
31

Chapter 3
Pre-processing

P. Premaratne, Human Computer Interaction Using Hand Gestures, 
Cognitive Science and Technology, DOI 10.1007/978-981-4585-69-9_3, 
© Springer Science+Business Media Singapore 2014

Computer vision is aimed at simulating the human visual system in order to ex-
tract useful information for machines to make decisions. A visual camera is usually 
used for this purpose which detects brightness, colour, texture and dimensions of 
an object in focus. When a camera captures scenery, it contains both ‘wanted’ as 
well as ‘unwanted’ information. If the camera is focussed on a person’s hand look-
ing for a possible gesture, then the ‘unwanted’ objects in the scenery would be 
the background which may contain the person’s body, clothing, other people, pets, 
walls, windows, curtains or any other equipment. Since the system is developed to 
respond to gestures, the system would try to extract only the ‘wanted’ information. 
However, as the system would not have the level of intelligence as a human, it relies 
on ‘clues’ to extract only the ‘wanted’ objects.

Recognizing the ‘wanted’ information poses many challenges in computer vi-
sion. In the case of hand gesture, how a machine would identify a hand with vari-
ous gestures that it could produce with different looking skin tones from around 
the world is difficult problem. This problem is even more compounded when hand 
gestures are captured in varying lighting conditions as the same hand would look 
different under different lighting conditions. Yet, the amount of knowledge that has 
been gathered in the past few decades will offer potential solutions to sift ‘wanted’ 
information from ‘unwanted’ clutter. This chapter will discuss many concepts of 
skin segmentation, morphological filtering, noise removal, and depth measure-
ments of objects in order to identify the ‘wanted’ information reliably in the context 
of hand gesture recognition.

The next section will detail the approach that a machine would take to look for 
human hand called ‘skin segmentation’. Once an object resembling human skin is 
detected, the system would expect to extract further information from this skin-tone 
region. However, due to poor lighting and other imperfections in the camera sen-
sor, the extracted skin looking region may turn out to be ‘noisy’ resembling rough 
edges and missing parts in a skin region. These imperfections would be removed 
using a process called morphological filtering as would be discussed later. Finally, 
recent developments in the camera technology that derives depth information to-
gether with visual information provides opportunities to remove unwanted areas 
in an image using depth information would be discussed at the end of this chapter.
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3.1  Skin Segmentation

Skin segmentation is the process of looking for skin-like regions or skin tone in a 
visual image. The purpose of skin segmentation lies in the applications of computer 
vision such as people detection and tracking, face detection and tracking and gesture 
recognition and tracking. Once detected, this information will lead to applications 
in door access control, crowd counting, robotic control and human computer inter-
action, removing pornographic content using internet filters and many other video 
applications. There have been other instances of applications in automatic video 
annotations where newscasters were detected using skin color present in face and 
hand regions [1] and in image retrieval from image archives. There are many similar 
applications where background is controlled or unlikely to contain skin color tones, 
skin color detection is used to detect human faces and hands in face recognition in 
controlled environments [2].

Human skin is relatively easy to detect in controlled environments. However, 
detection in uncontrolled settings such as in consumer digital photographs is gen-
erally difficult. The appearance of skin in an image depends on illumination, ge-
ometry and color when the image was captured [3]. The humans are known to be 
adept at recognizing color of objects in different illumination conditions known as 
color constancy. This is however, is not trivial for a machine to achieve with our 
present level of understanding of imaging. Algorithms need to be robust enough to 
deal with variations in lighting or illumination, color resolution, and imaging noise. 
There are also other issues where skin-tone colors are found in wood, leather, cer-
tain clothing, hair, sand, paints, etc. These materials cause the classifiers to record 
false positives when looking for skin-tones.

3.1.1  The Problem of Skin Detection

Skin detection problem is recognized as a classification problem in many com-
puter vision problems. In many common approaches, skin tones belonging to many 
ethnicities around the world under different lighting conditions are used to build 
databases to develop algorithms to classify them effectively. As would be discussed 
in the following sections, it has been found that the standard RGB color space is not 
the optimum color space for skin detection. Researchers have used experimental 
data to conclude that different color spaces have varying capabilities at extracting 
features or learning parameters to have better performance when extracting infor-
mation to classify skin tones. As shown in Fig. 3.1, it is logical to select a color 
space where skin tones are represented more compactly. In this graph, Asian, Afri-
can and Caucasian skin colors in R and G color spaces occupy different regions (sub 
images (a), (b) and (c)). However, these apparent different skin colors are confined 
to smaller area where they cluster together in UV, CbCr regions. This fact highlights 
why UV (from YUV color space) or CbCr (from YCbCr color space) is better than 
RGB color space in detecting skin tones.
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Forsyth and Fleck [4] have reasoned why human skin color has limited range of 
hues despite the appearance of different skin tones from different parts of the world. 
The skin tone of any ethnicity is simply formed by combination of blood which is 
red and melanin which is brown. Therefore, despite the appearance, human skin 
color clusters in a small area in any color space. Researchers have experimented 
with different color spaces in order to find a color space which is invariant to il-
lumination conditions [3].

Fig. 3.1  Skin color tones do differ dramatically with ethnicity from different parts of the world 
when compared in RGB color space but is more stable in CBCR, CIE Lab and UV spaces. (Courtesy 
of [3])
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There are two prominent approaches to skin segmentation practiced by research-
ers in this discipline; pixel based and region based. Pixel-based method classifies 
each pixel as skin or non-skin individually, independently from its neighbors. Meth-
ods utilizing color falls into this category. The region based method tries to take 
the spatial arrangement of skin pixels into account during the detection stage to en-
hance the performance. Region-based methods rely on additional knowledge such 
as texture of the color being investigated.

Skin color segmentation can be defined as the process of discrimination between 
skin and non-skin pixels. However, ambient light, shadows and the non-uniformity 
of imaging sensors in different cameras produce different tones that would result in 
different skin tones for the same person at different times. This makes it important 
that skin color determination is carried out in an appropriate color space where il-
lumination or lighting conditions does not affect the decision making. Furthermore, 
due to variety of different skin colors from different parts of the world, it would be 
intriguing to see whether skin segmentation could be effectively carried at all using 
machine vision. The following section on color spaces will answer these questions.

3.1.2  Appropriate Color Space for Skin Segmentation

RGB is the most prominent additive color space consisting of Red (R), Green (G) 
and Blue (B) channels. These channels are highly correlated and contain luminance 
or brightness information along with the chrominance value. However, due to the 
presence of luminance information in each channel, any color observed does not 
linearly correspond to human perception. In other words, due to presence of lumi-
nance, two slightly different colors (R, G, B combined) with different luminance 
may appear to be the same. As was shown in Fig. 3.1, RGB color space skin color 
for different ethnicities would spread so widely that its use in skin segmentation in 
the presence of other objects would be questionable.

There are other classes of color spaces in existence because of Television trans-
mission. The YUV contains Y luminance and U and V chrominance components. 
Unlike RGB, Y contains the entire luminance component making U and V inde-
pendent or invariant to illumination. YIQ is a similar color space which is used in 
NTSC Television format. YCbCr carries similar information to that of YUV and is 
used in JPEG based image compression standard. Figure 3.1 shows the benefit of 
using these color spaces opposed to RGB as they provide compact clusters invariant 
to ethnic background that would facilitate simpler classification approach [5–9].

Perceptual color spaces which have been developed the way how artists describe 
color, and its properties have also been used for skin segmentation research. Color 
spaces such as HSI, HSV and HSL are commonly used as they are much closer to 
human perception than the television broadcast related color spaces. Hue (H) has 
been described as the color and Saturation (S) which describes how ‘pure’ the color 
and brightness (I, V or L). HSV can be mapped from RGB using nonlinear mapping. 
Similar to YUV approach, H and S values are used for skin segmentation where 
intensity or the brightness value is disregarded to remove the sensitivity of the il-
lumination on skin segmentation results [5, 9].
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Such complexities can only be overcome if an approach can be devised where 
skin segmentation is invariant to most of these variables yet resulting in an ac-
ceptable discriminatory power of skin vs non-skin regions in an image. The an-
swer lies in some color spaces other than the most common RGB. Red, Green and 
Blue (RGB) color space is the most common color space used to represent images. 
RGB is an additive color space with Red, Green and Blue components carrying 
highly correlated information. John and Rehg [10] and Brand and Mason [11] have 
demonstrated that skin segmentation is possible in RGB space. However, there is 
overwhelming evidence that suggests RGB color space is not effective for skin seg-
mentation for variety of skin color from different parts of the world. Researchers had 
proposed using normalized RGB to obtain chromaticity information to classify skin 
pixels effectively. However, normalized RGB is plagued by uneven illumination 
[12–15]. The skin segmentation thresholds for RGB are given by Kovac et al. [16]:

For uniform daylight illumination:

R > 95, G > 40, B > 20

Max{R, G, B} min{R, G, B} < 15

R G > 15, R > G, R > B

−
−

Flashlight or daylight lateral illumination:

R > 220,  G > 210,  B > 170

R - G 15,  B < R,   B < G.≤

3.1.2.1  Normalized RGB

There have been efforts to remove discrepancies observed when different color 
combinations with varying intensity appearing similar in RGB space. One such 
suggestions is normalized color space given by following expressions:

, ,
R G B

r g b
R G B R G B R G B

= = =
+ + + + + +

 

(3.1)

Here r	=	1	−	g	−	b due to normalization. Hence, determining any two normalized col-
ors will completely define the color space. Gomez and Morales used a constructive 
induction approach to determine the skin map [17, 18]. Using the normalized RGB 
values they determined that the following thresholds resulted in best skin segmenta-
tion performance:

2 2( ) ( )

r r b r g
and

g r g b r g b
1.185, 0.107 0.112⋅ ⋅

> > >
+ + + +
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3.1.2.2  YCbCr, YUV and YIQ

Due to the linear nature of transformation between RGB and YCbCr, YCbCr is often 
used in people surveillance and skin color segmentation [19–22]. The YCbCr values 
are less computationally intensive to achieve compared to the HSV values and are 
computed as follows:
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The Y, U, V and YIQ values are similarly calculated from RGB using a linear conversions:
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(3.4)

As shown if Fig. 3.2, a hand gesture looks different in different color spaces. Yet, 
YCbCr offers the ability to separate skin tone from non-skin regions as shown in 
Fig. 3.3.

YCbCr thresholds for skin segmentation are:

b r77 C 127 and 133 C 173.≤ ≤ ≤ ≤

3.1.2.3  HSV, HIS, HSL—Hue, Saturation and Intensity (Value, Lightness)

Researchers have devised HSV (Hue Saturation and Value) and YCbCr color space 
to separate luminance and chrominance information. This separation of brightness 
information from chrominance leads to reduction in uneven illumination [23]. The 
HSV values are derived using the following expressions using RGB components:

2

(( ) ( ))

( ) ( )( )

1
R G R B

2H arccos
R G R B G B

− + −
=

− + − −

 
(3.5)



373.1  Skin Segmentation 

min( , , )R G B
S 1 3

R G B
= −

+ +
 

(3.6)
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1

V R G B
3

= + +

 

(3.7)

Tsekeridou and Pitas [18, 24], have obtained thresholds for skin segmentation using 
the following thresholds:

;  

; 

.

V 40

0.2 S 0.6

0 H 25 or 335 H 360° ° ° °

≥
< <

< < < <

Fig. 3.2  Hand gesture in RGB and YCbCr color spaces

 

Fig. 3.3  Correlation between Cr and Cb for Skin Patch and Non-Skin patch pixels
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Starting from a training data set composed of skin color samples, Garcia and Tiziri-
tas computed the color histogram in HSV color space, and estimated the shape of 
the skin color cluster [18, 25]. They found a set of planes by successive adjust-
ments depending on segmentation results, developing the thresholds shown be-
low which define six bounding planes found in the HSV color space case, where 

:H 180 180∈ −  
� �

;

( )

( )

( ( ) )

( ).

V 40

H 0.4V 75

10 S H 0.1V 110

if H 0 S 0.08 100 V H 0.5V

if H 0 S 0.5H 35

≥
≤ − +
≤ ≤ − − +

≥ ≤ − +
< ≤ +

Hue-saturation based color spaces stems from the humans desire to numerically 
specify the notions of tint, saturation and tone. Hue represents the dominant color 
(as in dominant wavelength) whereas saturation defines the ‘colorfulness’ of an area 
with respect to its brightness [26]. The amount of light or luminance, historically 
measured in lux, has lead to the notions of ‘intensity’, ‘lightness’ or ‘value’. The 
user is directed to the following references for deeper notions of color spaces in skin 
segmentation [27–31].

There are direct relationships among the brightness and the chrominance values 
which attempt to conceal the chrominance information. In 1999, Fleck et al. de-
veloped an alternative way of hue and saturation computation using log opponent 
values to reduce the dependence of chrominance on the illumination levels [32].

The polar coordinate system of Hue-Saturation spaces, as shown in Eq. 3.5, re-
sults in a cyclic form. This is inconvenient color space for parametric skin color 
models that need tight cluster of skin colors for best performance. A different repre-
sentation of Hue-saturation using Cartesian coordinates can be used [19, 33]:

cos , sinX S H Y S H= =

HSL and HSV are the two most common cylindrical-coordinate representations of 
points in an RGB color model. The two representations rearrange the geometry of 
RGB in an attempt to be more intuitive and perceptually relevant than the cartesian 
(cube) representation. Developed in the 1970s for computer graphics applications, 
HSL and HSV are used today in color pickers, in image editing software, and less 
commonly in image analysis and computer vision [34]. The relationship between 
RGB and HSL, and HSV are as follows:

max( , , )

min( , , )

M R G B

m R G B

C M m

=
=
= −

 

(3.8)
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otherwise
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(3.12)

HSL

0, if  C = 0

S = C
, otherwise

1- 2L - 1




 

(3.13)

3.1.2.4  TSL—Tint, Saturation and Lightness

A normalized chrominance-luminance TSL space is a transformation of the normal-
ized RGB into more intuitive values, close to hue and saturation in their meaning [19].
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where r′	=	r	−	1/3,	g′	=	g	−	1/3	and	r, g are defined as in Eq. 3.1 [19]. Terrillon et al. 
[35] have compared nine different color spaces for skin modelling with a unimodal 
Gaussian joint probability density functions (only chrominance components of the 
color spaces were used). They argue that normalized TSL space is superior to other 
color spaces for this task.

3.1.2.5  CIELAB Color Space

CIELAB color space has been devised to be perceptually uniform color space. Ac-
cording to Poynton et al., perceptual uniformity refers to “Digital image representa-
tion is perceptually uniform if a small perturbation of a component value—such as 
the digital code value used to represent red, green, blue, or luminance—produces a 
change in light output at a display that is approximately equally perceptible across 
the range of that value” [36]. Hence uniform color spaces were defined in such way 
that all the colors are arranged by the perceptual difference of the colors. However, 
the perceptual uniformity in these color spaces is obtained at the expense of heavy 
computational transformations. As shown in Eqs. 3.15, 3.16 and 3.17, the computa-
tion	of	the	luminance	(L)	and	the	chroma	( a, b) is obtained through a non-linear 
mapping of the XYZ coordinates [37]. CIE (Commission International d’Eclairage) 
specifies three: CIE*XYZ, CIE*Lab, and CIE*Luv. In CIE*Lab or CIELab, the 
three components represent luma or luminance (or illumination) component and ab 
represent the chroma or color information [38]. The relationship between RGB, and 
XYZ and a, b components are:

 

X 0.4125 0.3576 0.1804 R

Y 0.2127 0.7152 0.0722 G

Z 0.0193 0.1192 0.9502 B

   
   =    
    

 

 

 
 
   

(3.15)

1

3

n n

Y Y
116 - 16 if > 0.008856L Y Y

903.3 otherwise

    =   

 

(3.16)

 .,

1 11 1

3 32 2

n n n n

X Y Y Z
a 500 b 200

X Y Y Z

   
   = − = −   
       

(3.17)

The threshold values for skin segmentation under CIE LAB are: [39]
amax = 14, amin = 2, bmax = 18, bmin = 0.7. Figure 3.4 depicts the results of skin seg-

mentation under different color spaces.



413.1  Skin Segmentation 

The goal of skin segmentation is the rapid decision making of skin vs non-skin 
regions. This can be accomplished by a set of rules which would define valid re-
gions for skin in different color spaces. In the previous sections, for each color 
space, skin color thresholds were presented that were developed using extensive 
research over the years.

Pixel Based Skin Classification Using Non-parametric Skin Modelling The 
features used in skin classification are the values from color spaces. The problem 
then reduces to identifying a test pixel falls into the compact boundary or outside. 
Brand and Mason [40] constructed a simple one-dimensional skin classifier which 
would asses if the ratio between R and G channels falls in between particular upper 
and a lower bound. There are other approaches where the skin color region in a two 
dimensional color space (U, V or Cb, Cr, etc.) is modelled using an elliptical bound-
ary model [41]. The model parameters are estimated with the help of a large skin 
patch database.

There are other classification strategies using Bayesian probabilistic ap-
proaches using the knowledge of statistics. The classification relies on finding the 
P( skin|color) which is the probability of any color pixel being skin. This infor-
mation is almost impossible to be determined given that any color space having 
extremely high number of colors. However, by rewriting this expression using the 
following way simplifies the problem:

( | ) ( )
( | ) .

( | ) ( ) ( | ) ( )

P color skin P skin
P skin color

P color skin P skin P color nonskin P nonskin
=

+

Since finding information of P(color|skin) can be achieved using information 
gathered by recording human skin color from every part of the globe. Also the 
denominator signifies the total probability of observing color which does not af-
fect the classification as it is a constant. Therefore the problem reduces to finding 
P( skin|color) which can be estimated using histograms [13, 20, 28, 42–44], mixture 
of Gaussian models [30, 45] to approximate probability density functions.

Fig. 3.4  Example results of skin detection using static skin filters in different color spaces. Black 
shows non-skin. (Courtesy of [39])
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3.1.2.6  Region Based Skin Segmentation

Scientists overwhelmingly agree that for effective skin segmentation, it is natural to 
treat skin or non-skin as regions instead of individual pixels [45]. This would reduce 
the amount of noise that is present when isolated skin-tone ‘patches’ are erroneously 
classified as skin. Some of the early work on region based skin segmentation was 
reported by Yang and Ahuja on Gaussian mixture model for skin classification op-
posed to the predominantly simple thresholding or a single Gaussian distribution to 
characterize the properties of skin color [45]. They used multiscale segmentations to 
find elliptical regions for face detection. Hence, their model is biased toward ellipti-
cal objects. Kruppa et al. proposed a simple generative skin patch model combining 
shape and color information [46]. Their model was parametric and represented the 
spatial arrangement of skin pixels as compact elliptical regions. Those parameters 
were estimated by maximizing the mutual information between the model-generat-
ed skin pixel distribution and the distribution of skin color as observed in the image.

As shown in Fig. 3.5, histograms can be developed for different color spaces 
using variety of skin tones representing variety of human races from the world for 
an effective classifier [47]. Such knowledge can then be used effectively for skin 
segmentation as shown in Fig. 3.6 [47].

Poudel et al. proposed a segmentation technique based on the notion of super-
pixel [48–50], to group similar color pixels together. Each superpixel was classified 
as skin or non-skin by aggregating pixel-based evidence obtained using a histogram 
based Bayesian classifier similar to [11].

The result was further improved with Conditional Random Field (CRF), which 
operate over superpixels instead of pixels. Even though the segmentation cost is 
an overhead over the pixel-based approach, it greatly reduces the processing cost 
further down the line, such as smoothing with CRF. Furthermore, aggregation of 
pixels into regions helps to reduce local redundancy and the probability of merging 

Fig. 3.5  Cumulative histograms of the training skin color pixels in different chrominance spaces: 
normalized r-g, T-S, H-S, CIE-ab, I-Q, Cb-Cr [47]
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unrelated pixels [51]. Since superpixels preserve the boundary of the objects, it 
helps to achieve very accurate object segmentations [52]. Their method not only 
outperformed the current state-of-the-art pixel-based skin color detection meth-
ods but also extracted larger skin regions while still keeping the false-positive rate 
lower, providing semantically more meaningful results. This could in turn benefit 
higher-level vision tasks, such as face or hand detection.

3.2  Morphological Filtering

Computer vision relies on identifying shapes and structures in image acquisition. 
As was discussed in the section of skin segmentation, once a shape is isolated as a 
binary image with numerous imperfections, morphological filtering is commonly 
used to remove imperfections in shapes to understand the image content. In par-
ticular, the binary regions produced by simple thresholding are distorted by noise 
and texture. Morphological image processing pursues the goals of removing these 
imperfections by accounting for the form and structure of the image.

Morphological filtering is a broad set of non-linear image processing opera-
tions that can be used to process images based on shapes. These operations apply 
a structuring element of different shapes to an input image. The output image usu-
ally retains its original size. The structural element denotes the size of the window 
that would operate on a neighbourhood of a pixel to create the output. The size and 
shape of the neighbourhood can be chosen to construct a morphological operation 
that is sensitive to specific shape(s) in the input image.

Before the detailed theory of morphological filtering is discussed, it would be 
useful to see an example of a computer vision application in the context of computer 
human interaction to ascertain the usefulness of this process. Figure 3.7 shows that 
under good lighting conditions, the skin segmented hand gesture contain few noise 
patches. When the lighting deteriorates, the resulting thresholded image contains 
more noise patches as shown in Fig. 3.7 (right bottom). In order for computer vision 

Fig. 3.6  An example of image segmentation. (a) The original image, (b) the result after pre-pro-
cessing, (c) the result of the original FCM, (d) the result of the improved FCM. (Courtesy of [47])
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system to be effective, the skin segmented extracted gesture should be solid white 
for further processing. Also, the noise spots shown in Fig. 3.7 (left bottom and right 
bottom) should be removed. The only operation that facilitates this requirement is 
morphological filtering as would be discussed next.

3.2.1  Basic Operations; Erosion and Dilation

Dilation and erosion are considered to be the most basic morphological operations. 
Dilation adds pixels to the boundaries of objects in an image, while erosion removes 
pixels on object boundaries. The size of the structuring element (SE) determines the 
number of pixels added or removed from the objects in an image. In dilation and 
erosion, the state of any given pixel in the output image is determined by applying a 
rule to the corresponding pixel and its neighbors in the input image [53, 54]. There 
are set rules that define the process either as dilation or erosion. The morphologi-
cal filtering process is mostly binary in nature however; these operations can also 
be used on gray scale images. These operations can be applied on gray scale im-
ages when their light transfer functions are unknown and therefore their absolute 
pixel values are of no or minor interest. In binary operation, the outcome is either 
1 (which is the highest intensity value) or 0 (which is lowest intensity possible). 
In dilation, the value of the output pixel is the maximum value of all the pixels in 

Fig. 3.7  The above images show that under poor illumination, skin segmentation results in mul-
tiple undesired artefacts. Even the well-lit images produce undesirable regions as shown in images 
of left
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the input pixel’s neighborhood. In a binary image, if any of the pixels is set to the 
value 1, the output pixel is set to 1. The erosion rule states that the value of the out-
put pixel is the minimum value of all the pixels in the input pixel’s neighborhood. 
In a binary image, if any of the pixels is set to 0, the output pixel is also set to 0. 
Figure 3.8 shows the operation of a structuring element of size 3 × 3 on a binary 
image of size 15 × 15. The outcome of this is shown in the right hand size matrix of 
Fig. 3.8. The ‘red’ broken line marks the boundary of the valid signal after the op-
eration as outside of this region is considered invalid due to the size of the structur-
ing element. Figure 3.9 shows the outcome using a 3 × 3 structural element. As can 
be seen, this leaves skin tone regions intact. Hence the size of the structural element 
is very important. The size of the structural element depends on the size of discon-
nected or noisy artefacts that remains after skin segmentation.

Figure 3.10 shows that the outcome of any morphological filtering is sensitive to 
the size of the structuring element as an inappropriate size would simply result in a 
more complicated image that a computer vision system is unable to utilize. Fairly 
large structural elements erode the information contained in the useful object such 
as skin segmented hand gesture. Only close observation of the objects to be pre-
served and removed would justify the size of the structural element.

3.2.1.1  Mathematical Definition of Morphological Filtering—Erosion  
and Dilation

Mathematically, erosion is defined for an Image I by a structural element S as fol-
lows:

{ }II S I S I= ⊆

Where SI refers to S translated with I.

Fig. 3.8  Binary image of size 15 × 15 is operated on with a structuring element which performs 
‘erosion’ and the result is shown on the right. Only a 13 × 13 sized area contain the valid signal 
after erosion marked with red broken line
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A complementary operation to that of erosion is dilation. It is defined simply as 
the erosion of the complement of a set. If Ic denotes the complement of I, then the 
dilation of a set I by a set S is denoted by I S I Sc c⊕ = ( ) . This helps us to easily 
understand dilation in terms of erosion. Figure 3.11 shows the effect of dilation on 
a structure using a 3 × 3 structural element.

Figure 3.12 shows the outcome of ‘filling’ when dilating an eroded image. How-
ever, this process outline that dilation with larger structural elements will not neces-
sarily fill image gaps. Morphological operations such as erosion and dilation can 
be performed on gray scale images as shown in Fig. 3.13 and 3.14. In Fig. 3.13, the 
result of erosion using a structural element of size 6 × 6 square results in disfiguring 
the letters and darkening the image. On the contrary, dilation result in similar disfig-
urement of lettering yet, lightening the image as shown in Fig. 3.14.

Processing Pixels at Image Borders (Padding Behavior) In morphological filter-
ing, origin of the structuring element is centred over the pixel of interest in the input 
image. For pixels at the edge of an image, parts of the neighborhood is defined by 
the amount that structuring element can extend beyond the border of the image.

Fig. 3.9  Result of erosion using a 3 × 3 structural element

 

Fig. 3.10  Erosion of a noisy hand gesture using a structural element of size 7 × 7. Here the result 
shows large square holes in the resulting image signalling that the size of the structuring element 
is not appropriate for this operation
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To process border pixels, the morphological functions assign a value to these 
undefined pixels as if the functions had padded the image with additional rows and 
columns. The value of these padding pixels varies for dilation and erosion opera-
tions. Pixels beyond the image border are assigned the minimum value afforded by 

Fig. 3.11  Results of dilation using a 3 × 3 element. See that the vertical line has completely disap-
peared as its width was less than the width of the structural element

 

Fig. 3.12  Dilation	of	an	eroded	image	with	a	structural	element	of	size	5	×	5	( left)	and	7	×	7	( right)

 

Fig. 3.13  Erosion	 of	 a	 gray	 scale	 image	 by	 a	 6	×	6	 structural	 element.	 Original	 ( left), eroded 
( right). The image content is much darker after erosion
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the data type. For binary images, these pixels are assumed to be set to 1. For gray 
scale images, the maximum value for uint8 images is 255. For dilation of binary im-
ages, these pixels (padding pixels) are assumed to be set to 0 whereas for gray scale 
images, the minimum value for uint8 images is 0.

3.2.2  Opening and Closing

Erosion and dilation are used in many other morphological filtering to achieve dif-
ferent outcomes for computer vision applications. Hand gesture recognition in its 
binary representation usually result in many holes and noisy unconnected artefacts. 
These areas need to be filled up producing solid gestures while removing the arte-
facts without affecting the gesture.

Opening can be described using more fundamental operations. Opening is so 
called because it can open up a gap between objects connected by a thin bridge of 
pixels. In this case, the dilation and erosion should be performed with a structuring 
element that has been rotated by 180°. Typically, the structural elements are sym-
metrical, so that the rotated and initial versions of it do not differ. Any regions that 
have survived the erosion are restored to their original size by the dilation. All pixels 
which can be covered by the SE with the SE being entirely within the foreground 
region will be preserved. All foreground pixels which cannot be reached by the 
structuring element without lapping over the edge of the foreground object will be 
eroded away. Opening is idempotent which refers to the fact that repeated applica-
tion has no further effects.

Closing is the operation of filling holes in the regions while keeping the initial 
region sizes. In other words, closing (opening) of a binary image can be performed 
by taking the complement of that image, opening (closing) with the structuring ele-
ment, and taking the complement of the result. The formal mathematical definitions 
of opening and closing are defined next.

Opening Opening is performed by erosion  followed by dilation resulting in elimi-
nating protrusions and smoothing contours. Both of these operations are attempted 

Fig. 3.14  Dilation of grayscale image by a 6 × 6 structural element. The image is lighter than 
before	after	dilation.	Original	( left)	and	the	dilated	image	( right)
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using the same structural element. The mathematical symbol of opening is ‘° ’ and 
the definition opening using erosion and dilation is given by:

I S I S S = ⊕( )

Opening is known as a filtering mechanism to remove clutter to enhance image 
intelligibility especially for computer vision. As shown in Fig. 3.15, using a specific 
type of structuring element with specific size, the long thin objects are removed 
from the image. This would be advantageous for removing clutter for medical di-
agnosis or counting certain type of objects removing unnecessary ones. The effect 
of the choice of the structuring element size is illustrated in Fig. 3.16. A SE of size 
3 × 9 will result in leaving vertical bars intact and the 9 × 3 will remove the vertical 
bars leaving only the horizontal ones.

Fig. 3.15  Opening with a 10 × 10 square structuring element

 

Fig. 3.16  Opening the image on the left with a 3 × 9 structuring element (result shown in the 
middle),	opening	with	9	×	3	structuring	element	( right)
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Closing Closing is performed using dilation followed by erosion resulting in 
smoothing contours and fusing narrow breaks and long thin gulfs. This eliminates 
small holes and fills gaps in contours. As in opening, same structural element is 
used for both dilation and erosion. It would be interesting to understand the closing 
process as a structural element operates on the host image. For the initial dilation, 
the SE slides around outside each foreground region. All background pixels which 
can be covered by the SE with the SE being entirely within the background region 
will be preserved. All background pixels which cannot be reached by the structur-
ing element without lapping over the edge of the foreground object will be turned 
into foreground. This scenario is illustrated in Fig. 3.17 when operated on by a 3 × 3 
square structuring element. Opening is also known to idempotent as Opening. The 
symbol of closing is ‘ • ’ and is defined using dilation and erosion as follows:

• ( ) .I S I S= ⊕ 

The morphological operations described so far can be compared with each other 
based on their effect on the host image as shown in Fig. 3.18. Hand gesture recogni-
tion research relies heavily on these fundamental operations when using computer 
vision to register gestures. This chapter will further discuss other morphological 
operations such as hit and miss transform, thickening, thinning followed by skel-
etonization as they are commonly used in hand gesture recognition research.

Fig. 3.17  Closing a 16 × 16 image with a 3 × 3 square structuring element. The figure on the left 
shows an image as matrix with ‘1’ associated with white and ‘0’ associated with black. The opera-
tions are performed on the host image in the middle with the results shown on the right

 

Fig. 3.18  Comparison of different processes of fundamental morphological filtering with an illus-
tration of their use on a binary image, courtesy of [55]
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3.2.3  Structuring Element (SE)

A structuring element is a matrix consisting of only 0’s and 1’s that can have any ar-
bitrary shape and size. The pixels with values of 1 define the neighborhood. One di-
mensional or two dimensional structuring elements are typically much smaller than 
the image being processed. The center pixel of the structuring element is known 
as the origin which identifies the pixel being processed. The pixels in the structur-
ing element containing 1’s define the neighborhood of the structuring element. 3D 
structuring elements use 0’s and 1’s to define the extent of the structuring element 
in the x- and y- axes with z signifying height values to define the third dimension. 
The operation of morphological filtering on binary images can be better understood 
by considering compound operations like opening and closing as filters. Their re-
semblance to filters of shape, opening with a disc shaped structuring element which 
smooths corners from the inside and closing with a disc results in smoothing corners 
from the outside. They also can filter out any image details that are smaller in size 
than the structuring element (e.g. opening is filtering the binary image at a scale 
defined by the size of the structuring element). Only those portions of the image that 
fit the structuring element are passed by the filter; smaller structures are blocked 
and excluded from the output image. The size of the structuring element is most 
important to eliminate noisy details but not to damage objects of interest.

The structuring elements do not have much restriction apart from the fact that 
they should not increase the energy of the resulting process. Any shape and size can 
be selected for structuring element. However, it would be advantageous to select a 
shape that would easily achieve the purported purpose in the morphological pro-
cess. Some of the different shapes used are shown in Fig. 3.19.

3.2.4  Hit-and-miss Transform

Hit-and-miss Transform is used to look for particular patterns of foreground and 
background pixels for very simple object recognition. It is well-known that all oth-
er morphological operations can be derived from it [57–59]. The transform oper-
ates by assessing whether the foreground and background pixels in the structuring 

Fig. 3.19  Variety of structuring elements; disc, Square, irregular and asymmetric, very large struc-
turing element and a cross. The darkened squares contain zero

 



52 3 Pre-processing

element exactly matches the foreground and background pixels in the image. If they 
match, then the pixel underneath the origin of the structuring element is set to the 
foreground color. The transform consists of 0’s and 1’s with usually a 1 at the origin. 
The transform matrix could also contain ‘don’t care’ values which refers to either 
‘0’ or ‘1’ which are not going to affect the outcome of the result significantly. An 
image can be operated on by more than one structural element one after the other. 
Figure 3.20 shows a binary image operated on by two structuring elements shown 
in the middle and the result on the right. Figure 3.21 shows how four miss-and-hit 
transforms can be used for corner detection on a binary image. In this, each trans-
form operate on the input image and the results are ‘OR’ed using logical processing 
to arrive at the final corner detection.

Fig. 3.20  Binary image developed in Fig. 3.17 operated on by two transforms to achieve the result 
shown on right

 

Fig. 3.21  Corner detection using hit-and-miss transform. The four transforms are shown on the 
top row with ‘x’ marking ‘don’t care’ states. Bottom images show the original image transforming 
to corner detection where only the corner pixels remain
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3.2.5  Thinning

Morphological thinning is used to remove selected foreground pixels from binary 
images after edge detection where lines are often thicker than one pixel in width. 
Thinning will result in lines only one pixel wide. Hit-and-miss Transform can be 
used to perform thinning operation. In this approach, the effectiveness of thinning is 
determined by the structuring element [60, 61]. The mathematical definition of the 
thinning is given by the following relationship when using hit-and-miss transform:

(  by ) ( , )Thin I S I HitandMiss I S= −

Where	logical	subtraction	is	defined	by	A	−	B	=	A∩ NOT B. The thinning of a binary 
image is shown in Fig. 3.22.

3.2.6  Thickening

Thickening is a morphological operation that is used to grow selected regions of 
foreground pixels in binary images similar to dilation or closing. It has several ap-
plications, including determining the approximate convex hull of a shape, and de-
termining the skeleton by zone of influence [57–61]. Thickening is normally only 
applied to binary images, and it produces another binary image as output [58]. The 
definition of the Thickening can be given by the following relationship using Hit-
and-Miss Transform:

Thicken I S I HitandMiss I S( ) ( , ). by = ∪

Thus the thickened image consists of the original image and any additional fore-
ground pixels switched on by the hit-and-miss transform. Figure 3.23 shows the 
application of Thickening on a binary image.

Fig. 3.22  Thinning of a binary image. The image on the left shows the pixel arrangement where 
some regions are 4 pixels wide. The sections with 1 pixel width remain unchanged
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As was depicted in Fig. 3.23, the shape of the original object is somewhat ob-
scured after thickening. However, this may not always be the case if the shapes are 
adequately located far apart and the SE is of specific size as shown in Fig. 3.24.

3.2.7  Skeletonization

Skeletonization is the process for reducing foreground regions in a binary image to 
a skeletal remnant that largely preserves the extent and connectivity of the original 
region. This in essence throws away most of the original foreground pixels. The 
skeleton is useful because it provides a simple and compact representation of a 
shape that preserves many of the topological and size characteristics of the original 
shape. This results in providing an approximate length of a shape by considering 
just the end points of the skeleton and finding the maximally separated pair of end 

Fig. 3.23  Thickening of one pixel thick object (on the left). The result is shown on the right

 

Fig. 3.24  Some objects retains shape if they are located adequately apart during the transformation
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points on the skeleton. Similarly, this will also lead to distinguishing many quali-
tatively different shapes from one another on the basis of how many ‘triple points’ 
there are (i.e. points where at least three branches of the skeleton meet).

Using the previous definition of erosion, skeletonization can be defined as the 
process where an object is eroded multiple times with ever decreasing size of struc-
tural element as follows:

0

( , )
K

k k
k

Skeleton I S I S
=

=




This process is illustrated in Fig. 3.25. Skeletonization is often used in text scan-
ning to prune the thick edges so that optical character recognition and hand written 
recognition can be implemented in machines.

As with thinning, slight irregularities in a boundary will lead to spurious spurs in 
the final image which may interfere with recognition processes based on the topo-
logical properties of the skeleton. Figure 3.26 clearly illustrates this. Despurring or 
pruning can be carried out to remove spurs of less than a certain length but this is 
not always effective since small perturbations in the boundary of an image can lead 
to large spurs in the skeleton.

Skeletonization can result in a remarkable gesture identity if any gesture captured 
by camera can be turned into an accurate model. However, as was seen Fig. 3.26, 
skeletonization can result in much more complicated unintelligible realizations 
which offer no value for hand gesture recognition. However, recently, there have 
been few reported cases of research which were based on skeletonization of hand 
gestures for gesture recognition.

Ionescu and Coquin reported a hand gesture recognition method based on the 
2D skeleton representation of the hand [61]. They represented each gesture with a 
hand skeleton and this skeleton was compared with a skeleton in a database for a 
match. They used Baddeley’s distance [62], as a measure of dissimilarities between 
model parameters. Even though the results were promising yet, they suffered from 

Fig. 3.25  Skeletonization 
is the process of continu-
ously eroding of a structure 
(object) with ever decreasing 
structural element until it can 
be carried no further
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occlusion and was limited to very few hand gestures. The directions of the camera 
were unconventional as it captured images from side which was unnatural for com-
puter human interface as shown in Fig. 3.27.

Reddy et al. proposed an approach for calculating local orientation histograms of 
skeleton of the hand by using distance transformation techniques [63]. They relied 
on the local histograms as features due to their invariance to translation, rotation 
and scaling. Skeleton was computed for each and every hand posture in the entire 
hand motion and superimposed on a single image called as Dynamic Signature of 
the particular gesture type. Then the gesture was recognized by matching the image 
signature (features of local orientation) against the entries in the gesture alphabet. 
They used Image Euclidean distance measure as the metric to determine image 
similarities.

There are compelling reasons for using skeleton of the hand for gesture rec-
ognition. Skeletons provide compact representation of an object and preserve the 
topology of the object. Skeleton is robust against translation rotation and scaling 

Fig. 3.27  Skeleton extraction: (a) hand region (binary image), (b)	chamfer	distance	image	( white 
corresponds to the greatest distance), (c) the skeleton obtained after connecting the centers of 
maximal discs, and (d) the skeleton obtained after spurious hole filling, pruning, and beautifying 
the previous skeleton. (Courtesy of [61])

 

Fig. 3.26  Skeletonization in hand gesture recognition can sometimes lead to unforseen scenarios 
where even a slight imperfection on a binarized gesture can result in completely unintelligible 
results
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[64]. Skeleton is also extracted by using several methods such as chamfer distance 
transform [65], and morphological thinning [66] (Fig. 3.28).

Wu et al. in 2012 presented research using the skeleton of hand using depth 
information for hand gesture recognition [64]. They presented a method of recog-
nizing hand gestures in the form of point clouds recorded by Kinect sensor. Ini-
tially, through Laplacian-based contraction and further processing, they extracted 
skeleton points from point clouds of hands. Then a novel partition-based descriptor 
and correspondence algorithm was applied to classify these skeletons and therefore 
to recognize gestures. In the process of recognition, the issue of scale variance and 
rotation variance were solved. They used 3D models downloaded from Princeton 
3D Model Search Engine to be standard gestures, then record gestures using Kinect 
sensor. The recognition accuracy for 12 gestures was about 85 % on average. They 
finally verified their claims using performance analysis where the results proved 
both its accuracy and robustness. They demonstrated that skeleton-based method of 
recognition has great potential for further exploration. Figure 3.29 shows the stages 
of gesture skeletonization and their 12 gestures in Fig. 3.30.

3.3  Gesture Extraction Using Color and Depth 
Information

One of the major challenges in gesture recognition is to reliably capture the gesture 
alone from the clutter of the background. This is a non-trivial task as it has been 
shown over the years [68–74]. As was discussed in the previous section of skin 
segmentation, skin detection tries to separate the gesture from the background. 
However, this problem is compounded when the background contains skin-tone 
regions. Since the cameras are essentially 2D devices unlike the human eye, there 
is no information a camera can supply to separate hand gesture from another per-
son in the background. However, if a stereo vision or another setup that detects 

Fig. 3.28  Hand gesture skeletons for gesture recognition. (Courtesy of [63])
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depth can be used, the complexity of the problem unravels as depth to the objects 
becomes available.

Yet, this section will discuss why this depth information alone is not reliable 
for background-foreground separation based on research carried out over the past 
15 years. Very recently, there has been a glimmer of hope due to new breed of in-

Fig. 3.30  Twelve cloud gestures used by Wu et al. (Courtesy of [67])

 

Fig. 3.29  Key points achieved from Laplacian-based contraction and index-based compaction. 
(Courtesy of [64])
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expensive consumer grade cameras which are increasingly being used in an effort 
to retrieve depth information. Some of these devices are Kinect from Microsoft an 
Asus Xtion (both are manufactured by the same Taiwanese company with similar 
capabilities). Instead of stereo vision setup, these camera relies on infradred struc-
tured lighting projection and image capture through both infrared and color camera. 
The technology behind these cameras differs from the traditional depth camera; 
stereo vision. The novel technology is based on structured lighting which a well-
understood phenomenon that is used in stereoscopy [75, 76]. The distortion pattern 
of the projected infrared structured light pattern is observed by the infrared camera 
to detect the depth to the objects and this information is fused with color image 
information so that every pixel has a depth parameter. Previously, non-stereoscopy 
systems relied on Time of Flight (TOF) cameras which have been confined to high 
end research due to their prohibitive cost. Currently, the next generation of Kinect 
camera is going to be released at the end of 2013 and is equipped with TOF tech-
nology opposed to Infrared light projection and the switch has been due to some of 
the limitations especially in resolution of infrared sensors compared to the CMOS 
imaging sensor.

Figure 3.31 depicts the Kinect camera with its onboard infrared projector, in-
frared receiver and color CMOS camera. The CMOS and the Infrared sensor both 
have a resolution of 640 × 480 at 30 fps. However, its depth perception is confined 
to 320 × 240. This results in many visual pixels not having proper depth informa-
tion leading to edge anomalies in depth-color view. The Asus Xtion also has the 
same resolution in its sensors which is shown in Fig. 3.32. However, their physical 
appearance differ due to the Kinect having panning capability where as Xtion is 
simply has a front facing configuration.

Recently, there has been increased interest in applications of computer vision 
to traffic monitoring on highways to security surveillance in restricted areas. One 
of the preliminary tasks in such applications is to extract the foreground or ob-
jects from the background. Many early works relied on background subtraction 
which would simply look for the image difference before and after objects have 

Fig. 3.31  Kinect Camera 
developed for Microsoft 
Xbox

 

Fig. 3.32  Asus Xtion camera 
which has identical imaging 
capabilities to that of Kinect 
but with a personal computer 
compatible USB interface
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been observed. As it turns out, same image sensor would produce slightly different 
picture with incrementally small color variations and noise when imaging an object 
few seconds apart. This problem is also compounded when natural lighting changes 
in day and temperature differences due to wind at night. Hence, simple subtraction 
of two images will not result in the foreground being revealed. It would contain un-
desirable sections of the background that would lead to false positives if decisions 
are made immediately without further elaborate processing. Such discrepancies in 
imaging sensors and technologies have called for more advanced hardware that 
would tackle some of the issues mentioned above.

Swiss high tech company Mesa Imaging had developed a TOF camera which 
dominated the market for many years for commercial imaging equipment that pro-
vided basic hardware as shown in Fig. 3.33. As shown in Fig. 3.34, TOF camera 
technology stands out from stereoscopy and laser scanning technology. Laser scan-
ning technology has never been used for human surveillance as it is objectionable 
as a safe mode of information gathering due to high intensity lasers being used that 

Fig. 3.33  Swiss Ranger 4000 by Mesa Imaging

 Fig. 3.34  TOF camera uses only one camera and needs a lesser distance from the camera to the 
object as shown on the left. Stereoscopy and laser scanners need more camera-object distance to 
be effective
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would cause eye damage. Stereoscopy devices need extensive special arrangement 
which is not suitable for the above applications. TOF technology stands out from 
these technologies however, they offer limited resolution opposed to the massive 
visual resolution offered by modern camera sensors. Therefore, the alignment of 
depth information with their visual counterpart usually results in more error prone 
low resolution scenario.

In 2009, ZCam, a company which developed TOF technology to develop a 
camera gesture interface to use human gestures to engage with gaming activities 
was taken over by Microsoft. It is rumoured that ZCam technology has enabled 
the Microsoft to develop a more advanced Kinect to use TOF camera technology 
at an extremely low cost compared to what has been commercially available from 
vendors such as Mesa Imaging. Kinect II released in the second half of 2013 is 
shown in Fig. 3.35. This is a very positive move for gaming enthusiasts as well as 
researchers in computer vision as Microsoft has a tendency to develop technol-
ogy for mass market at reasonable costs. Its depth perception will increase from 
current 320 × 240 to 512 × 424 pixels which would be very valuable for emerging 
applications.

3.3.1  Image Registration

Image registration is the process of aligning two-dimensional images to a different 
three-dimensional space. In the case of a 3D camera, the registration process aligns 
the depth and colour streams together so that operations on either stream can then 
be related to the other stream. When the distance between the two perspectives of 
each camera (IR and Colour) is known, an approximation between pixels in each 
frame is determined. That is, if an object is closer to the camera (as known by the 
Depth component), the offset of that pixel to a pixel in the colour image array is 
larger than an object further away. There are numerous techniques for completing 
this operation, as listed below.

3.3.1.1  Edge/Key-Point Detection

A major option for image registration is the selection of key points, edges, surfaces 
or objects, then transferring those into another reference point. There are a number 

Fig. 3.35  Kinect II with its 
TOF technology
 



62 3 Pre-processing

of methods for segmenting images into various objects which differ in complexity 
and accuracy [77]. Some methods prefer to isolate the different objects by locating 
edges or distinct rapid changes in the image [78]. Other methods search for continu-
ous regions of consistent surfaces and segment within that section [79]. For greater 
accuracy, both methods can be combined for a hybrid-style algorithm. This method 
of key-point identification is found in ORB [80] and BRISK [81]. Another consid-
eration of key-point locating involves searching for corners of objects in a scene, as 
these represent the orientation and boundary of an object, as covered by Rosten’s 
work on image mapping [82]. All three options are available as part of the OpenCV 
computer vision library [83].

While often considered in the process of stitching together separate two-dimen-
sional images to infer depth information of the scene, this method can also be used 
with a depth stream. The intention has been to improve the accuracy of the registra-
tion between an object in the colour stream and the comparative depth stream [84]. 
The key-point referencing method used was comparable to the results produced 
by the PrimeSense method coordinated by the camera. Some of the capabilities of 
Kinect II combined with BerkelTools offer new mode of gaming environment as 
shown in Fig. 3.36.

3.3.2  Stereo Triangulation for Depth Estimation—Passive Stereo 
Vision

Stereo vision is the concept of determining the lengths and sizes of objects in 3D 
space as done by humans and many other animals. It is a process which has been 
inspired by natural world where most of the fauna having two eyes. Mimicking 
such a system, engineers use two cameras which are few centimetres apart to create 
two slightly different views of the same scene (or object(s)). As shown in Fig. 3.37, 
in the ideal case of epipolar geometry which describes the mechanism of stereo 
vision, the dot in the diagram produces A1 and A2 in two camera views. However, 

Fig. 3.36  Kinect markerless motion capture produced by BerkelTools
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due to many imperfections in this system such as camera focussing issues, instead 
of the exact intersection of the two blue lines where the dot is, only measurements 
of A’1, A’2 are mostly available and used for triangulation. If the focal lengths and 
the camera and the distance between cameras are known (these are well-known for 
any stereo setup) the distance of the camera viewing plane to the dot (object) can 
be estimated using basic algebra. However, since ordinary images have complex 
scenery opposed to well-defined points, many other factors come into play reducing 
the applicability of simple stereovision in many imaging application. Figure 3.38 
shows an image pair used in stereovision based robotic navigation attempt. These 
two images, even though are almost identical have been captured by a stereo camera 
pair with a slight change in point of view. Unlike Fig. 3.37 (triangulation diagram), 
the scenery has many points of interest. This issue now leads to identifying corre-
spondence between each point, seen on the left camera with that of the right camera, 

Fig. 3.37  Stereo vision disparity as seen by two cameras

 

Fig. 3.38  Stereo disparity and correspondence. The green line connects the features identified in 
the left camera with the matching feature on the right
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known as the correspondence problem. The most prominent approach to find the 
correspondence relies on correlation between identical rows and constraint known 
as disparity that regulates mismatches [85–88].

Stereo vision often fails when used in featureless or textureless surroundings 
such as snow or highly repetitive patterns or uniform surroundings. Furthermore, if 
the forward looking cameras would not find any nearby imaging surfaces, it would 
also fail. Due to these limitations, stereovision along is not used for navigation 
especially in outdoor surroundings. However, stereovision does offer viable solu-
tions for computer human interaction which usually takes place in indoors. Yet, 
the amount of processing power needed to solve the correspondence problem has 
dissuaded the commercial applications as seen by the investments of Microsoft on 
alternative technology that would be discussed next.

3.3.3  Active Stereo Vision-Coded Structured Light

Active stereo vision refers to the set up where instead of two cameras are setup to 
acquire images, a light pattern projector replaces one camera as shown in Fig. 3.39. 
In structured light imaging, a predefined light pattern is projected onto an object 
and simultaneously observed by a camera. The appearance of the light pattern in 
a certain region of the camera image varies with the camera-object distance. This 
effect is utilized to generate a distance image of the acquired scene. The predefined 
light patterns can be generated using many approaches as would be discussed in the 
next section. Some setups may use two cameras or multiple cameras to reduce the 
likelihood of occlusion by the object being imaged. Since this light pattern is visible 
to the human eye, such stereo systems are objectionable when used in public places 
such as airports for 3D face recognition or other types of surveillance [76].

In coded structured light, a light pattern is coded so that correspondences be-
tween image points and points of the projected pattern can be easily found. There-
fore, coded structured light is considered to one of the most reliable ways for re-

Fig. 3.39  Depth measure-
ment using structured lighting 
with a single camera and a 
projector
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covering the surface of objects [89]. Once the code pattern on the object is captured 
and decoded, the decoded points can be triangulated for 3D coordinates to recover 
the structure.

There are three prominent approaches for light pattern coding in practice. Time-
multiplexing which is commonly used, is based on temporal coding. In this ap-
proach, a set of patterns are successively projected on the surface being imaged and 
captured at the same time. The codeword for any pixel is the result of multiplexing 
of the sequence of projected patterns on to that pixel. The codeword generation can 
be realized using, binary codes, n-ary codes, gray code combined with phase shift-
ing and using hybrid techniques which are combination of time-multiplexing and 
neighbourhood strategies [90–93]. Time-multiplexing results in dense 3D points 
and high accuracy compared to other approaches. It is also suitable for objects with 
color as binary or n-ary codes are resilient against color objects. However, due to its 
reliance on multiple projections, the approach is limited to static objects.

The second techniques for light pattern coding are the approach based on spatial 
codification. The techniques used in this category generate a unique global pattern. 
The codeword for a single pixel can be determined by observing the pattern for 
its neighbors [94]. However, occlusions or non-neutral colors can lead to errors as 
not all neighborhood pixel patterns can be reliably retrieved. Some of these spa-
tial neighbourhood strategies include De Bruiin sequences, M-arrays and strategies 
based on non-formal codification [95–98]. The technique is applicable to dynamic 
objects. Figure 3.40 shows a De Bruijn series coding pattern and how it is used for 
3D depth measurements.

The third technique in light pattern generation is direct codification. In this 
approach, each pixel gets its own color (color intensity) to represent the pattern 
[101–106]. However, the observed color from any pixel does not solely depend 
on the projected color. It also depends on the color of the surface. Since different 
color objects reacts to colors differently, this strategy is only suitable for objects 
with neutral color object or objects with pale colors [94]. Some implementations 

Fig. 3.40  125	slits	encoded	with	a	De	Bruijn	sequence	of	8	colors	and	window	size	of	3	slits	( left), 
courtesy of [99]. De Bruijn series spatial codification pattern (shown on right) [100]
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of this direct codification relies on capturing many reference frames with change 
of colors. Therefore this is not generally used for dynamic scenes.

Even though objectionable to the human user, structured light based stereo vi-
sion can be very effective for 3D scanning in indoors. Many researchers have used 
different types of grid patterns and coded color schemes to determine the depth of 
the objects using the observed distortion due to object depth and shape of the pre-
defined pattern. Such color schemes and code patterns as shown in Fig. 3.41 can 
help in reducing the correspondence problem if more than two cameras are used. 
However, since the light diffracts much more than a laser beam, the resolution from 
visible light based stereo vision is limited.

3.3.4  Infrared Structured Light for Active Stereo Vision

Recently, researchers have developed invisible infrared lighting patterns or struc-
tured light to obtain depth information without any public backlash. This has re-
sulted in the successful Microsoft Kinect using infrared structured light patterns 
to develop low cost, yet, effective gaming apparatus. The light pattern used in Ki-
nect is known as a speckle pattern which resembles speckle noise. However, it is a 
well structured pattern, projected using an infrared laser through a plastic material 
which houses the pattern. The distortion of this pattern is compared with the origi-
nal speckle pattern to determine the depth of the objects. One of the problems of 
this approach which is also common to the visible structured light is the shadows 
created by occlusion of objects. In addition to the shadows, the depth-images con-
tain noise due to limited resolution of the IR camera. Since the vision camera is of 
much higher resolution, a single infrared point of the captured pattern may not be 

Fig. 3.41  M-arry represented with an array of coloured dots	( left), courtesy of Morano et al. [107]. 
M-array proposed by Vuylsteke et al. represented with shape primitives [100]
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assigned to a single pixel. Therefore the position must be interpolated by the portion 
of luminosity of the two adjacent pixels. This interpolation is sensitive to external 
infrared radiation such as direct sun light. For many devices such as Kinect, increas-
ing distance from the camera leads to poor resolution and errors due to misalign-
ment of infrared pixels with CMOS pixels. There are other errors due to offset of 
the CMOS and the Infrared receiver. There are methods for calibrating the camera 
to modify the image, such that the depth map from the infrared camera and CMOS 
input are aligned [108–110]. The scene reconstruction then follows a process used 
in 3D game design known as texturing. The model generated from the depth map 
data is “painted” with a texture, in this case, the video input from the CMOS camera 
as shown in Figs. 3.42 and 3.43. This can be completed in real-time through the use 
of modern graphics processors.

Kinect uses an infrared speckle as shown in Fig. 3.44. The known pattern is com-
pared with its offset when the pattern falls on a surface and distorted. This disparity 
measure results in triangulation to reveal the depth map. In Kincet, the color visual 
image sensor has much higher pixel density than its infrared sensor. This results in 
false depth map that is not really an issue in Kinects applications of gaming. How-
ever, since it is difficult to improve the resolution of the depth map using infrared 
speckle patterns, Microsoft has resorted to TOF camera technology for their upcom-
ing Kinect II as was discussed before.

Fig. 3.42  Color Camera 
view with depth information 
fused using Kinect

 

Fig. 3.43  Depth information 
is easy to ascertain in a gray-
scale image fused with depth 
information using kinect
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3.3.5  Time of Flight (TOF) Camera for Depth Information

The advantage of TOF compared to triangulation methods in passive or active ste-
reo vision is that the whole system is very compact where the illumination (pattern 
projector) is placed just next to the camera lens, whereas the other systems need a 
certain minimum base line. In contrast to laser scanning systems, no moving parts 
are present in the system.

The working principle of the TOF camera can be understood as using extremely 
short or narrow light pulses to illuminate a target (any object in its flying path) and 
record the return of the pulse on every pixel on the camera sensor with its time of 
arrival. This is done extremely precisely so that even 1 cm depth differences of any 
part of the object being scanned can be differentiated. The pulse width of the il-
lumination determines the maximum range the camera can handle. In case of pulse 
width of 50 ns, the scanning range is restricted to 7.5 m. These short times show that 
the illumination unit is a critical part of the system. These short pulses can currently 
be generated with special LEDs or lasers.

When infrared structured light is used in the presence of background light, the 
CMOS camera sensor receives an additional part of the signal. This results in dis-
turbing the distance measurement. In order to eliminate the background contribu-
tion of the signal, the whole measurement can be performed a second time with the 
infrared illumination switched off. If the objects moves and are further away than 
the distance range, the measurements result in error. Here, a second measurement 
with the control signals delayed by an additional pulse width helps to suppress such 
objects. Other systems work with a sinusoidally modulated light source instead of 
the pulse source.

As mentioned previously in this chapter, the ZCam’s time-of-flight camera sys-
tem features a near-infrared (NIR) pulse illumination component as well as an im-
age sensor with a fast gating mechanism. Based on the known speed of light, ZCam 
coordinates the timing of NIR pulse wave emissions from the illuminator with the 

Fig. 3.44  Speckle pattern 
used in Kinect. (Courtesy of 
[111])
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gating of the image sensor so that the signal reflected from within a desired depth 
range is captured exclusively. The amount of pulse signal collected for each pixel 
corresponds to where within the depth range the pulse was reflected from, and can 
thus be used to calculate the distance to a corresponding point on the captured sub-
ject [112, 113].

Due to the fast timing required for light-based time-of-flight, the ZCam uses 
custom hardware for illumination and gating. The illuminator is a series of NIR 
laser diodes around the lens barrel, switched by special high-speed driver circuits 
that produce pulses with a rise time and fall time of less than 1 ns [113]. The time-
of-flight camera is optically matched with a corresponding video camera, allowing 
the RGB video and range imaging to integrate together.

This chapter methodically developed the required knowledge for preprocessing 
that is vital in understanding object shapes. When undesirable noise and artefacts 
are present, morphological filtering based processing can restore objects so that 
they can be understood by computer vision. With the use of depth information, 
cluttered backgrounds can be removed to reveal the foreground which typically 
contains the hand gestures for human computer intearaction.
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