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Chapter 4
Feature Extraction

An image is worth 1,000 words. Yet, a machine to describe a picture or a color im-
age is not trivial. Of course, some measurements can easily be estimated such as 
different colors, their intensities, size and dimensions of certain objects if the object 
can be specified. Yet, the most difficult aspect is to make the decisions as to what 
constitute an object. In a scene consisting of hand gesture or gestures and a cluttered 
background, difficulty lies in interpreting these items. Perhaps, the hand gesture 
recognition offers some help compared to other problems as skin detection can be 
used to define a hand as was discussed under Pre-processing in Chap. 3. Yet, even 
when a hand is detected and isolated, what configuration the hand shows is again a 
difficult question to address.

Feature extraction attempts to extract certain measureable inputs that can be used 
to classify a section of a signal. If the isolated section of an image contains what the 
humans interpret as a hand sign with a ‘thumbs up’ gesture, then it is important to 
extract information that would make this gesture unique compared to other possible 
gestures. The success of any classification relies on the ability to develop unique 
and robust features. As would be detailed in Chap. 6 on Sign Languages, even the 
same user would not be able to precisely perform the same gesture again. That is to 
say any gesture has certain variability and the certain degree of uniqueness among 
other gestures. Humans have evolved in a more subtle way to remember and under-
stand this variability and uniqueness. To develop machine capabilities to interpret 
this information from an image is not trivial. Therefore a robust feature or set of 
features should uniquely describe the gesture in order to achieve reliable recogni-
tion. In other words, different gestures should result in different good discriminable 
features. Furthermore, shift and rotation invariant features lead to a better recogni-
tion of hand gestures even if the hand gesture is captured from a different angle.

This chapter contains few sections on different approaches to extract features 
that would make successful classification avoiding false positives. It would contain 
orientation histogram based feature extraction, the highly successful moment In-
variant feature extraction; Principal Component Analysis based feature extraction, 
other feature extraction methodologies based on color and few other feature extrac-
tion strategies that results in successful gesture classification.
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Before the discussion starts on successful features for better classification, it 
would be versatile to describe the attributes of a good feature. In the context of hand 
gesture recognition, good features are:

1.	 Compact set of data representing a unique gesture
2.	 Sufficient separation of feature clusters. Variety of distance measures such as 

Euclidean, Mahalanobis, etc. can be used to measure the distance between one 
gesture cluster and the other gesture clusters. The inter-cluster difference should 
be sufficient so that statistical variation of same gesture by different users at dif-
ferent times should not confuse the gesture classification.

3.	 The features should cluster well for different users with different hand sizes and 
different skin colors and gesture orientations (the features should be invariant)

4.	 The features obtainable in realtime

4.1 � Fourier Descriptors (FD) 

Fourier descriptors have been the first features used to describe shapes in image 
processing and computer vision [1–7]. They have been used for fingerprint recogni-
tion as way back as in 1972 due to its simplicity in describing contours which are 
invariant to scale, shift and rotation [2]. Due to these attributes, they are equally 
suitable for describing hand gestures.

Figure 4.1 outlines a closed contour that can be described effectively by Fourier 
Descriptor. To describe point X on the curve as shown above using the arc length s 
from the origin O, a relationship has to be established using the angle that is formed 
when two tangents from O and X meets as shown above. Then this point is uniquely 
described by the angular variation ( )tΦ such that:

( ) ( )  2 / .wht t t t se e Lr π= Φ − =Φ

In order to introduce the property of scale invariance, the length of the arc is normal-
ized such that entire contour spans an angle of 2 π . This function is real, continu-
ous, and periodical with a period 2 π and hence can be described by a Fourier series:

4  Feature Extraction

Fig. 4.1   Description of a 
point X with respect to origin 
O using Fourier descriptor
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The set of modules of the coefficients ak is called Fourier descriptors which can 
be used to describe various shapes such as leaves, finger prints and human hand 
postures.

Researchers have used extensions to basic Fourier descriptors to analyse shapes 
with increasing complexity. Lin and Hwang [8] showed that an alternative repre-
sentation of the Fourier series is possible using elliptic Fourier features. In their ap-
proach, a shape was interpreted as a specific composition of feature ellipses having 
fixed axis lengths and fixed relative positions and orientations. It was shown that 
a shape can be represented by a set of ellipses which were rotation and translation 
invariant. Each ellipse also contained invariant major and minor axis lengths and 
each pair of ellipses had a specific position and orientation. Lin and Jungthirapanich 
[9] further developed the 2D elliptic Fourier descriptor to a 3D descriptor. Harding 
and Ellis developed the concept further with to show that using the FD on a set of 
trajectory data, it would be possible to recognize a range of pointing gestures that is 
invariant to natural variations due to the single individual or a ‘normal’ population. 
The 2D spatial data of a sequence of hand centroids was obtained using a single 
camera, but had the potential to be extended to 3D spatial data.

4.1.1 � Elliptic Fourier Descriptors

As shown in Fig. 4.1, a point on a contour can be described by a coordinate pair 
which can be represented by a complex number z( k) = x( k) + jy ( k), so that the dis-
crete Fourier transform of z( k) is [10]:
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For u = 0, 1,.. N − 1.
The obtained a( u) coefficients describe the contour. In order to attain translation 

invariance of this feature, the DC component of the Fourier series given by a(0) 
removed from the sequence and the rest of the components are scaled by a(1) so that 
the feature incorporates scale invariance [10]. The origin of the sequence is encoded 
into the phase of a(u). The consequence of origin selection is illustrated in Fig. 4.2 
as it would change the orientation of the contour. An ellipse can be modeled as a 
positive and negative sequence of differing amplitudes. If the phase shift affecting 
both sequences is θ the orientation angle, then the sequence is:

( ) ( )  j j
pos negA e and A eϕ θ ϕ θ+ + − +
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The orientation angle, θ can be found by taking the average of the positive and 
negative sequence phase. The direction and shape of the ellipse depends upon the 
magnitude of Apos or Aneg. The relative size of Apos and Aneg affects direction of revo-
lution of the ellipses.

The representation of closed contours based on elliptical basis functions is de-
scribed in detail by Lin and Hwang [8]. They mathematically demonstrated that a 
closed contour can be described by its Fourier descriptor feature matrices. A shape 
can be viewed geometrically as the locus generated by properly moving the feature 
ellipses.

Harding and Ellis [10], developed hand tracking method based on the work of 
Lin and Hwang. As shown in Eq. 1, the complex frequency domain data generated 
by the Fourier descriptor technique is generated by a discrete Fourier Transform 
algorithm. The number of harmonics generated was equal to the number of samples, 
N. The sample lengths were all normalized to the same length (64) by a multirate 
process. They used sixty four samples to encode a typical gesture that was complet-
ed within two seconds, at a sample rate of 30 frames per second, and additionally 
aided the speed of FFT implementation. Figure 4.3 shows ‘elliptic corkscrews’ and 
the overall trajectory for a gesture- To Left Should and Return.

Conseil et al. [11] developed a Fourier descriptor based method to represent hand 
gestures in an attempt to compare the performance accuracy of Fourier descriptor to 
Hu Moment based (this is discussed in Sect. 4.3.1) approaches. They used Triesch 
hand posture database and defined their own gesture vocabulary, with 11 gestures, 
and performed the acquisition of a large number of images, with 18 persons, and 
approximately 1,000 images per gesture per person [12].

They claimed that the tests were performed on a more realistic database, with 
various hand configurations realized by non-expert users. The learning was done 
with manually selected images of an expert user, with nearly 500 images per ges-
ture. In the tests, they used 6 Fourier descriptors and initially validated the learning 
stage by running classification on the learning images, and obtained recognition 
rates of 98.11 % for Hu moments and 99.96 % for Fourier descriptors. Then im-
ages of the other users were classified using this learning data, with approximately 
1,000 images per gesture for each user. They obtained a total of 86.22 % for Fourier 

4  Feature Extraction

Fig. 4.2   Different starting points due to different orientations. (Courtesy of [8])
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descriptors versus 71.08 % for Hu moments. They also observed that FD outper-
formed Hu moments in terms of discrimination between visually close gestures. 
Figure 4.4 shows that the low frequency coefficients contain information on the 
general form of the shape and the high frequency coefficients contain information 
on the finer details of the shape.

One of the earliest works of hand gesture recognition using gesture feature ex-
traction was attempted by Utsumi et al. in 1995 [18]. They proposed very simple 
feature extraction method that relied on centre of gravity of the hand and the finger 
locations based on Fourier descriptors. However, they used multiple cameras and 
tracked 3D position, posture, and shapes of human hands from multiple viewpoint 
images. This reduced self-occlusion and hand-hand occlusion by employing multi-
ple-viewpoint and viewpoint selection mechanism. Each hand position was tracked 
with a Kalman filter and the motion vectors were updated with image features in se-
lected images that did not include hand-hand occlusion. In their approach, 3D hand 
postures were estimated with a small number of reliable image features using COG 
and fingertip positions. These features were extracted based on distance transforma-
tion, and were found to be robust against changes in hand shape and self-occlusion. 
Finally, a “best view” image was selected for each hand for shape recognition. The 
shape recognition process was based on Fourier descriptors. The outline of their 
approach is depicted in Fig. 4.5.

4.1 � Fourier Descriptors (FD)�

Fig. 4.3   Left: 3D, Right: 2D, view of the first 4 ‘elliptic corkscrews [8]’,‘.’ and overall trajectory 
(‘-’) of gesture ‘To left shoulder and return’. (Courtesy of [10])
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4.1.2 � Modified Fourier Descriptors

Licsár and Szirányi applied a boundary-based Fourier descriptors for feature ex-
traction based on widely used for shape description method used for content-based 
image retrieval systems [14, 15]. The extracted features were classified using neural 
networks classification algorithms [16, 17] resulting in about 91 % recognition rate 
for 6 gestures. In their method, the gesture contours were classified by the nearest 
neighbor rule and the distance metric based on the Modified Fourier Descriptors 
(MFD) [15]. This metric is invariant to the rotation, transition, reflection and scal-
ing of shapes. The strategy requires that the examined shape should be defined by 

4  Feature Extraction

Fig. 4.5   COG Detection. (Courtesy of [13])

 

Fig. 4.4   Example of reconstruction with FD, as a function of the cut-off frequency, with an initial 
contour sampled at 64 points. (Courtesy of [12])
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a feature vector, which is periodic, to expand it into Fourier series. The approach 
generated a feature sequence between the two wrist points, as shown in Fig. 4.6, 
along the shape boundary leading to more unambiguous features. This is due to the 
fact that the shape contours of the palm when showing only the index or the thumb 
finger is very similar to each other, while the contour between wrist points are dis-
tinctively different. The defined boundary sequence was constructed as a complex 
sequence of the x and y coordinates of the boundary points. These boundary points 
were then used to calculate the discrete Fourier transform (DFT) of this complex 
sequence. They further used the magnitude values of the DFT coefficients to retain 
invariance to rotation and extended the MFD method to obtain symmetric distance 
computations. They reported that when the trainer and the user were the same, rec-
ognition rates were above 97 % while different users resulted in an accuracy around 
86 %.

4.2 � Contour Description using 1D Sequence

Fourier descriptors always had a strong appeal as an excellent descriptor of the 
shape boundary or contour with invariance for translation, scale, rotation and re-
flection or mirror image offered by MFD techniques. One of the drawbacks in the 
Fourier descriptor is that the non-smooth contours result in very poor description 
of the shape resulting in classification error. Even though many researchers will-
ingly state this in their research, this is indeed the reason why many others devi-
ated from the very promising Fourier descriptors. Malima et al. in 2006 reported a 
new development inspired by Fourier descriptors to recognize hand gestures [18]. 
Their approach had limited focus and was not intended to develop a highly accurate 

Fig. 4.6   Gesture vocabulary and segmentation result. (Courtesy of [14])
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system as their gesture recognition was used to control a robot arm. Nevertheless, 
the approach had many positive developments.

As shown in Fig.  4.7, the initial step in extracting features was to select the 
region of importance. This is achieved by drawing a circle whose radius is 0.7 of 
the fartherest distance from the Centre of Gravity (COG). Such a circle is likely to 
intersect all the fingers active in a particular gesture as demonstrated in Fig. 4.7. 
Once the skin segmentation is performed and the image is binarized, the 1D signal 
or the feature vector that describes the gesture is obtained by tracking the circle 
constructed in the previous step. As conceivable, the uninterrupted ‘white’ portions 
of this signal correspond to the fingers or the wrist. The total transitions of zeros 
to one can be counted to indicate the signal. By subtracting one from this number 
removes the transition due to the wrist. Estimating the number of fingers leads to 
the recognition of the gesture. This process is shown in Fig. 4.8.

This algorithm simply counts the number of active fingers without any regard 
to which particular fingers are active. Different combination of active fingers may 
result in the same configuration. A user may potentially use any finger combination 
for ‘on’ or ‘off’ state to activate robotic commands which limits its use as a solid 

Fig. 4.8   Circle overlapping the hand ( left), binary image ( middle) and the zero-to-one transitions 
[18]

 

Fig. 4.7   Original image ( left) with circle overlapped and the skin segmented binary image ( right) 
with the circle with COG as the center. (Courtesy of [18])
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hand gesture recognition approach. This algorithm is scale invariant as any size of 
hand or image of a hand will result in the same 1D signal. It is also rotation invari-
ant, since the orientation of the hand does not hinder the algorithm from recognizing 
the gesture. In addition, the position of hand is also not an issue leading to transla-
tion invariance.

Fourier descriptor-based methods predominantly use edge contours as the source 
of features. Hasan and Misra proposed an approach where the edge map of gestures 
were remapped to 25 × 25 blocks with each block comprising the output of the edge 
map due to 5 × 5 pixels. The edge detection is achieved by convolving the binary 
image with a Laplacian Mask. Figure 4.9 shows the set of hand gestures they were 
using with skin segmented edge maps shown in Fig. 4.10. These edge maps were 
then normalized as shown in Fig. 4.11 and mapped to a 25 × 25 block feature map 
representation as shown on Fig. 4.11 (right most). This represents a hand gesture 
feature vector of size 625 (25 × 25) and the pixel value of the 25 × 25 block is deter-
mined by the following calculation:

B pixel valueineach block= ×∑ 5 5 .

4.2 � Contour Description using 1D Sequence�

Fig. 4.11   Normalization operation and features calculation via dividing the gesture edge map with 
remapping. (Courtesy of [19])

 

Fig. 4.10   Edges of the gestures. (Courtesy of [19])

 

Fig. 4.9   Set of gestures used by Hasan and Misra [19]
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Their primary objective was to establish a system which could identify specific hu-
man gestures and utilize these gestures to control machines in a natural way. They 
used HSV (Hue, Saturation and Value) color model for segmentation and identified 
a feature vector of 25 × 25 after remapping of edges as discussed earlier. Their ex-
periment showed that more that 65 % of these features were zero values which leads 
to minimum storage requirements and the recognition rate achieved surpassed 91 % 
using 36 training gestures and 24 different testing gestures. Their classification re-
sults are shown in Fig. 4.12 different gestures.

Li [20] attempted feature extraction techniques that were similar to Hasan and 
Misra, to classify hand gestures for robot control. It was called Fuzzy C-Means 
clustering technique however, the feature extraction stage remain very basic. In 
this approach, the segmented hand shape was converted into a feature vector. Their 
system used the approach designed by Wachs and Kartoun [21]. In this approach, a 
feature vector of the image with 13 parameters was created where the first feature is 
the aspect ratio of the hand’s bounding box. The other 12 features were the values 
representing a coarse discretization of the image, where each grid cell is the mean 
gray level in the 3 by 4 block partition of the input image. The mean values of each 
cell represented the average brightness of those pixels in the image. Figure 4.13 
illustrates typical user gestures, their binary representation after skin segmentation 
and the block mean gray scale values and the resultant feature vector on the third 
bottom row.

Initial research carried out prior to year 2000 focussed on less image process-
ing tasks compared to what is attempted today. The major reasons behind this were 
the amount of computing power available on ordinary desktop computers to the 
resolution and the accuracy of cameras and the maturity of the developmental tools 
and programming languages available at that time. Obtaining the hand outline for 
human computer interaction was first proposed by Segan and Kumar [22]. In their 
effort, the outline of the hand is extracted using an edge tracking algorithm. The 

4  Feature Extraction

Fig. 4.12   Recognition accuracy for each gesture. (Courtesy of [19])
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system was capable of recognizing both hand postures and gestures which was a 
remarkable feat at that time. In this approach, the local features were represented by 
the local extrema of the outline; peaks and valleys. The peaks are found at the finger 
tips, whereas the valleys are rather found in the regions where two integers join the 
palm of the hand. This is shown in Fig. 4.14.

Segan and Kumar restricted their system to identify one of four possible gesture 
classes: Point, Reach, Click, and Ground, shown in Fig. 4.15. Point and Reach are 
static gestures, while Click is a dynamic gesture that involves quick bending of the 
index finger. The Ground class includes all gestures other than the remaining three, 
as well as an empty image.

An image that belongs to the Point class, was further analyzed to compute the 
position and orientation of the pointing finger in the image plane, that is a three 
degrees of freedom (3DOF) pose ( x; y; ). The classification method consisted of 
two stages: an initial classification based on analysis of local features, and final 
classification involving a finite state machine.

Extracting the hand outline of the connected regions was extracted by comparing 
the input image with a previously acquired background image. After extracting the 
regions, the boundary of each region was represented as a list of pixel positions in a 

Fig. 4.13   Hand gestures in HSV space ( top row), their binary representation after skin segmenta-
tion ( middle row) and a gesture and its gray scale block feature vector ( bottom row). (Courtesy 
of [20])
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clockwise order. A heuristic screening of the regions based on perimeter length led 
to the identification of a hand.

The boundary of the region selected as a possible “hand” is further analyzed to 
extract local features. At each point the k-curvature measure at each point. The k-
curvature is the angle C( i) between two vectors [P ( i − k); P ( i)] and [P ( i); P ( i + k)], 
where k is a constant. The points along the boundary where the curvature reached 
a local extremum, that is the “local features”, were then identified. Some of these 
local features were labelled “peaks” or “valleys”. Peaks were defined as having a 
positive curvature above Pthr and the ‘Valleys’ were defined as having a negative 
curvature less than Vthr [22].

Fig. 4.15   Four possible 
gesture classes outlined by 
Segan and Kuma. (Courtesy 
of [22])

 

Fig. 4.14   Peaks ( circles) 
and valleys ( squares) used in 
initial gesture classification. 
(Courtesy of [22])
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One advantage of such features is the quick exclusion of inappropriate gestures 
using the number of peaks and valleys as indicators. One of the disadvantages was 
that this simplistic approach limited the available gestures to a minimum of four.

4.2.1 � Contour Description using Curvature Scale Space Features

In a race to develop ideal features that would separate hand gestures apart and brings 
each gesture by different users closer, Chang et al. presented a novel feature extrac-
tion approach based on Curvature Scale Space (CSS) for translation, scale, and rota-
tion invariant recognition of hand postures [23]. Initially, the CSS images were used 
to represent the shapes of boundary contours of hand postures followed by extrac-
tion of multiple sets of CSS features to overcome the problem of deep concavities 
in contours of hand postures [23]. These CSS images can then be classified using 
techniques such as nearest neighbour classification to establish matchings between 
multiple sets of input CSS features and the stored CSS features for hand postures. 
Chang et al. produced results to show the proposed approach was able to extract 
multiple sets of CSS features from input images with good recognition accuracy.

Mokhtarian and Mackworth [24, 25] first proposed the object contour-based 
shape descriptor based on the CSS image of the contour [23]. The CSS descriptor 
provides translation, scale and rotation invariant features of curves.

The curvature κ of a planar curve is defined as the derivative of the tangent angle 
φ with respect to the arc length s, as shown in Fig. 4.16 [23]. The curvature κ is 
written as follows [23–25]:

d

ds

ϕκ =

and Letting  { ( ),  ( ) [0,1]}T x u y u u= ∈ where T is the planar curve and u is the nor-
malize arc length parameter.

Curvature κ can be expressed in terms of u and σ, standard deviation as
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Fig. 4.16   The curvature of 
a planar curve. (Courtesy of 
[23])
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Where
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The function defined implicitly by ( , ) 0uκ σ =   is the CSS image of T [23–25].
In Chang et al.’s approach as outlined in Fig. 4.17, when an image is captured 

with a potential hand gesture, its contours are extracted using edge detection. It is 
important to have a continuous contour for the next steps to be successful. Then the 
contour is successively low-pass filtered with a kernel. For 201, 534, 640, 724 and 
731 iterations, the curvature of the curves determine the CSS image. This process is 
illustrated in Fig. 4.18. With each passing of low-pass filter, the contour smoothens 
as expected reducing the curvature in many regions.

A good set of features would be expected to be stable when a unique hand ges-
ture is made. Unfortunately, CSS is somewhat unstable with subtle gesture changes 
as seen in Fig. 4.19. Figure 4.19a and 4.19c denote the same hand posture 4.19b and 
4.19d show the respective CSS images of Fig. 4.19a and 4.19c. The locations of the 
largest peaks which are related to finger directions are unstable in the CSS images.

Fig. 4.17   Curvature scale 
space feature extraction and 
gesture matching. (Courtesy 
of [23])
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As shown in Fig. 4.19, the locations of the maximal peaks in the CSS image 
approximately correspond to the deep concavities in original hand posture contour 
corresponding to five fingers [23]. Chang et al. extracted multiple sets of CSS fea-
tures in order to overcome the above instability. They improved their recognition 
ability by confining their hand posture library to 6 as shown in Fig.  4.20. They 
reported a recognition rate of 98.3 %.

4.3 � Features from Karhunen Loeve (K-L) Transform

K-L Transform is well-known for its ability compact data. It is known as the ideal 
transform for data compression. This ability is very useful in shape description as 
the shape can be described with minimum number of coefficients opposed to oth-
er approaches. The K-L transformation is also known as the principal component 
transformation, the eigenvector transformation or the Hotelling transformation. The 
advantages are that it eliminates the correlated data, reduces dimension keeping 
average square error minimum and provides good clustering characteristics. It es-
tablishes a new co-ordinate system whose origin will be at the centre of the object 

Fig. 4.18   a shows the input hand posture. b is the contour of the hand posture. c to g show the 
resulting contours of the hand pose contour iteratively low-pass filtered by performing a convo-
lution with the (0.25, 0.5, 0.25) kernel for 201, 534, 640, 724 and 731 iterations, respectively. h 
shows the resulting CSS image. (Courtesy of [23])
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and the axis of the new co-ordinate system will be parallel to the directions of the 
Eigen vectors. It is often used to remove random noise.

Singha and Das recently proposed a technique for hand gesture recognition 
based on K-L transform [26]. Their system composition is shown in Fig. 4.21 for 
feature extraction. When they extracted binary hand image after skin segmentation 
and successive cropping, Canny edge detection was used for edge extraction which 
is then used for K-L feature extraction. K-L provides a mechanism to extract unique 
features for each gesture which are independent of human hand size and light illu-
mination which are uncorrelated with minimum entropy. As in the use of compres-
sion, K-L transform provides the best representation of a unique feature vector that 

Fig. 4.20   Hand posture 
library used by Chang et al. 
(Courtesy of [23])

 

Fig. 4.19   a and c are the same hand postures. b and d are the CSS images of a and c, respectively 
and shows that the locations of the largest peaks are unstable in the CSS images. (Courtesy of [23])

 



914.4 � Features Described by Histograms�

can be classified for gesture detection. Figure 4.22 shows hand gesture image along 
with the Eigen vectors obtained using K-L Transform. They managed to develop 
the system to recognize 10 different hand gestures with a recognition rate of 96 %.

4.4 � Features Described by Histograms

Histogram of Oriented Gradients (HOG) is a feature descriptor used in computer vi-
sion and image processing for the purpose of object detection. The technique counts 
occurrences of gradient orientation in localized portions of an image. This method 
is similar to that of edge orientation histograms, scale-invariant feature transform 
descriptors, and shape contexts, but differs as it is computed on a dense grid of uni-
formly spaced cells and uses overlapping local contrast normalization for improved 
accuracy.

Dalal and Triggs were the researchers who first described Histogram of Oriented 
Gradient descriptors in 2005 [27]. In this work they focused their algorithm on the 
problem of pedestrian detection in static images, although since then they expanded 
their tests to include human detection in film and video, as well as to a variety 
of common animals and vehicles in static imagery. Figure 4.23 shows the use of 
histogram of oriented gradient descriptor used in human detection as described by 
Suard et al. [28]. Figure 4.24 shows the histograms with different bin resolution of 
the region shown in a square of Fig. 4.24. What is observed here is that gradient 
orientation around an edge should be more significant than the one of a point in a 
nearly uniform region. It also highlights that the larger the number of bins, the more 
detailed the histogram is.

In the context of object recognition, the use of edge orientation histogram has 
gained significant popularity [29–32]. However, the concept of dense and local his-
tograms of oriented gradients (HOG) is a method introduced by Dalal et al. [27]. 
The aim of such a method was to describe an image by a set of local histograms. 
These histograms count occurrences of gradient orientation in a local part of the 
image [28].

Freeman and Roth were the pioneering researchers to test whether the use of his-
togram of local orientation would be useful as a feature in hand gesture recognition 

Fig. 4.21   K-L transform 
based feature extraction 
based on [23]
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Fig. 4.23   The gradient computation of an image. ( left) is the original image, ( middle) shows the 
direction of the gradient, ( right) depicts the original image according to the gradient norm [28]

 

Fig. 4.22   Features extracted for gesture ‘UP’ and ‘DOWN’ and their Eigen vector plots ( Right). 
(Courtesy of [26])
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[33]. They developed a training set that contained up to 15 histograms with their 
local orientation of various gestures. In their test phase, they compared another 
histogram of another gesture as shown in Figs. 4.25 and 4.26. The vector in the 
training database that was closest to the test vector was selected as the gesture was 
made. Even though their system was restricted to few gestures in today’s standards, 
there goal was to develop a fast and a robust system that could be implemented on 
a desktop (in 1994) with invariability to moderate illumination changes. The selec-
tion of orientation histogram as a feature vector to represent hand gestures offered 
robustness to lighting changes and translational invariance of the hand position. 
Furthermore, the histogram can be calculated very quickly.

In 2004, Zhou et al. proposed a static hand gesture recognition system based on 
local orientation histogram features [34]. In general, orientation histograms cannot 
be directly applied to hand gestures as the hand does not provide sufficient texture 

Fig. 4.25   Top row: Up down and right gestures and their orientation histograms shown on the 
bottom row. (Courtesy of [33])

 

Fig. 4.24   This figure shows the histograms of gradient orientation for ( left) 4 bins, ( middle) 8 
bins ( right) 16 bins [28]
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[35]. Since orientation histograms show the frequency of edges aligned in a cer-
tain angle, there might not be enough information available inside the hand area 
in order to uniquely describe a hand gesture. According to [33], the main problem 
that might arise is that hand gestures which look different to a human being, might 
have almost identical orientation histograms. Similar looking hand gestures due 
simply to rotation yield very different orientation histograms. However, in [34], 
it is found that the boundary of the hand shape contains enough information to 
uniquely describe the feature of a specific gesture. Therefore, the idea of local 
orientation histograms consists of creating overlapping subwindows, containing at 
least one pixel which lies inside the hand shape. For each of these subwindows, an 
orientation histogram is created, which is then added to the feature vector. Beside 
the local orientation histograms, subwindow positions are also added to the fea-
ture vector. These positions are measured relative to the median value of all pixel 
positions that were determined to be in the hand region. Clearly, the advantage of 
this technique lies in the improved robustness since using relative positions allow 
in-plane translations.

Misra et  al. proposed a hand gesture recognition system that employed the 
techniques developed for pedestrian detection to recognize a small vocabulary of 
7 hand gestures using Histogram of Oriented Gradients as the descriptors [36]. 
They claimed to use Partial Least Square (PLS) as a ‘class aware’ method of 
dimensionality reduction which performs better than Principle Component Analy-
sis (PCA) and preserved significant discriminative information in the lower di-
mensions. Three sets of databases consisting of training as well as testing image 
sets with varying degree of positional variation were developed to analyse the 

Fig. 4.26   Another instance of information similar to the ones shown in Fig. 4.25. The orientation 
histograms in this figure highlights that the gestures may be slightly different in each instance but 
their trajectory is unique to the gesture. (Courtesy of [33])
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importance of using multi-level HOG features for robust human hand gesture rec-
ognition. They demonstrated that using only low level HOG features were not 
adequate for high detection rate. They attained marginal degree of accuracy of 
detection of human hand gestures and the performance degraded due to the trad-
eoffs between the accuracy and positional variation of the hand. This was also due 
to the fact that simple brute-force implementation that they relied on using the 
k-nearest neighbor search algorithm to classify gestures was not effective. Their 
vocabulary of gestures were confined to only seven hand gestures as they were 
simply evaluating the feasibility of HOG descriptors and PLS reduction for hu-
man hand gesture recognition.

Many techniques exist that uses features derived from edge and gradient based 
descriptors for hand gesture recognition [37, 38]. Cluttered backgrounds with mul-
tiple users and skin-tone regions have hampered hand gesture recognition using 
such features as gradient based descriptors are only useful in simple uncluttered 
backgrounds. Dalal and Triggs [27] have demonstrated that for robust visual object 
recognition, Histogram of Gradients (HOG) descriptors can outperform many other 
gradient-based feature sets. The HOG descriptors are obtained using different block 
sizes on the same image and the blocks are contrast normalized to remove the il-
lumination variance. These descriptors are then concatenated to realize the final 
image descriptors. The HOG features are computed several times for each block in 
the image, resulting in multiple contributions to the final descriptor, with each cell 
being normalized with respect to a different block [27].

The HOG based method by Misra et al. uses the edge and gradient based tech-
niques developed for human detection for the problem of hand sign recognition. 
Similar features have been reported by other research [27, 37, and 38]. Some have 
used an array of moving spots [39], to recognize hand gestures, [40] presented a 
glove free solution to this problem.

The dimensionality of the final descriptors increases due to redundancy which 
needs to be curtailed for classical machine learning algorithms such as the k-nearest 
neighbor search algorithms to be discussed in the next chapter. Misra et al. used 
Partial Least Square regression technique for dimensionality reduction as it models 
relations between a set of observations by means of latent variables, and is aware 
of the classes into which the observations are classified [41]. They demonstrated 
that their PLS outperforms PCA in terms of classification of the training data into 
various hand gestures. They further demonstrated that PLS as the preferred method 
of dimensionality reduction. PLS is known to have a lower execution time than 
PCA which saves time in the learning phase [42]. HOG descriptors characterize 
the articulated gestures by the distributions of local intensity gradients. The feature 
extraction begins with the gradient computation for all the pixels of the image, with 
the largest of the gradient of three channels chosen as the gradient of the pixel. Each 
‘cell’ in the image has a histogram which is constructed using the directions and the 
magnitudes of pixel gradients in the cell. The features are accumulated over a block 
and are then normalized.
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4.5 � Zernike Moments

Zernike polynomials are a sequence of polynomials developed by a Nobel laureate 
mathematician Frits Zernike in 1934 [43]. These sequences are orthogonal on the 
unit disk and play an important role in beam optics. Zernike moments have been 
used in image construction as shown in Fig. 4.27.

Moments have been used in image processing and classification type problems 
since Hu introduced them in his groundbreaking publication on moment invari-
ants [44]. In 1962, Hu mathematically demonstrated that geometric moments can 
be made to be translation and scale invariant. Since then more powerful moment 
techniques have been developed. A notable example is Teague’s work on Zernike 
Moments (ZM) as a pioneer to use the Zernike polynomials (ZP) as basis functions 
for the moments [45]. ZM’s have been used in a multitude of applications with great 
success and some with 99 % classification accuracy [46].

Fig. 4.27   Image reconstruction with Zernike moments. Starting with (b), image is reconstructed 
gradually using higher Zernike moments
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The use of ZP’s as a basis function is theoretically beneficial because they are 
orthogonal polynomials which allows for maximum separation of data points, giv-
en that it reduces information redundancy between the moments. Their orthogonal 
properties make them simpler to use during the reconstruction process as well. Fur-
thermore, the magnitude of ZM’s is rotationally invariant, which is crucial for cer-
tain image processing applications, such as classifying shapes that are not aligned.

4.5.1 � Hu Moment Invariants

Hu demonstrated the utility of moment invariants through a simple pattern recogni-
tion experiment. The first two moment invariants were used to represent several 
known digitized patterns in a two-dimensional feature space [47]. An unknown 
pattern could be classified by computing its first two moment values and finding 
the minimum Euclidean distance between the unknown and the set of well-known 
pattern representations in feature space. If the minimum distance was not within a 
specified threshold, the unknown pattern was considered to be of a new class, given 
an identity, and added to the known patterns. A similar experiment was performed 
using a set of twenty-six capital letters as input patterns. When plotted in two-
dimensional space, all the points representing each of the characters were distinct. 
It was observed, however, that some characters that were very different in image 
shape were close to each other in feature space. In addition, slight variations in the 
input images of the same character resulted in varying feature values that in turn 
lead to overlapping of closely spaced classes. Hu concluded that increased image 
resolution and a larger feature space would improve object distinction [47].

Moment invariants algorithm has been known as one of the most effective meth-
ods to extract descriptive feature for object recognition applications. The algorithm 
has been widely applied in classification of aircrafts, ships, ground targets, etc 
[48–56]. Essentially, the algorithm derives a number of self-characteristic properties 
from a binary image of an object. These properties are invariant to rotation, scale 
and translation. Let f( i, j) be a point of a digital image of size M × N (i = 1,2, …, M 
and j = 1,2, …, N). The two dimensional moments and central moments of order 
( p + q) of f( i, j), are defined as:
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From the second order and third order moments, a set of seven moment invariants 
are derived as follows [44]:
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4.5.1.1 � Example of Invariant Properties of Hu Moments

Figure 4.28 shows images containing letter ‘A’, rotated and scaled, translated and 
noisy versions of letter ‘A’ and Fig. 4.29 shows letter ‘L’. Their respective moment 
invariants calculated using the moment invariants are shown in Tables 4.1 and 4.2. 
It is obvious from Table 4.1 that the algorithm produces the same result for the first 
three orientations of letter ‘A’ despite the different transformations applied upon 
them. There is only one value, i.e. Φ1 displays a small discrepancy of 5.7 % due 
to the difference in scale. The other values of the three figures are effectively the 
same for Φ2, Φ3, Φ4, Φ5, Φ6 and Φ7. The last letter, however, reveals the drawback 
of the algorithm: it is susceptible to noise. Specifically, the added noisy spot in the 
letter has changed the entire moment invariants set. This drawback suggests that 
moment invariants can only be applied on noise-free images in order to achieve 
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Fig. 4.28   Letter ‘A’ in different orientations

 

Fig. 4.29   Letter ‘L’ in different orientations

 

Table 4.1   Moment invariants of the different orientations of letter ‘A’
A1 A2 A3 A4

Φ1 0.2165 0.2165 0.204 0.25153
Φ2 0.001936 0.001936 0.001936 0.002161
Φ3 3.69 × 10−5 3.69 × 10−5 3.69 × 10−5 0.004549
Φ4 1.64 × 10−5 1.64 × 10−5 1.64 × 10−5 0.002358
Φ5 − 4.03 × 10−10 − 4.03 × 10−10 − 4.03 × 10−10 7.59 × 10−6

Φ6 7.21 × 10−7 7.21 × 10−7 7.21 × 10−7 7.11 × 10−5

Φ7 0 0 0 1.43 × 10−6

Table 4.2   Moment invariants of the different orientations of letter ‘L’
L1 L2 L3

Φ1 0.34028 0.31944 0.31944
Φ2 0.043403 0.043403 0.043403
Φ3 0.023148 0.023148 0.023148
Φ4 0.002572 0.002572 0.002572
Φ5 − 5.56 × 10−6 − 5.56 × 10−6 − 5.56 × 10−6

Φ6 − 0.00015 − 0.00015 − 0.00015
Φ7 1.91 × 10−5 1.91 × 10−5 1.91 × 10−5



100 4  Feature Extraction

the best results. Since the algorithm is firmly effective against transformations, a 
simple classifier can exploit these moment invariants values to differentiate as well 
as recognise the letter ‘A’ from other letters, such as the letter ‘L’.

4.5.1.2 � Application of Moment Invariants in Hand Gesture Recognition

The example in the previous section proved that moment invariants can be used 
for object recognition applications since it is rigidly invariant to scale, rotation and 
translation. The following account summarizes the advantages of moment invari-
ants algorithm for gesture classification.

For each specific gesture, moment invariants always give a specific set of values. 
These values can be used to classify the gesture from a sample set. The set of chosen 
gestures have a set of unique moments.

•	 Moment invariants are invariant to translation, scaling and rotation. Therefore, 
the user can issue commands disregarding orientation of the hand.

•	 The algorithm is susceptible to noise. Most of this noise, however, is filtered at 
the gesture normalisation stage.

•	 The algorithm is moderately easy to implement and requires only an insignifi-
cant computational effort from the CPU. Feature extraction, as a result, can be 
progressed rapidly and efficiently.

•	 The first four moments, Φ1, Φ2, Φ3, and Φ4 are adequate to represent a gesture 
uniquely and hence result in a simple feature vector with only four values.

In 2005, the author successfully used moment invariants for classifying hand ges-
tures to control consumer electronics with extremely high accuracy. This was partly 
due to the fact that selection of specific ten gestures resulted in a distinctive set of 
gestures which achieved good classification scores with Hu moments. The system 
was classified using a Neural Network approach [57]. Table 4.3 highlights the rec-
ognition accuracy for different hand gestures.

Table 4.3   Some hand gestures and their corresponding classification scores
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Feature extraction plays the most prominent role in any classification problem. 
Hand gesture recognition is no exception. Over the years, researchers have use d 
basic Fourier descriptor to exotic versions of Fourier descriptors such as Elliptic 
Fourier descriptors to modified Fourier descriptors to remove the limitations of fea-
ture extractions. Yet, poor results in classification further drove them to HOG to KL 
transform in an effort to robustly classify gestures. The authors personal involve-
ment in developing a feature extraction method based on Hu moments improved 
the classification of hand postures significantly that resulted in a pioneering gesture 
controlled interface for home entertainment.
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