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Performance Evaluation of Grid-
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System with Different MPPT Controllers
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Abstract Renewable energy plays an important role in electric power generation.
Solar energy is one of them. It has the advantage of no pollution, low maintenance
cost, no installation area limitation, and no noise due to the absence of the moving
parts. However, high initial cost and low conversion efficiency have deterred its
popularity. Due to the non-linear relation between the voltage and current of the
PV cell, it is observed that there is unique Maximum Power Point (MPP) at
particular environmental conditions, and this peak power point keeps changing
with solar irradiations and ambient temperature. To achieve high efficiency in SPV
power generation it is required to match the SPV source and load impedance
properly for any weather conditions, thus obtaining maximum power generation.
The technique process of MPP is being tracking which is called Maximum Power
Point Tracking (MPPT). In recent years, a large number of techniques have been
proposed for MPPT and some based on Computational Intelligence (CI) tech-
niques. In this chapter performance evaluation of DC–DC boost converter based
on P&O and INC has been compared. The scope of the work is to first give the
detailed mathematical model of grid connected three-phase SPV system. A
parametric model of SPV cell is presented. Second, thermal modeling and
switching loss calculation of switching devices has been discussed and then the
performance evaluation will be carried out for P&O and INC based MPPT algo-
rithms for various operating conditions of the SPV array, in terms of energy
injected to grid, switching losses, junction temperature and sink temperature, for
switching in the DC–DC boost converter. Application of an Adaptive Neuro-Fuzzy
Inference Systems (ANFIS) based intelligent controller has been described and
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applied for fast, accurate, and efficient control of DC–DC boost converter used for
SPV system, in place of conventional (PI) controllers.

Keywords Computational intelligence solar photovoltaic system � Maximum
power point tracking � Perturb and observe � Incremental conductance � Switching
losses and thermal model

5.1 Introduction

In the current century, the world is increasingly experiencing a great need for
additional energy resources so as to reduce the dependency on conventional
sources, and photovoltaic energy could be an answer to that need. Generally a
Solar Photovoltaic (SPV) system can be divided into three categories: stand alone,
grid-connection and hybrid system. For places that are far away from a conven-
tional power generation system, standalone power generation systems have been
considered a good alternative. These systems can be seen as a well-established and
reliable economic source of electricity in rural areas, especially where the grid
power supply is not fully extended. Solar energy has the advantage of no pollution,
low maintenance cost, no installation area limitation, and no noise due to the
absence of the moving parts. However, high initial cost and low conversion effi-
ciency have deterred its popularity. Therefore, it is important to reduce the
installation cost and to increase the energy conversion efficiency of SPV arrays and
the power conversion efficiency of SPV system. Due to the non-linear relation
between the voltage and current of the PV cell, it is observed that there is unique
Maximum Power Point (MPP) at particular environmental conditions, and this
peak power point keeps changing with solar irradiations and ambient temperature.
To achieve high efficiency in SPV power generation it is required to match the
SPV source and load impedance properly for any weather conditions, thus
obtaining maximum power generation. Hence, tracking the MPP of a SPV array is
usually an essential part of a SPV system. Maximum power extraction can be
obtained by a method called as Maximum Power Point Tracking (MPPT). As such,
many MPPT methods have been developed and implemented. The methods vary in
complexity, sensors required, convergence speed, cost, range of effectiveness,
implementation hardware, popularity, and in other respects. They range from the
almost obvious (but not necessarily ineffective) to the most creative (not neces-
sarily most effective). In fact, so many methods have been developed that it has
become difficult to adequately determine which method, newly proposed or
existing, is most appropriate for a given PV system. Given the large number of
methods for MPPT, a survey of the methods would be very beneficial to
researchers and practitioners in PV systems [1]. In recent years, a large number of
techniques have been proposed for MPPT such as Constant Voltage Tracking
(CVT), the Perturb-and-Observe (P&O) method, the Incremental Conductance
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(INC) method, and some based on Computational Intelligence (CI) techniques.
Computational intelligence (CI) techniques, such as fuzzy logic (FL), artificial
neural network (ANN), and evolutionary computation (EC), are recently promoted
for the control of systems. Overall, the dynamic performance of a system can be
substantially improved by the introduction of CI based techniques for the intelli-
gent control. The broad categories for different MPPT are given bellow:

Conventional Algorithms

• Curve Fitting Method
• Perturb and Observe
• Incremental Conductance
• Fractional Open-Circuit Voltage
• Fractional Short-Circuit Current
• Ripple Correlation Control (RCC)
• Current Sweep
• DC Link Capacitor Droop Control.

Computational Intelligence Based Techniques

• Fuzzy Logic Control (FLC)
• Artificial Neural Network (ANN)
• Genetic Algorithm (GA)
• Hybrid methods (such as ANFIS).

This chapter presents a performance analysis of grid connected SPV system for
different MPPT algorithms. The performance evaluation of DC–DC boost con-
verter based on P&O and INC has been compared in this chapter. The scope of the
work is to first give the detailed mathematical model of grid connected three-phase
SPV system. A parametric model of SPV cell is presented. Second, thermal
modeling and switching loss calculation of switching devices has been discussed
and then the performance evaluation will be carried out for different MPPT
algorithms for various operating conditions of the SPV array, in terms of energy
injected to grid, switching losses, junction temperature and sink temperature, for
switching in the DC–DC boost converter. In this work, a computational strategy
directed more towards intelligent behavior is employed as a tool for controlling
DC–DC converter employed in SPV system. The conventional proportional-inte-
gral (PI) controller is replaced with a nonlinear adaptive neuro-fuzzy inference
system (ANFIS) based controller, that is applied for fast, accurate, and efficient
control of DC–DC boost converter used for SPV system. The design and procedure
for selection of parameters and training of ANFIS are described. The performance
of the conventional PI and ANFIS based controllers is compared using simulation
results on a test system.
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5.2 Three-Phase Solar Photovoltaic System

The configuration of the solar power generation system is as shown in Fig. 5.1. In
this system sunlight is captured by SPV array. The SPV array is connected a DC–
DC converter to increase the voltage level and to operate at the desired current and
desired voltage to match the maximum available power from the PV module. This
MPPT DC–DC converter is followed by a DC–AC inverter for grid connection or
to supply power to the AC loads in stand-alone applications. The grid connected
SPV array system is thus composed of the following blocks:

• Solar Photovoltaic Array
• DC–DC Boost Converter and Controller
• DC Link Capacitor
• DC–AC Three Phase Inverter and Controller
• LC Filter
• Transformer
• Grid.

5.3 Solar PV Cell

The equivalent circuit of the solar PV cell is given below in Fig. 5.2. Iph is the cell
photocurrent that is proportional to solar irradiation, Irs is the cell reverse saturation
current that mainly depends upon the temperature, Ko is a constant, Ns and Np are
the number of series and parallel strings in the PV array respectively, Rsh and Rp is
the series and parallel resistance of the PV array. Generally, a PV module comprises
of a number of PV cells connected in either series or parallel and its mathematical
model can be simply expressed as given below. The equation describing the I–V
characteristics of the solar array are as follows [2]:

MPPT

DC-DC
Converter

SPV
Module

DC-AC 
Inverter 

LC  
Filter

Transformer
&

D
V

I

Fig. 5.1 Schematic diagram of SPV system blocks
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Fig. 5.2 Equivalent circuit of solar cell
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Fig. 5.3 Simulated I–V curve of a SPV module for varying irradiance condition at 25 �C
temperature
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Fig. 5.4 Simulated P–V curve of a SPV module for varying irradiance condition at 25 �C
temperature
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I ¼ NpIph � NpIrs exp Ko
V

Ns

� �
� 1

� �
ð5:1Þ

where, I denotes the PV array output current, V is the PV array output voltage. All
of the constants in the above equation can be determined by examining the
manufacturer rating of the SPV array and then the published or measured I–V
curves of the array as described in Table 5.1. Simulated I–V and P-V curve of a
SPV module for varying irradiance condition at 25 �C temperature are shown in
Figs. 5.3 and 5.4, respectively. As a typical case, the Sun Power modules (SPR-
305) array is used to illustrate and verify the model. The model parameters are
given in Table 5.1 and can be found in the datasheet [3].

5.4 Voltage Boost DC–DC Converter and MPPT
Algorithms

For maximum energy exploitation it is reasonable to operate SPV at the MPP. The
SPV array is connected a DC–DC boost converter to increase the voltage level and
to operate at the desired current and desired voltage to match the maximum
available power from the PV module. The simplest form of DC–DC boost con-
verter based on single switch and input inductor is used. The boost topology is
capable of raising input voltage to the intermediate DC-link voltage, with the only
limitation due to efficiency drop at very low voltage [4]. The DC–DC boost
converter equivalent circuit is shown in Fig. 5.5, depending on the load and the
circuit parameters, the inductor current can be either continuous or discontinuous.
The inductor value, L, required to operate the converter in continuous conduction
mode is calculated such that the peak inductor current at maximum output power
does not exceed the power switch current rating. Thus, L and output capacitor
value, C, to give the desired peak-to-peak output ripple is calculated as:

Table 5.1 Specification
from sun power module
(SPR-305) data sheet

No of series connected cells 96
Open circuit voltage (Voc) 64.2 V
Short circuit current (Isc) 5.96 A
Maximum power 100.7 kW
Voltage at maximum power (Vmpp) 54.7 V
Current at maximum power (Impp) 5.58 A

Vi

L D

Vo

Fig. 5.5 Schematic of a
DC–DC boost converter
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L ¼ 1� Dð Þ2

2f
ð5:2Þ

C� DV0

VrRf
ð5:3Þ

where f is switching frequency, D is duty cycle of the IGBT switch, R is the load
resistance, Vo is output voltage and Vr is peak-to-peak ripple voltage. The DC–DC
boost converter has the following simplified input-output equation.

Vi ¼ 1� Dð ÞVo ð5:4Þ

where Vo is the DC-link voltage regulated to be constant by the DC-link PI
controller based voltage control. So D is the degree of freedom to change the work
point of the SPV cells.

The Fig. 5.4 shows the char P–V characteristics of solar cells. The problem
considered by MPPT techniques is to automatically find the voltage and current of
at which a SPV array should operate to obtain the maximum power output under a
given temperature and irradiance. It is noted that under partial shading conditions,
in some cases it is possible to have multiple local maxima, but overall there is still
only one true MPP. Most techniques respond to changes in both irradiance and
temperature, but some are specifically more useful if temperature is approximately
constant. Most techniques would automatically respond to changes in the array due
to aging, though some are open-loop and would require periodic fine-tuning [1].
Systems composed of various PV modules located at different positions should
have individual power conditioning units to ensure the MPPT for each module.
The various MPPT algorithms are briefly described as given below.

5.4.1 Fractional Open-Circuit Voltage Based MPPT

The near linear relationship between voltage at maximum power (VMPP) and Open
Circuit Voltage (VOC) of the PV array, under varying irradiance and temperature
levels, has given rise to the fractional VOC method [5–12].

VMPP � k1VOC ð5:5Þ

where k1 is a constant of proportionality. Since k1 is dependent on the charac-
teristics of the PV array being used, it usually has to be computed beforehand by
empirically determining VMPP and VOC for the specific PV array at different
irradiance and temperature levels. The factor k1 has been reported to be between
0.71 and 0.78. Once k1 is known, VMPP can be computed using (5.5) with VOC

measured periodically by momentarily shutting down the power converter.
Figure 5.6 shows the implementation of fractional open-circuit based MPPT.
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5.4.2 Fractional Short-Circuit Current Based MPPT

Fractional ISC results from the fact that, under varying atmospheric conditions,
IMPP is approximately linearly related to the ISC of the PV array [13–15].

IMPP � k2ISC ð5:6Þ

where k2 is a proportionality constant. Just like in the fractional VOC technique, k2

has to be determined according to the PV array in use. The constant k2 is generally
found to be between 0.78 and 0.92. Figure 5.7 shows the implementation of
fractional short-circuit based MPPT.

5.4.3 Perturb and Observe Based MPPT

Perturb and Observe (P&O) involves a perturbation in the duty ratio of the power
converter, i.e. a perturbation in the operating voltage of the PV array. In the case of
a PV array connected to a power converter, perturbing the duty ratio of power
converter perturbs the PV array current and consequently perturbs the PV array
voltage [16–25]. From Fig. 5.3, it can be seen that incrementing the voltage

PV array DC/DC
converter

PI
controller

+

-

Vmpp
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To the grid side 
through DC/AC 

converter

Fig. 5.6 Fractional open-circuit based MPPT
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Fig. 5.7 Fractional short-circuit based MPPT
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increases the power when operating on the left of the MPP and decreases the
power when on the right of the MPP. Therefore, if there is an increase in power,
the subsequent perturbation should be kept the same to reach the MPP and if there
is a decrease in power, the perturbation should be reversed. The flow chart of the
P&O based method is given in Fig. 5.8.

5.4.4 Incremental Conductance Based MPPT

The incremental conductance is based on the fact that the slope of the PV array
power curve is zero at the MPP, positive on the left of the MPP and negative on the
right [26–35]. The MPP can be thus be tracked by comparing the instantaneous
conductance (I/V) to the incremental conductance (DI/DV).

So,

dP=dV ¼ 0
dP=dV [ 0
dP=dV\0

8<
: : ð5:7Þ

The flow chart of the INC algorithm is given in Fig. 5.9.

P(K)>P(K-1)

Measure V(K), I(K)

P(K)=V(K)*I(K)
dP=V(K)I(K)-V(K-1)I(K-1)

V(K)<V(k-1)
V(K)<V(K-1)

D(K+1)=D(K)+step D(K+1)=D(K)-step D(K+1)=D(K)-step D(K+1)=D(K)+step

Return

NO Yes

No
Yes

Fig. 5.8 Flow chart of P&O based MPPT
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5.4.5 Fuzzy Logic Control Based MPPT

Fuzzy logic controllers (FLC) have the advantages of working with imprecise
inputs, not needing an accurate mathematical model, and handling nonlinearity.
FLC generally consists of three stages: fuzzification, rule base lookup table, and
defuzzification. During fuzzification, numerical input variables are converted into
linguistic variables based on a membership function. In this case, rule base are
given in Table 5.2. The inputs to a MPPT fuzzy logic controller are usually an
error E and a change in error DE. The user has the flexibility of choosing how to
compute E and DE. Since dP/dV vanishes at the MPP [36–40]. By calculate the
following

EðnÞ ¼ PðnÞ � Pðn� 1Þ
VðnÞ � Vðn� 1Þ ð5:8Þ

DEðnÞ ¼ EðnÞ � Eðn� 1Þ: ð5:9Þ

Then the error signal can be calculated as

P(K)>P(K-1)

Measure V(K), I(K)

P(K)=V(K)*I(K)
dP=V(K)I(K)-V(K-1)I(K-1)

D(K+1)=D(K)-step D(K+1)=D(K)+step D(K+1)=D(K)+step D(K+1)=D(K)-step

Return

NO Yes

P(K)>P(K-1)

P(K)>P(K-1)

P(K)>P(K-1)

P(K)>P(K-1)

YesYes

NO

NO NOYes Yes

NO

Fig. 5.9 Flow chart of INC based MPPT
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EðnÞ ¼ I

V
þ dI

dV
:

Once E and DE are calculated and converted to the linguistic variables, the
fuzzy logic controller output, which is typically a change in duty ratio DD of the
power converter, can be looked up in a rule base Table 5.2. Implementation of a
fuzzy logic controller based MPPT is shown in Fig. 5.10.

5.4.6 Artificial Neural Network

Another intelligent technique is the artificial neural network. Neural networks
commonly have three layers: input, hidden, and output layers. The number of
nodes in each layer vary and are user-dependent. The input variables can be PV
array parameters like VOC and ISC, atmospheric data like irradiance and temper-
ature, or any combination of these. The output is usually one or several reference
signal(s) like a duty cycle signal used to drive the power converter to operate at or
close to the MPP [39–42]. The most commonly used neural network in the MPPT
is feed forward neural network.

Since most PV arrays have different characteristics, a neural network has to be
specifically trained for the PV array with which it will be used. The characteristics
of a PV array also change with time, implying that the neural network has to be
periodically trained to guarantee accurate MPPT. Implementation of ANN based
MPPT is shown in Fig. 5.11.

5.4.7 Genetic Algorithm

A genetic algorithm (GA) is a procedure used to find approximate solutions to
search problems through application of the principles of evolutionary biology. The
evolutionary process of a GA is a highly simplified and stylized simulation of the
biological version. It starts from a population of individuals randomly generated
according to some probability distribution, usually uniform and updates this
population in steps called generations. Each generation, multiple individuals are
randomly selected from the current population based upon some application of

Table 5.2 Fuzzy rule base table [40]

DE NB NS ZE PS PB

E
NB ZE ZE NB NB NB
NS ZE ZE NS NS NS
ZE NS ZE ZE ZE ZE
PS PS PS PS ZE ZE
PB PB PB PB ZE ZE
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fitness, bred using crossover, and modified through mutation to form a new
population.

5.5 Three-Phase Inverter for Grid Current SPV System

This MPPT DC–DC converter is followed by a DC–AC inverter for grid con-
nection or to supply power to the AC loads in stand-alone applications. The basic
operation principle of the DC–AC inverter is to keep the dc-link voltage at a
reference value meanwhile keep the frequency and phase of output current are
same as grid voltage. The error signal generated from voltage comparison is
adjusted by voltage adjuster and it decides the value of reference current, then it’s
used to switch ON and OFF the values of the inverter. The load of the grid-
connected inverter is power grid, grid power is controlled by grid current [43].
Figure 5.12 shows the schematic of three-phase gird connected inverter. Assume

PVarray DC/DC
converter

Voltage and
Power

measurment

E nad ΔE
calculation

Fuzzy rule 
base table

Defuzification
stage

A/D
ConverterGate driver

Duty cycle

To the load or grid 
side through DC/AC 

converter

ΔD

Fig. 5.10 Implementation of a fuzzy logic controller based MPPT
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Neural network

controller

Gate driver
A/D

converter

To the load 
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Temperature

Open-circuit 
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Short-circuit 
current

Fig. 5.11 Implementation of ANN based MPPT
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that three-phase grid voltage is symmetrical, stable and internal resistance is zero;
three phase loop resistance RS and LS are of the same value respectively; switching
loss and on-state voltage is neglectable; affection of distribution parameter is
neglectable; switching frequency of the rectifier is high enough.

The generalized control structure of SPV system is shown in Fig. 5.13.
Following are the three different classes of control functions of power elec-

tronics converter of SPV system.

1. Basic functions-common for all grid connected inverters

• Grid current control

T3 T5T1

Usa

Usc

AC

AC

AC

T4 T6 T2

Cdc

Rs
Ls

isp

isa

isb

isc

Fig. 5.12 Schematic of three-phase grid connected inverter

Fig. 5.13 Generalized control structure of the SPV system
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– THD limits imposed by standards
– Stability in the case of large grid impedance variations
– Ride through grid voltage disturbances
• DC voltage control

– Adaptation to grid voltage variation
– Ride-through grid voltage disturbance
• Grid synchronization

– Operation at the unity power factor as required by standards
– Ride through grid voltage disturbances
2. PV specific functions-common for all PV inverters

• Maximum power point tracking (MPPT)

– Very fast MPPT efficiency during steady state (typically [99 %)
– Stable operation at very low irradiance levels
• Anti-islanding (AI), as required by standards (VDE 0126, IEEE 1574, etc.)
• Grid monitoring

– Synchronization
– Fast voltage/frequency detection for passive AI
• Plant monitoring

– Diagnostic of PV panel array
– Partial shading detection
3. Ancillary functions

• Grid support

– Local voltage control
– Q compensation
– Harmonic compensation
– Fault ride through.

5.6 Power Losses and Junction Temperature Estimation
of Semiconductor Devices Used in Power Electronics
Convertor of SPV System

As with the increased application and usage of semi-conductor devices the esti-
mation of the power loss and temperature of the junction and thermal model (case
and sink) has become a major issue with the increase of the capacity and switching
frequency of devices. One method for estimation of power loss of devices is based
on the exact current and voltage waveforms of the devices. But, it is very difficult
to get the waveforms from simulating each pulse of PWM exactly, with the var-
iation of current and voltage. Usually the power loss is calculated under the

110 R. Singh and B. S. Rajpurohit



constant junction temperature. However, the power loss does depend on the
junction temperature, not only the loss of saturation, but also the loss of transient
switching operation. Therefore, the power loss estimation and the junction tem-
perature calculation should be combined to find out the working point of devices
[43]. The power loss of each switching operation of semiconductor device (IGBT)
is divided into three main portions, which are illustrated in Fig. 5.14. Total power
loss during each pulse of the IGBT is the sum of turn-on loss, turn-off loss, and
saturation loss. Also, the losses of the anti-paralleled diode are included, if any.

It can be assumed that the IGBT power loss of turn-on or turn-off depends on
the dc-link voltage and collector current of the IGBT. From application, it was
found that the transient switching waveforms change with increase of junction
temperature (50). It should be pointed out that the turn-on loss and turn-off loss are
also functions of junction temperature which are expressed in (5.10), (5.11),
(5.13), and (5.14). The saturation voltage of the IGBT and its antiparallel diode is
usually defined as the function of junction temperature and collector current which
are shown in (5.12) and (5.15).

Ps�on ¼ fs�onðVd; i; TjÞ ð5:10Þ

Ps�off ¼ fs�off ðVd; i; TjÞ ð5:11Þ

Vs�st ¼ fs�stði; TjÞ ð5:12Þ

Pd�on ¼ fd�onðVd; i; TjÞ ð5:13Þ

Pd�off ¼ fd�onðVd; i; TjÞ ð5:14Þ

Vd�st ¼ fd�stði; TjÞ ð5:15Þ

where
Ps-on = Power Losses during on time of the IGBT
Ps-off = Power Losses during off time of the IGBT
Pd-on = Power Losses during on state of the Diode
Pd-off = reverses recovery losses of the Diode.

ON OFF ON

Ts-off

OFFON

Ts-on

Ps-on Ps-on

Pd-off
Pd-st Pd-off Ps-st

S

D

Ps

Pd

OFF

Fig. 5.14 Power loss
estimation
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5.7 Thermal Model

A state-space block is used to build a one-cell Cauer network modeling the thermal
capacitance of the device junction as well as its junction-to-case thermal resis-
tance. The state space equations are given below:

x
0 ¼ �1

RthCth

� �
xþ 1

RthCth

1
Cth

h i Tc

Pl

� �
ð5:16Þ

Tj

Pc

� �
¼ 1

1
Rth

� �
xþ 0 0

� 1
Rth

0

� �
Tc

Pl

� �
ð5:17Þ

where, Tj is junction temp of IGBT, Pl is power loss across IGBT, Tc is case
temperature of IGBT, Rth is junction to case thermal resistance. Cth is thermal
capacitance of junction; Pc is heat flow from junction to case. Now by calculating
the junction temperature we can calculate the power losses of the IGBT. The same
analysis is extended for power losses and junction temperature calculation of anti-
parallel diode.

5.8 ANFIS Based Controllers

Classical PI and PID controllers that are used in conventional control are mainly
tuned using specific methods. The design of the PI controller based INC MPPT is
as shown in Fig. 5.15. Several methods provide initial values of the controller
parameters. The most commonly used methods are based on the Ziegler-Nichols
approach. However, these methods can be time consuming and fixed controllers

Fig. 5.15 PI controller based INC MPPT
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cannot necessarily provide acceptable dynamic performance over the complete
operating range of the SPV system. Performance will degrade mainly because of
factors such as system non-linearities and parameter variations. Adaptive con-
trollers can be used to overcome these problems. Alternatively, performance-index
based optimal control techniques can be adopted, but these may suffer from
convergence related problems.

The purpose of using a computational intelligence based controller is to reduce
the tuning efforts for improved response and to remove the shortcomings of
conventional controllers. The design of the ANFIS controller is shown in
Fig. 5.16. There are various possibilities to obtain the training data from the
classical PI controlled transient simulation of the SPV system. The ANFIS con-
troller is trained with the input and output data obtained from the transient sim-
ulations of the conventional PI controller with a wide range of operating
conditions. The ANFIS controller acts like the conventional PI controller without
the need to design and tune for different operating conditions repeatedly. The
fuzzy logic toolbox in MATLABTM has been used for designing and testing the
ANFIS controllers [41].

The Adaptive-Neuro Fuzzy Inference system is a hybrid system that combines
the potential benefits of both the methods ANN and FL. This technique has been
employed in numerous modeling and forecasting problems. ANFIS starts its
functionality with the fuzzyfication of input parameters defining the membership
function and design of fuzzy IF-THEN rules, by employing the learning capability
of ANN for automatic fuzzy rules generation and self adjustment of membership
functions [44].

In this work, the Sugeno method or Takagi-Kang method of fuzzy inference has
been used. The Sugeno method was introduced in 1985 [45]. It is similar to the
Mamdani method in many aspects. The first two parts of the fuzzy inference
process, fuzzifying the inputs and applying the fuzzy operator are exactly the

Fig. 5.16 ANFIS controller based INC MPPT
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same. The difference is that unlike the mamdani method, in the sugeno method the
output MFs are only constant or have linear relationship to the inputs. With a
constant output MF, this method is known as the Zero-order Sugeno method,
whereas with a linear relation, it is known as the first-order Sugeno method.

A typical rule in a Sugeno fuzzy model has the following form:
If Input-1 = x, and Input-2 = y, then, Output z = ax ? by ? c.
For a Zero-order Sugeno model, the output level z is a constant (a = b = 0).

The output level zi of each rule is weighted by the firing strength wi of the rule. For
example, for an AND rule with Input-1 = x, and Input-2 = y, the firing strength is

wi = AND (F1(x), F2(y)),
where F1 (.) and F2 (.) are the inputs for 1 and 2.
The final output of the system is the weighted average of the output of all the

rules, computed as

Final output ¼
PN

i¼1 wiziPN
i¼1 wi

¼
XN

i¼1
gizi; gi ¼

wiPN
i¼1 wi

ð5:18Þ

A sugeno rule operates as shown in Fig. 5.17.
The basic structure of fuzzy inference system seen, so far, is a model that maps

input characteristics to input membership functions, input membership function to
rules, rules to a set of output characteristics, output characteristics to output
membership functions, and the output membership function to a single-valued
output or a decision associated with the output. In both Mamdani and Sugeno type
of inference systems, when used for data modeling, membership functions and rule
structure are essentially predetermined by the human interpretation of the char-
acteristics of the variables of the data model.

The shape of the membership functions depends on the values of the parame-
ters. Instead of just looking at the data to choose the membership function
parameters, by using ANFIS membership function, the parameters can be chosen
automatically. The basic idea behind neuro-adaptive learning techniques is very
simple. These techniques provide a method for the fuzzy modeling procedure to
learn information about a data set, in order to compute the membership function
parameters that best allow the associated fuzzy inference system to track the given

X 

Y 

AND 

F1 (X ) 

F2 (Y ) 

 

W 

Output MF 

Z 

Output  

(Rule Weight) 

Fig. 5.17 First order
Sugeno-type inference
system
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input/output data. This learning method works similar to the neural networks. In an
adaptive neuro-fuzzy inference technique, using a given input/output data set, a
fuzzy inference system (FIS) is constructed, whose membership function param-
eters are tuned (adjusted) using either a back-propagation algorithm alone, or in
combination with a least squares type of method. This allows fuzzy systems to
learn from the data. A network-type structure, similar to that of a neural network,
which maps inputs through input membership functions and associated parameters,
and then through output membership functions and associated parameters to
outputs, can be used to interpret the input/output map.

Figure 5.18 shows the basic structure of the ANFIS algorithm for a first order
Sugeno-type fuzzy system. The various layers shown in Fig. 5.18 are explained
below [46].

Layer 1
Every node i, in this layer, is a square node with a node function

O1
i ¼ lAi

xð Þ

where, x is the input to node i, and Ai is the linguistic label (small, large, etc.,)
associated with this node function. In other words, O1

i is the membership function
of Ai and it specifies the degree to which the given x satisfies the quantifier Ai.
Usually lAi(x) is selected to be bell shaped with maximum value equal to 1, and
minimum value equal to 0, such as

lAi
xð Þ ¼ exp � x� ci

ai

� �2
( )

where, {ai, bi, ci} is the parameter set. As the values of these parameters change,
the bell-shaped functions vary accordingly, thus exhibiting various forms of
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Fig. 5.18 Typical ANFIS
structure

5 Performance Evaluation of Grid-Connected Solar Photovoltaic (SPV) System 115



membership functions on linguistic label Ai. In fact any piecewise differentiable
function, such as commonly used trapezoidal or triangular-shaped membership
function, is also qualified candidates for node functions in this layer. Parameters in
this layer are referred to as premise parameters.

Layer 2
Every node in this layer is a circle node, labeled

Q
, which multiplies the

incoming signals and sends the product out. For example wi ¼ lAi
xð ÞXlBi

yð Þ,
i = 1, 2. Each node output represents the firing strength of a rule. In fact, other T-
norm operators that performs generalized AND can be used as the node function in
this layer.

Layer 3
Every node in this layer is a circle node, labeled N. The ith node calculates the

ratio of the ith rule’s firing strength to the sum of all rule’s firing strengths, as
given below.

wi ¼ wi
w1þw2

; i ¼ 1; 2 Outputs of this layer are known as normalized firing

strengths.
Layer 4
Every node i in this layer is a square node with a node function

O4
i ¼ wifi ¼ wi pixþ qiyþ rið Þ

where, wi is the output of layer 3, and {pi, qi, ri}is the parameter set. Parameters in
this layer will be referred to as consequent parameters.

Layer 5
The single node in this layer is a circle node labeled R that computes overall

output as the summation of all incoming signals, i.e.

O5
i ¼ i overall output ¼

X
i

wif ¼
P

i wifiP
i wi

ð5:19Þ

The adjustment of modifiable parameters is a two-step process. First, infor-
mation are propagated forward in the network until Layer-4, where the parameters
are identified by a least-squares estimator. Then, the parameters in Layer-2 are
modified using gradient descent. The only user specified information is the number
of membership functions in the universe of discourse for each input and output as
training information. ANFIS uses back propagation learning to learn the param-
eters related to membership functions and least mean square estimation to deter-
mine the consequent parameters. Every step in the learning procedure includes two
parts. The input patterns are propagated, and the optimal consequent parameters
are estimated by an iterative least mean square procedure. The premise parameters
are assumed fixed for the current cycle through the training set. The pattern is
propagated again, and in this epoch (iterations), back propagation is used to
modify the premise parameters, while the consequent parameters remain fixed.

The parameters associated with the membership functions will change through
the learning process. The computation of these parameters (or their adjustment) is
facilitated by a gradient vector, which provides a measure of how well the fuzzy
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inference system is modeling the input/output data for a given set of parameters.
Once the gradient vector is obtained, some of the available optimization routines
can be applied to adjust the parameters so as to reduce some error measure (usually
defined by the sum of the squared difference between actual and desired outputs).

The big advantage of the Sugeno-type FIS, is that it avoids the use of time
consuming defuzzification, since it is a more compact and computationally effi-
cient representation than the Mamdani system, the Sugeno system lend itself to the
use of adaptive technique for construction fuzzy models. Theses adaptive tech-
nique can be used to customize the MFs so that fuzzy system accurately models
the data. Some of the advantages of the Sugeno-type method are that it is com-
putationally efficient; it works well with linear techniques (e.g., PID control).

5.9 Performance Comparisons

The schematic diagram of the main system of 100.7 kW is shown in Fig. 5.1. The
modeling and simulation has been done using Matlab/Simulink software. The main
system parameters are given in Table 5.3. The system is simulated with zero initial
conditions hence results are settling down to steady-state values after transient
period. The MPPT algorithms have been activated at the 0.4 s instant. The SPV
array has been simulated and the steady state voltage output is 240 V and the boost
converter has been used to boost the voltage level at steady-state without MPPT as
shown in Fig. 5.19. The operating voltage of the SPV array increases after using

Table 5.3 System parameters

TPV Temperature of PV cells 25 �C

G Irradiance of PV cells 1 kW/m2

CPV Boost capacitance 100 lF
CDC DC link capacitance 6 mF
LLC Inductance of the LC filter ? resistance 250 lH ? 2 mX
Freq Inverter switching frequency 1.65 kHz
Vgrid Grid RMS voltage 25 kV
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Fig. 5.19 DC output voltage of PV array DC–DC boost converter
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MPPT algorithms (MPPT algorithm starts at 0.4 s). The grid current follows the
sinusoidal waveform as shown in Fig. 5.20 and the Total Harmonic Distortion
(THD) is 1.66 % which is acceptable as per the IEEE-519 standard.

The energy injected into the grid using INC method is better than P&O method
and the efficiency of the SPV system is 99.11 % using INC MPPT as compared to
P&O MPPT having efficiency of 99.06 %. The Fig. 5.21 clearly show the
advantage of using MPPT algorithms, as energy injected into the grid has
increased from 95.6 kW to almost 100.7 kW after the instant 0.4 s when MPPT
algorithms activated. The Fig. 5.22 shows the comparison of junction temperature
of IGBT and DIODE using INC and P&O MPPT. It clearly indicates that without
MPPT the junction temperature is high and the junction temperature of IGBT and
DIODE are less using INC MPPT as compared to P&O MPPT. The switching
losses of the DC–DC boost converter are higher in absence of MPPT algorithms as
shown in Fig. 5.23 initially during transient state the switching losses are
increasing exponentially and after some time they become constant. When the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-2

0

2

4

Time (S)

C
ur

re
nt

 (
A

)

Fig. 5.20 Grid injected current

0.2 0.4 0.6 0.8 1
94

96

98

100

102

Time (S)

P
ow

er
 (k

W
)

INC

P&O

Fig. 5.21 Comparison of
energy injected into the grid

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

Time (S)

T
em

pe
ra

tu
re

 (
D

eg
re

e 
C

)

Diode(P&O)

IGBT(INC)
Diode(INC)

IGBT(P&O)

Fig. 5.22 Comparison of
junction temperature of IGBT
and diode

118 R. Singh and B. S. Rajpurohit



MPPT is on (at 0.4 s as shown in Fig. 5.23) the switching losses starts decreasing.
The switching losses are less using INC MPPT as compared to P&O MPPT.

The Figs. 5.24 and 5.25 clearly indicates that the case and sink temperature of
switching devices are also less using INC MPPT as compared to P&O MPPT in
the DC–DC converter. The switching losses of the IGBT module in DC–DC boost
converter start decreasing after the application of MPPT algorithm (at 0.4 s) as
shown in the Fig. 5.26. The Fig. 5.26 clearly indicates that the switching losses
using ANFIS controller in INC Algorithm are less as compared to the PI controller.
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The junction temperature of the IGBT module (Including IGBT and FD) is very
important. Figure 5.27 clearly indicates that the junction temperature if IGBT
module start decreasing when MPPT is activated. The junction temperature of
IGBT module is less using ANFIS controller as compared to PI controller. The
case temperature is also less using ANFIS controller as compared to PI controller
as shown in the Fig. 5.28. As the Fig. 5.29 clearly indicates that the sink tem-
perature is also less using ANFIS controller as compared to PI controller.

5.10 Concluding Remarks

This chapter presents a performance analysis of grid connected SPV system for
different MPPT algorithms. The SPV array output injected into grid can be
maximized using MPPT control systems, which consist of a power conditioner to
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interface the PV output to grid and a control unit which derives the power con-
ditioner such that it extracts the maximum power from a PV array. In this chapter,
two different Maximum Power Point Tracking (MPPT) algorithm, Incremental
Conductance (INC) and Perturb and Observe (P&O) MPPT algorithm are com-
pared for DC–DC boost converter. Present work first gives the detailed mathe-
matical model of grid connected three-phase SPV system. A parametric model of
SPV cell is also presented. Second, thermal modeling and switching loss calcu-
lation of switching devices has been discussed and then the performance evalua-
tions are be carried out for P&O and INC based MPPT algorithms for various
operating conditions of the SPV array, in terms of energy injected to grid,
switching losses, junction temperature and sink temperature, for switching in the
DC–DC boost converter. Using the method of loss calculation, the power loss of
IGBT and junction temperature can be estimated in the power conversion system.
It can be used to improve the efficiency of the system and the ultimate thermal
design. Also it can predict the working temperature of the IGBT and diode devices
in order to avoid faults of the devices. The simulation result shows that the MPPT
algorithms increase the SPV output energy injected into the grid. The switching
losses and junction temperature of the switches are calculated and compared with
two different MPPT algorithms. The performance of INC found to be better as
compared to P&O. Later, in this present work, a nonlinear adaptive neuro-fuzzy
inference system (ANFIS) is proposed to control the DC–DC boost converter
instead of a conventional PI controller. The ANFIS have been trained with the
input and output data of the conventional PI controller for different operating
conditions. The training of ANFIS controllers has been done by combining the
back-propagation gradient descent learning algorithm to choose the parameters
related to membership functions and the least-squares estimation to determine the
consequent parameters. Performance of the system is compared with two different
controllers, i.e. (PI and ANFIS). The simulation result shows that the performance
of the system in terms of switching losses, junction temperature, sink temperature
and case temperature are better using ANFIS controller as compared to PI
controller.

The vast potential of Computational Intelligence (CI) based techniques has yet
to be explored for power electronic systems control applications. Hybrid CI
techniques, particularly neuro-fuzzy techniques, have enormous potential for
application. Similarly, there are numerous MPPT techniques are available in lit-
erature and practice, associated with many respective advantages and disadvan-
tages. The area is vast, and the authors provided a discussion on the subjects which
are the most relevant to the SPV system.
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