpdateLeaf.

With Multi-threading. Figure 4 shows the performance comparison when
multi-threading is enabled. In Fig. 4 (A1), when the update operations are
applied to leaves with sequential IDs, we see that OBU outperforms the baseline.
We also note that the gap in runtime is increasing by an increasing factor. This
is expected because given k update operations, the baseline spends O(k log n)
on traversal and update, while with OBU, the update time is linear with respect
to k (i.e. O(k) update time).

In Fig. 4 (A2), we see that when the number of operations is small, we see
a larger percentage decrease in running time and as the number of operations
increases (10% decreases for 1000 updates), % decrease in running time shows
exponential decay. The initial large percentage decrease relates to how the two
algorithms use multi-threading. In the baseline, threads can be nested as deep as
24 levels, which can cause high computation overhead, whereas in OBU, there
is no such problem because threads end when the currently traversed level is
finished. Furthermore, the diminishing trend in Fig. 4 (A2) can be explained by
hardware limitations. In OBU, as the number of nodes we process on each level
increases, the number of concurrent threads becomes insignificant compared to
the number of nodes we need to process.

Figure 4 (B1) shows the runtime difference when the update operations are
applied to random leaf IDs taken from a uniform distribution. We note that
the improvement in runtime is worse visually compared to Fig. 4 (A1). This is
because when leaf IDs are randomly assigned, there are fewer common parents.
As such, the amount of computation of OBU approaches the baseline. However,
we also note that the trend shown in Fig. 4 (B2) is consistent with Fig. 4 (A2)
when it comes to the percentage of decrease in running time.

Figure 4 (C1) shows the runtime difference for when insert operations are
applied to leaves with sequential IDs. Both Fig. 4 (C1) and Fig. 4 (C2) show
consistent trends as Fig. 4 (A1) and Fig. 4 (A2) respectively.

Without Multi-threading. Figure 5 (A) shows the running time comparison
between the benchmark and OBU when running on a single thread. We note
that there is no visible performance improvement because the tree traversal
time O(k log n) is insignificant compared to the hashing time. This is further
demonstrated in Fig. 5 (B) when we only observe a slight improvement in the
percentage decrease in running time.

6.2 Macro-benchmark

We macro-benchmark the performance of OBU with the baseline using zkSync
Lite block data. As shown in Fig. 6, OBU almost always outperforms the baseline.
Overall, OBU performed, on average, 5.12% faster than the baseline, with the

12 B. Ma et al.

Fig. 4. Top row: root hash time in seconds comparison between benchmark and OBU
with various operation types. Bottom row: percentage decrease in root hash time with
various operation types. (with multi-threading)

highest percentage of decrease in time being 14%. Next, we analysed the blocks
that exhibited the highest/lowest performance improvement. Our observations
are as follows:

1. In the block with large percentage of decrease in time (i.e. in solid circles
in Fig. 6) we notice that most transactions in the block affected very few
accounts. This corresponds to a faster running time because OBU does not
repeatedly traverse the same account

2. In the blocks with negative percentage of decrease in time (i.e. in dotted
circles in Fig. 6), updates are spread across multiple accounts instead of just
a few accounts.

One-Phase Batch Update on Sparse Merkle Trees for Rollups 13

Fig. 5. A) Update operations on leaves with sequential leaf IDs performance compari-
son, no visible difference. B) Percentage decrease in running time with OBU compared
with baseline. (Single-threaded)

Table 3. Result statistics from the macro-benchmark.

Statistic Runtime Reduction (%, ms)

Mean 5.12%, 25.56

Medium 5.24%, 26.73

Standard Deviation 4.39%, 21.55

Variance 19.24%, 464.68

Minimum −3.81%, −20.67

Maximum 14.99%, 69.79

Range 18.80%, 90.46

Fig. 6. Percentage decrease in running time on zkSync Lite block data. The dotted
horizontal line is when the percentage of decrease is 0.

14 B. Ma et al.

7 Conclusion and Discussion

In this paper, we presented and evaluated OBU, a batch update algorithm
on sparse Merkle trees. The improvement can be summarised as follows. OBU
achieved a 50% decrease in run time by traversing the tree once instead of twice.
OBU uses threads more efficiently compared to the implementation presented in
zkSync Lite. This could reduce the hardware requirement to run an L2 operator.
More specifically, OBU reduced the run time by 50% for the SMT.InsertLeaf
operation. For SMT.UpdateLeaf and SMT.RemoveLeaf operations, the running
time is reduced from O(log n) to O(1) (see Table 1).

High Frequency Transaction Applications. The second improvement will
directly benefit applications with a higher frequency of transactions. Suppose
that a block has k transactions that affect a single account. Instead of travers-
ing the SMT k times in O(k log n) runtime, OBU will complete the operations
in O(k) runtime. This is evident in block #2992757 where 29 of the 47 trans-
fer/swap transactions in block. In this case, OBU achieved a 14.9% decrease in
running time.

7.1 Future Work

For future work, we first want to perform more integration tests in zkSync
Lite to better understand the advantages and drawbacks of OBU. Next, we
wish to see how our research can improve zkEVM, which is another prominent
blockchain scaling direction. Then, we want to see how our research may be
used for batch update in other authenticated data structures, such as Vector
Commitment schemes [14].

Acknowledgement. The authors extend their thanks to Sean Morota Chu, Ziyu Liu,
Nhi Nguyen, and Tim Yang for invaluable feedback on the manuscript, Barak Saini for
helping us understand zkSync Lite, and Hao Ren for LATEX formatting advice.

A zkSync Lite Details

A.1 Design

Like most L2 solutions, zkSync Lite has two main components: on-chain and
off-chain. The on-chain component includes several Solidity Smart Contracts
deployed8 on the Ethereum mainnet. The off-chain component includes several
microservices that facilitate L2 transaction executions and SNARK generation.

7 https://zkscan.io/explorer/blocks/299275.
8 https://etherscan.io/address/0xaBEA9132b05A70803a4E85094fD0e1800777fBEF.

https://zkscan.io/explorer/blocks/299275
https://etherscan.io/address/0xaBEA9132b05A70803a4E85094fD0e1800777fBEF

One-Phase Batch Update on Sparse Merkle Trees for Rollups 15

A.2 On-Chain

The on-chain component has three main contracts.
The first one is the zkSync main contract. It stores L1 user funds, bridges

funds between L1 and L2 with Deposit and Withdraw transactions, accepts
committed blocks and block proofs from the operator, verifies block proofs, and
process withdrawal transactions by executing blocks. Users can deposit $ETH
or ERC-20 tokens. However, the allowed ERC-20 tokens are determined by the
Security Council.

The second Smart Contract is Verifier. Given a committed block and a proof,
the Verifier contract verifies the proof to determine the validity of the state
transition caused by the transactions in the block.

The third Smart Contract is Governance. It has the functionalities to add
(but not remove) ERC-20 tokens to the whitelisted tokens, change the set of
operators, and initiate the upgrade of the contracts.

When L1 users wish to deposit/withdraw their funds to/from L2, they can
interact directly with the zkSync main contract.

A.3 Off-Chain

The off-chain component is divided into two main sub-components. The server
and the prover. An operator needs to run both sub-components in order to create
L2 blocks.

Server. The Server has the following modules [21]:

1. Ethereum Watcher: module to monitor on-chain operations.
2. State Keeper: module to execute and seal blocks.
3. Memory Pool: module to organise incoming transactions.
4. Block Proposer: module to create block proposals for state keeper
5. Committer: module to store pending and completed blocks into the database
6. API: module to allow users to interect with zkSync Lite to query block data

or submit transactions.
7. Ethereum Sender: module to sync the operations on zkSync Lite with the

Ethereum blockchain. It makes sure that the L1 transactions zkSync Lite
created (such as committing a block on-chain) are executed on-chain in the
correct order.

Prover. The Prover’s only job is to create block proofs given a block’s trans-
action witnesses. It regularly polls the Server for blocks that do not have a
corresponding SNARK. When a new block is available, Server sends the block’s
witnesses so the Prover can begin creating the block proof. Once finished, the
Prover returns the SNARK to the Server and the server sends it to the on-chain
Smart Contract to be verified.

16 B. Ma et al.

B zkSync Lite Transaction Flow

Below we describe the transaction flow on zkSync. First, we provide an end-to-
end description from L2 transaction submission to L2 block finalisation on-chain.
Then, we zoom in on the Server to describe the flow within the Server in details.

B.1 Overall Transaction Flow

Referring to Fig. 7 for a simplified representation of zkSync Lite. When a user
submits a transaction, it is placed into the memory pool (mempool) waiting to be
collected by the Server. The server periodically collects a queue of transactions
from the mempool, in submission order, and puts them into blocks. After the
blocks are formed, they are committed to the L1 Smart Contract and stored in
the database. At this moment, although the block information is on-chain, they
are not finalised. These blocks in this state are known as the “committed block”.

At the same time, available Provers poll the Operator for proof generation
jobs. When there are blocks without a proof, the Operator will generate and
send the block witnesses to the Prover, who will use the witnesses to generate
and return the block proof. Once the operator receives the block proof, it will
send it to the L1 Smart Contract for verification.

The Verifier contract verifies the block proof along with the committed block
data. The L2 Smart Contracts updates the block’s from committed to finalised
when the proof is validated.

For priority transactions (listed in Sect. C) that are submitted directly to the
L1 Smart Contract, they are tracked by the Operator and added to the mempool
into a priority queue.

B.2 Transaction Flow Within Server

Looking specifically into the Server shown in Fig. 8, as blocks are created by the
block producer, they are sent to the State Keeper. The State Keeper processes
the transactions in the blocks and update the accounts’ balances accordingly.
Although it stores the Account Tree, it does not update the Account Tree’s root
hash. It delegates the computation intensive job to the Root Hash Calculator,
where the re-hashing of the tree is done. Once a block is completed with a root
hash, it is committed to the database.

As the Prover polls for committed blocks, the Witness Generator will gener-
ate transaction witnesses and send to the Prover.

One-Phase Batch Update on Sparse Merkle Trees for Rollups 17

Fig. 7. An illustration of transaction flow within zkSync Lite from transaction submis-
sion to L2 block finalisation.

C zkSync Transaction Types

As mentioned above, zkSync Lite supports a number of transaction types. Here,
we give a brief description of these transaction types. Full descriptions can be
found in [21]. There are two main categories of transactions on zkSync: normal
and priority transactions. Priority transactions are handled by the operator dif-
ferently during the L2 block creation process. Given a queue of transactions from
the mempool, and an operator continually placing transactions into blocks, as
soon as a priority transaction is processed, the current block is sealed and com-
mitted regardless of remaining gas in the block.

C.1 From Transactions to Leaf Operations

One or more accounts can be affected as a result of a transaction. For example, a
transfer transaction adds to the receiver’s balance, as well as deducting from the
sender’s balance. To make the account leaf updates atomic, zkSync breaks down
each type of transactions into their a number of leaf operations. Each operation
only affects one account leaf at a time.

In the following sections, as we describe the transaction types, we include
the number of operations to which they can be broken down.

18 B. Ma et al.

Fig. 8. An illustration of transaction flow zkSync Lite server.

C.2 Normal Transaction Types

1. Transfer: Transfer funds between rollup accounts. It translates to two
SMT.UpdateLeaf operations. The first decreases the sender balance, and the
second increases the receiver balance.

2. Transfer to new: Transfer funds to a new account. This transaction type is
derived from Transfer and happens when the to account doesn’t exist in the
AccountTree. Before the transfer of funds, a new account will be created for
to account. It translates to an update and an SMT.InsertLeaf operation.
The first one decreases sender balance, and the second one inserts a new
account leaf.

3. Withdraw: Withdraw funds from the L2 account to the indicated Ethereum
address. It translates to an SMT.UpdateLeaf operation where the balance of
the withdrawal account is decreased.

4. Withdraw NFT: Withdraw NFT from the L2 account to the indicated
Ethereum address. It translates to two SMT.UpdateLeaf operations. The first
removes the NFT from the owner account and the second removes the NFT
from the creator’s account.

5. Mint NFT: Mint an NFT token inside L2. It translates to two SMT.UpdateLeaf
operations. The first adds the NFT to the receiver’s account, and the second
updates the creator’s account.

6. Change pubkey: Change the public key used to authorise transactions for an
account. This can be useful when a user wishes to delegate the account to
another user or Smart Contract wallet with a different Ethereum address
without the need to expose their own private key. It translates to an
SMT.UpdateLeaf operation on the sender’s account where the public key is
updated.

One-Phase Batch Update on Sparse Merkle Trees for Rollups 19

7. Forced Exit: Withdraw funds from L2 accounts without the signing key to
the appropriate L1 address. These accounts are known as unowned accounts.
It translates to SMT.UpdateLeaf and SMT.RemoveLeaf operations. The first
up decreases the sender’s balance, and the second one removes the account
leaf and replaces it with a default node.

8. Swap: Perform an atomic swap of ERC-20 tokens between two L2 accounts at
a defined ratio. Its operations are similar to the transfer transaction type.

C.3 Priority Transaction Types

1. Deposit: Deposit funds from Ethereum to L2. The funds are sent to the
zkSync Lite Smart Contract, which informs the operator to include a deposit
transaction in the next block. A new account is created if necessary. It may
translate to an SMT.UpdateLeaf operation, or an SMT.InsertLeaf opera-
tions. The operation is SMT.UpdateLeaf when the account already exists. On
the other hand, the operation is SMT.InsertLeaf when a new account needs
to be created.

2. Full exit: In the event that a user thinks the operator has censored their
transactions, they can submit a Full exit transaction directly to the Smart
Contract. The operator will process the transaction accordingly. Its operations
are the same as Forced exit

In the event that a priority transaction has not been processed for more than a
week, the system will enter the exodus mode and the operators will stop working,
and every user can use an exit tool9 to withdraw their asset by submitting a
proof of balance to the L1 smart contract.

D zkSync Lite Sparse Merkle Tree Usage

zkSync Lite uses the SMT in three separate places as a data accumulator. They
are the account tree, the circuit account tree, and the balance tree.

Account Tree. The Account Tree10 is a binary SMT of depth 24. It is the
main data structure that stores the state of the zkSync Lite accounts. Its leaves
are the accounts on zkSync. The leaf hash is the rescue hash [8] of an account’s
fields concatenated in their respective little-endian bit representation.

The leaf indices are the same as the account IDs, which are mapped to
account addresses. Empty leaves are replaced with a default hash.

9 https://github.com/matter-labs/zksync/tree/master/infrastructure/exit-tool.
10 https://github.com/matter-labs/zksync/blob/master/core/lib/types/src/lib.rs#

L84.

https://github.com/matter-labs/zksync/tree/master/infrastructure/exit-tool
https://github.com/matter-labs/zksync/blob/master/core/lib/types/src/lib.rs#L84
https://github.com/matter-labs/zksync/blob/master/core/lib/types/src/lib.rs#L84

20 B. Ma et al.

Circuit Account Tree. The purpose of the Circuit AccountTree is to generate
compatible transaction witnesses so that the Prover can create the block proof.
The Circuit Account Tree is structured similar to the AccountTree except for
two main differences: 1) account data are encoded as field elements and 2) each
account uses an SMT to track balances for each type of token (Balance Tree)
instead of using a simple hash map. The Circuit AccountTree is derived from
AccountTree.

Balance Tree. As mentioned above, the Balance Tree is a part of the account
leaves in the Circuit Account Tree. It is an SMT of depth 8. Each leaf in the
Balance Tree represents the balance of the token with the id the same as the
leaf index.

References

1. https://www.immutable.com/products/immutable-x
2. https://ethtps.info/
3. https://matter-labs.io/
4. https://github.com/rayon-rs/rayon
5. https://docs.zksync.io/api/
6. https://explorer.zksync.io/
7. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core.

Technical report, Uniswap, Technical Report (2021)
8. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of

symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol., 1–45 (2020)

9. Aztec: https://aztec.network/
10. Bauer, M.: Proofs of zero knowledge. arXiv preprint: cs/0406058 (2004)
11. Buterin, V.: An incomplete guide to rollups (2020). https://vitalik.ca/general/

2021/01/05/rollup.html
12. Buterin, V.: A rollup-centric Ethereum roadmap (2020). https://ethereum-

magicians.org/t/a-rollup-centric-ethereum-roadmap/4698/1
13. Buterin, V.: The limits to blockchain scalability (2021). https://vitalik.ca/general/

2021/05/23/scaling.html
14. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,

K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

15. Entriken, W., Shirley, D., Sachs, N.: ERC-721: non-fungible token standard.
Ethereum Improvement Proposals, no. 721 (2018)

16. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
Lagrange-bases for Oecumenical noninteractive arguments of knowledge. Cryptol.
ePrint Arch. (2019)

17. Khan, D., Jung, L.T., Hashmani, M.A.: Systematic literature review of challenges
in blockchain scalability. Appl. Sci. 11(20), 9372 (2021)

18. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

https://www.immutable.com/products/immutable-x
https://ethtps.info/
https://matter-labs.io/
https://github.com/rayon-rs/rayon
https://docs.zksync.io/api/
https://explorer.zksync.io/
https://aztec.network/
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698/1
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698/1
https://vitalik.ca/general/2021/05/23/scaling.html
https://vitalik.ca/general/2021/05/23/scaling.html
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12

One-Phase Batch Update on Sparse Merkle Trees for Rollups 21

19. Klabnik, S., Nichols, C.: The Rust Programming Language. No Starch Press, San
Francisco (2023)

20. Kumar, M., Nikhil, N., Singh, R.: Decentralising finance using decentralised
blockchain oracles. In: 2020 International Conference for Emerging Technology
(INCET), pp. 1–4. IEEE (2020)

21. Labs, M.: zkSync: scaling and privacy engine for Ethereum (2020). https://github.
com/matter-labs/zksync

22. Loopring: https://loopring.org/
23. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure

sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30 (2016)

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Busi-
ness Review, p. 21260 (2008)

25. Negka, L.D., Spathoulas, G.P.: Blockchain state channels: a state of the art. IEEE
Access 9, 160277–160298 (2021)

26. Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A.: Blockchain and IoT
integration: a systematic survey. Sensors 18(8), 2575 (2018)

27. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White pap.,
1–47 (2017)

28. Rocket, T., Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.G.: Scalable and
probabilistic leaderless BFT consensus through metastability. arXiv preprint:
arXiv:1906.08936 (2019)

29. Tijan, E., Aksentijević, S., Ivanić, K., Jardas, M.: Blockchain technology imple-
mentation in logistics. Sustainability 11(4), 1185 (2019)

30. Visa: https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-
technology/aboutvisafactsheet.pdf

31. Vogelsteller, F., Buterin, V.: ERC-20: token standard. Ethereum Improvement Pro-
posals, no. 20 (2015)

32. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger
33. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: scaling blockchain via full

sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 931–948 (2018)

https://github.com/matter-labs/zksync
https://github.com/matter-labs/zksync
https://loopring.org/
http://arxiv.org/abs/1906.08936
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf

	One-Phase Batch Update on Sparse Merkle Trees for Rollups
	1 Introduction
	2 Preliminaries
	2.1 Leaf Operation
	2.2 Sparse Merkle Tree

	3 Related Work
	4 One-Phase Batch Update on Sparse Merkle Tree
	4.1 Leaf Operation Algorithms
	4.2 Batch Update Algorithm
	4.3 Comparison

	5 Experimental Analysis
	5.1 Experimental Setup
	5.2 Dataset Collection
	5.3 Multi-threading Optimisation

	6 Evaluation
	6.1 Micro-benchmarks
	6.2 Macro-benchmark

	7 Conclusion and Discussion
	7.1 Future Work

	A zkSync Lite Details
	A.1 Design
	A.2 On-Chain
	A.3 Off-Chain

	B zkSync Lite Transaction Flow
	B.1 Overall Transaction Flow
	B.2 Transaction Flow Within Server

	C zkSync Transaction Types
	C.1 From Transactions to Leaf Operations
	C.2 Normal Transaction Types
	C.3 Priority Transaction Types

	D zkSync Lite Sparse Merkle Tree Usage
	References

