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Abstract Inclusion of renewable energy changes the power flow direction of the
trans- mission grid, resulting in a bidirectional flow model of the power trans-
mission systems. The changing nature of the grid demands for new and improved
techniques to analyze the vulnerability of the power grid. In this chapter, a method
for identifying critical nodes for smart and bulk power transmission grid envi-
ronment is presented. A new model based on bidirectional power flow is con-
sidered. Three different models of power system based on complex network
framework are analyzed. Applicability of these methods in smart grid environment
is evaluated. The consequence of removing critical nodes found from the analysis
is discussed. Four measures of impact based on topological and electrical char-
acteristics are tested. The efficacy of bidirectional model is studied through rank
similarity analysis.
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18.1 Introduction

Utilities around the world are integrating smart and new technologies towards
making the existing electrical power transmission grid much smarter [1]. The
scope of smart grid includes various generation options, primarily in the distri-
bution side—near consumers. Engagement of customers with the energy man-
agement systems is the most lucrative part of smart grid from the point of view of
regulating energy usage. Excess of generation after local use can be transmitted
long distance to meet the energy shortage of the destination area.

This introduces a new concept of power flowing from customer end towards the
grid. The bidirectional power flow changes the whole power flow pattern of the
existing grid [2]. Analytical methods, technical strategies, control system and
protecting devices need to be changed along with, to mention a few. Metering and
protecting equipments will experience flows coming from the reverse side. Proper
operation of the equipments used earlier can be ensured either by changing the
instruments themselves or by incorporating new measurement techniques [3].

Recent years have seen several very large scale blackouts initiating from small
disturbances. In August 1996, a cascading outage occurred in the Western power
grids of North America in USA and Mexico [4]. More than four million people
suffered the consequences. Most affected areas were out of electricity for about
4 days. Another large scale blackout which affected around 55 million people
happened in August 2003 [5]. Several northeast and mid-western states of USA
and some provinces of Canada were affected.

The move towards the smart grid started after the blackouts happened all
around the world [6]. From the frequent events of large scale-blackouts it is clear
that the existing dynamics security assessment and monitoring system has not been
working well [7]. The motivation of complex network framework based analysis
approach comes from the necessity of new, alternative and improved methodology
to assess the risk involved with cascading events in power system.

Degree centrality, betweenness centrality and closeness centrality measures are
commonly used in social network research to find a person with most influence [8].
The person who has most number of links is the most central according to degree
centrality. Betweenness centrality measures the importance of a person as an
intermediary. The person who comes across a path of communication between two
other persons most of the times is considered as central in between centrality. A
person is said to be closeness central if he or she is closest to all other persons
relative to other persons in the network of interest.

Connectivity of the network is hampered, when nodes with higher degrees are
taken out from the system. Removing a node takes out with it many links, which
degrades the performance of network. Betweenness central node is important
because it has the most ability to control communication between other nodes. The
node which has least distance from all other nodes is closeness central. This node
is the most independent one since it can communicate with other nodes without the
need of intermediate nodes.
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Power grid topology has been analyzed by various researchers recently to
explore its strength and weakness using complex network framework. The strength
of the grid is found to be, from a pure topological analysis of USA power grid,
small-world property [9]. This implies that various nodes within the system can be
reached easily, which will make the communication that comes along with the
smart grid easy and effective. The scale freeness of the topology of the grid is
shown to be a weakness of the grid since it makes the system very much vul-
nerable to targeted attack [10]. This targeted attack can trigger cascading failure
which will lead to blackout.

The research on power grid from a system point of view has been triggered after
the publications of the preliminary topology based analysis results. Since results
from pure topological approach is quite misleading [11], several researchers have a
mix of both topological and electrical characteristics based complex network
analysis of power system to find reasonably improved results [12, 13].

Motivated by the topological result that found the power grid robust against
random failure but vulnerable to targeted attacks [10], critical node and link
analysis of power grid have been carried out to explore the criticality of the power
grid. If critical components can be spotted out which can initiate cascading effect,
special preventive actions could be exercised so that to prevent large scale
blackouts from happening.

Network efficiency, a topological measure of performance change after the
inclusion or removal of nodes or lines from a grid, is analyzed in [14]. A weighted
line betweenness based approach is utilized to find out critical lines responsible for
spreading of large scale blackouts from small initial shock [15]. Vulnerable
regions of power system are identified employing complex network theory based
qualitative simulation in [16]. Transmission line reactance is incorporated to
compute a new vulnerability index to identify critical lines [17].

A link is explored between power system reliability and small world effect [18].
Maximum flow based centrality approach is used to find out critical lines which
removes the shortcoming of the assumption of power flowing through the shortest
paths between source and load nodes [19]. This method has slow convergence but
can be useful when used in conjunction of planning issues. A DC power flow
model is used and hidden failure of protective equipment is considered to model
the structural vulnerability of power grid [20]. Electrical parameters are incor-
porated extensively to improve the centrality indices for power system [21].

An extended topological approach proposed in [22] takes into consideration
traditional topological metrics as well as operational behavior of power grids like
real power flow allocation and line flow limits. Power Transfer Distribution Factor
(PTDF) is used to simulate cascading event in an attempt to identify correlated
lines [23].

All these analysis are carried out for electric grids where power flow is directed
from generating nodes to load nodes. But since with the inclusion of distributed
generations the power flow pattern is going to change, new methodologies have to
be proposed which takes into account bidirectional power flow. Since
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communication is an important factor in smart grid, identifying those nodes in the
system would be very much useful which are important for communication.

In this chapter, a method based on complex network theory has been proposed
to identify critical components in smart grid. This method is a modification of
closeness centrality which takes into account power flow distribution among
various power lines during steady state. This is a reasonable extension of previous
work carried out by researchers since it captures the power flow in smart grid
environment. Rank similarity analysis result is carried out to verify that proposed
index is useful although there is a slight change in network. The impact of
removing critical components is identified using well known impact metrics like
path length, connectivity loss and load loss.

The organization of the rest of the chapter is as follows. Sect. 18.2 provides a
model for the analysis of smart power grid under complex network framework. A
new model based on bidirectional power flow is considered and a method is
discussed to find critical nodes in the power grid. The critical node identification
procedure is illustrated in Sect. 18.3. The effect of removal of critical nodes on
various topological and electrical measures is addressed in Sect. 18.4. Effect on
the rank of critical nodes for different models, when the network is changed
slightly is observed in Sect. 18.5. Conclusion is drawn and future research
direction is provided in Sect. 18.6.

18.2 System Model and Methodology

The first step of analyzing power grid under complex network framework is to
model the system as a directed graph [7]. Vertices in the graph represent gener-
ating stations, substations, loads etc. Edges of links represent transmission lines
that connect various generating stations, substations and load points. In this model,
only transmission system is considered. The overall distribution system is regarded
as a lumped load at the distribution substation terminal.

Power flow analysis is conducted for the given test system during nominal
condition. Newton–Raphson method is used to solve the simultaneous nonlinear
algebraic power flow equations [24]. The direction of real power flowing through
the lines is taken as the direction of edges in the modeled graph. From this point
this graph will be known as forward unidirectional flow graph, which can be
defined as:

Definition 18.1 (Forward Unidirectional Graph) A nominal unidirectional graph
model of a power system can be obtained from the normal operating states of the
system. It can be represented by C ¼ ð1;E;XÞ comprising of a set 1, whose ele-
ments are called vertices or nodes, a set E of ordered pairs of vertices, called edges
or lines and a set X, whose elements are weights of edge set elements. There exists
a one-to-one correspondence between set E and set X. An element e ¼ ðx; yÞ of the
edge set E, is considered to be directed from x to y, where y is called the head and x
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is called the tail of the edge. In this model, transmission line impedances in pu is
considered as weights of the edges between nodes. There exists a one-to-one
correspondence between set E and set X.

In order to consider the bidirectional flow in smart grid, a backward unidi-
rectional flow graph is also modeled, which is presented in a formal definition as
follows:

Definition 18.2 (Backward Unidirectional Graph) A backward unidirectional
graph model of a power system can be obtained from the reversed operating states
of the system. It can be represented by G ¼ ðV;E;WÞ comprising of a set V,
whose elements are called vertices or nodes, a set E of ordered pairs of vertices,
called edges or lines and a set W, whose elements are weights of edge set ele-
ments. There exists a one-to-one correspondence between set E and set W. An
element e ¼ ðx; yÞ of the edge set E, is considered to be directed from x to y, where
y is called the head and x is called the tail of the edge. In this model, transmission
line impedances in pu is considered as weights of the edges between nodes. There
exists a one-to-one correspondence between set E and set W.

As we can find out from the definition, the direction of edges in the backward
unidirectional flow graph is exactly opposite to the nominal unidirectional flow
graph. Now, the combination of the forward and backward unidirectional graph is
considered to be the bidirectional graph, which is used to model the power flow
pattern of the future smart power grid. The bidirectional graph can be defined as:

Definition 18.3 (Bidirectional Graph) A bidirectional graph model of a power
system can be obtained from the superposition of nominal unidirectional and
backward unidirectional graph models. It can be represented by G = (V,E,W)
comprising of a set V, whose elements are called vertices or nodes, a set E of
ordered pairs of vertices, called edges or lines and a set W, whose elements are
weights of edge set elements. There exists a one-to-one correspondence between
set E and set W. An element e ¼ ðx; yÞ of the edge set E, is considered to be
directed from x to y , where y is called the head and x is called the tail of the edge.
In this model, transmission line impedances in pu is considered as weights of the
edges between nodes. There exists a one-to-one correspondence between set E and
set W.

To illustrate uni- and bi-directional graph models in a power system, a simple
example of 14 bus system [25] is used in this chapter. Figure 18.1 depicts the
system with 14 bus bars, and 20 links connecting them, while Figs. 18.2 and 18.3
represent the forward and backward unidirectional graph model of Fig. 18.1. We
can model the system as a graph which contains 14 nodes/vertices which corre-
spond to the slack, voltage-controlled, and load bus bars of the original system.
The transmission lines can be represented by the 20 links/edges which connects
various nodes. The system data is given in Table 18.1.

Assume that, k represent the intermediate bus within the shortest path origi-
nating from bus s and ends at bus t. Let, Pst represents the maximum power
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flowing in the shortest electrical path between buses s and t, and PstðkÞ is the
maximum of inflow and outflow at bus k within the shortest electrical path
between buses s and t. Then, let their fraction is represented by rstðkÞ as in:

rstðkÞ ¼
PstðkÞ

Pst
ð18:1Þ

where, the ratio rstðkÞ is an index of the degree to which buses s and t need bus k to
transmit power between them along the shortest electrical path. If a double sum is
taken of (18.1) over all intermediate buses k and all destination buses t for the
source buses s,

CE
CðsÞ ¼

Xn

k¼1

Xn

t¼1

PstðkÞ
Pst

; s 6¼ t 6¼ k 2 V ð18:2Þ

a centrality measure for bus s within the grid is obtained. This measure (18.2) adds
up the real power of the lines originating at bus s and terminating at all other buses.
This quantity takes high values if the difference between numerator and denom-
inator term is low. This fact represents that very few amount of power is lost in the
shortest path. Such buses might have more direct influence on other buses since
very few amount of power is lost.

Fig. 18.1 Topology of the IEEE 14 bus test system
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Table 18.2 lists top ten critical nodes in IEEE 30 bus test system [24, 25] found
from nominal and backward unidirectional as well as bidirectional model.

18.3 Measure of Pair Dependence of Various Buses

The concept of pair dependence of various buses is presented in [26], which is
described here to maintain the flow of this chapter.

Fig. 18.2 Forward unidirectional graph model of the IEEE 14 bus test system
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18.3.1 Shortest Path

The concept of shortest path is used by the researchers of power system who use
complex network framework for network vulnerability analysis [17]. In order to
assess the vulnerability of a power grid researchers used dynamic power system
model where the concept of network flow is introduced [20]. The flow between
two nodes s and t takes on shortest path between them. If there are two or more

Fig. 18.3 Backward unidirectional graph model of the IEEE 14 bus test system
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paths between two buses then the path that has less weight is regarded as the
shortest path between those two buses.

Only the physical connection is considered in traditional modeling approach by
complex network researchers. The weight of the line between nodes reflects
simply the topology of the network. If there is a connection between node s and
node t then the weight of the corresponding line is taken as 1, otherwise it is 0 in
traditional approach [20]. In case of a power system the main parameter of a

Table 18.1 System data for
network in Fig. 18.1

Branch
number

From
bus

To bus From bus
Pinj (MW)

To bus
Pinj (MW)

Loss
P (MW)

1 1 2 156.88 -152.59 4.30
2 1 5 75.51 -72.75 2.76
3 2 3 73.24 -70.91 2.32
4 2 4 56.13 -54.45 1.68
5 2 5 41.52 -40.61 0.90
6 3 4 -23.29 23.66 0.37
7 4 5 -61.16 61.67 0.51
8 4 7 28.07 -28.07 0.00
9 4 9 16.08 -16.08 0.00
10 5 6 44.09 -44.09 0.00
11 6 11 7.35 -7.30 0.06
12 6 12 7.79 -7.71 0.07
13 6 13 17.75 -17.54 0.21
14 7 8 0.00 0.00 0.00
15 7 9 28.07 -28.07 0.00
16 9 10 5.23 -5.21 0.01
17 9 14 9.43 -9.31 0.12
18 10 11 -3.79 3.80 0.01
19 12 13 1.61 -1.61 0.01
20 13 14 5.64 -5.59 0.05

Table 18.2 Top ten nodes of
IEEE 30 bus test system in
unidirectional & bidirectional
power flow models

Unidirectional
nominal

Unidirectional
backward

Bidirectional
nominal

1 24 1
3 19 3
2 26 2
4 18 4
6 23 6
13 21 24
12 25 19
9 29 13
14 30 12
28 17 14
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transmission line which has significant effect in the power flow in the line between
buses is its impedance which is not considered in this model.

Several researchers have considered the reactance of the line [15], neglecting
the line resistance which is very small for transmission systems. But, in order to
generalize the model for both the transmission and the distribution system, the
impedance, (i.e., both the reactance and resistance) needs to be taken into con-
sideration [17].

In this chapter, we have used absolute measure of impedance,jZj, as weight of
the line. If we want to find shortest electrical path between buses 1 and 4, several
paths are possible as given in Table 18.3. We can clearly see that the shortest path
between buses 1 and 4 is 1� 3� 4 whose weight is 0.72 pu.

Finding the shortest path set for a network is a problem of graph theory and
several efficient algorithms are available.

18.3.2 Bus Dependency Matrix

In the context of complex network theory, when a pair of buses in the power
system is connected via a transmission line without any other buses in between
(intermediaries), they are said to be adjacent. A bus s adjacent to bus k, another bus
t adjacent to bus k, creates a transmission path between buses s and t via bus k. The
shortest electrical path linking a pair of buses is called a geodesic.

Let, Pst is the maximum power flowing in the shortest electrical path between
buses s and t, and PstðkÞ is the maximum of inflow and outflow at bus k within the
shortest electrical path between buses s and t. Then, let their fraction is represented
by rstðkÞ as in:

rstðkÞ ¼
PstðkÞ

Pst
ð18:3Þ

where, the ratio rstðkÞ is an index of the degree to which buses s and t needs bus
k to transmit power between them along the shortest electrical path.

The pair dependency of nodes in a network is defined in [27]. The concept of
pair dependency in [27] is used here in case of electrical power grid. The
dependency of bus pairs can be regarded as the degree to which a bus s must
depend upon another bus k to transmit its power along the shortest electrical path

Table 18.3 Various possible
connections between buses 1
and 4 of the system of
Fig. 18.1

Connection Weight (pu)

1–2–4 1.21
1–2–3–4 2.01
1–2–5–4 1.04
1–3–4 0.72
1–3–2–4 1.50
1–3–2–5–4 1.33
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or geodesic to and from all other reachable buses t’s in the network. For a power
grid with n number of buses the dependency of bus s upon bus k to transmit power
on any other buses in the network can be represented as follows:

dsk ¼
Xn

t¼1s 6¼t 6¼k2V

rstðkÞ ¼
Xn

t¼1s6¼t 6¼k2V

PstðkÞ
Pst

ð18:4Þ

The dependency of bus pairs for the whole system can be calculated and the
result can be summarized in a matrix D as follows:

D ¼

d11 d12 � � � d1n

d21 d22 � � � d2n

..

. ..
. . .

. ..
.

dn1 dn2 � � � dnn

2
6664

3
7775 ð18:5Þ

Each element of D is an index of degree to which a bus designated by row
number must depend upon another bus designated by column number to transmit
its power along the shortest electrical path or geodesic to and from all other
reachable buses in the network. Thus this matrix captures the information of
importance of a bus as an intermediary with respect to other buses in the network.
So we can call the matrix D as bus dependency matrix.

18.3.3 Steps to Find Bus Dependency Matrix
from System Data

The procedural steps to find bus dependency matrix from the system data is as
follows:

1. Model the system as a graph.
2. Find a shortest path set for the graph using Johnson’s algorithm [28].
3. Find flow in various lines of the system solving load flow problem.
4. Find the maximum power flowing in the shortest electrical path between buses

s and t, Pst, for the shortest path set.
5. FindPstðkÞ, the maximum of inflow and outflow at bus k within the shortest

electrical path between buses s and t.
6. Evaluate bus dependency matrix D from Pst and PstðkÞ.

18.3.4 Several Observations About Bus Dependency Matrix

Several observations about the bus dependency matrix are enumerated as follows:

• The ðs; tÞ-th element of the matrix represents the dependency of bus s on bus t.
• Diagonal elements of the bus dependency matrix are zero.
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• This matrix is non-symmetric.
• The row sum of the matrix could be used as an electrical closeness centrality

measure.
• The column sum of the matrix is electrical betweenness centrality measure.

18.4 Measures of Impact

At first, the nominal network is solved and nodes are removed from the system one
by one in the descending order of centrality measure. In order to measure the
impact of removing critical nodes from the system various measures are being
used. In this chapter, four measures are considered. The first two of them, path
length and connectivity loss are purely topological. The last two measures are
percentage of load lost due to the removal of critical nodes and number of over-
loaded lines.

18.4.1 Path Length

The path length is used by researchers as a measure of network connectedness. It is
the average length of the shortest paths between any two nodes in the network
[29]. It is found that if a node is removed from a system, it generally increases the
distance between other nodes. So, the increase in network characteristic path
length is considered as a measure of impact analysis of removing critical nodes
from the system.

A simple IEEE 30 bus test system is used to simulate the consequence of node
removal on path length and the result is depicted in Fig. 18.4. It is seen that, if
node with high centrality is removed found from nominal unidirectional graph
model, the path length increases slightly. A mix result of increase and decrease in
path length is found if backward unidirectional flow model is used. In case of
bidirectional flow model the maximum impact is found.

18.4.2 Connectivity Loss

This is a purely topological measure of impact a power grid encounters when some
nodes are removed from the system. In this measure we calculate how much
connectivity is lost in terms of how many generators a transmission or distribution
node can access due to effect of removing a node from the system. The less is the
number of generators a node is connected with, the less is the redundancy and the
more is the vulnerability of the node. It is given as (18.6) originally proposed in
[30].
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C ¼ 1�\
Ni

g

Ng
[ i ð18:6Þ

where, the averaging is done over each intermediate node, i.e., substations. Ng is
the total number of generators and Ni

g is the number of generators that a node i can
reach. Impact on connectivity loss for three different models is presented in
Fig. 18.5.

It is found that connectivity is lost to a great extent in all three cases, although
the effect is highest in case of bidirectional flow model. Initially nominal and
bidirectional method had similar impact, but the impact becomes more prominent
in case of bidirectional flow model after removal of three nodes only.

Fig. 18.4 Change in path
length in IEEE 30 bus test
system for removal of critical
nodes based on three different
measures

Fig. 18.5 Connectivity loss
of IEEE 30 bus test system as
a function of removal of
critical nodes from three
different points of view
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18.4.3 Load Loss and Number of Overloaded Lines

Last two measures of impact are found from a simple model of cascading failure
that is presented here. Since it is not possible to exactly model the blackout,
various approximate measures have been taken by several researchers to mimic the
situation [11, 31–33].

Power system is a very much complex interconnected system whose exact
modeling would require consideration of dynamics of rotating machines and
devices within the system, discrete dynamics of switchgear elements, non-linear
algebraic equations that govern line flows and social dynamics of governing and
operating bodies.

In this chapter, a fairly simple model of cascading failure of the power grid is
proposed by incorporating important electrical features ignoring those which are
too complicated but have little effects. The detail of the model is described here.

At first AC power flow is used to calculate the steady state condition of the
network. Real and reactive power of transmission lines are found from numerical
solution of line flow equations given in (18.7) and (18.8)

Pi ¼
Xn

j¼1

jVijjVjjjYijj cosðhij � di þ djÞ ð18:7Þ

Qi ¼ �
Xn

j¼1

jVijjVjjjYijj sinðhij � di þ djÞ ð18:8Þ

where, the symbols have their usual meanings as found in power system literature.
During the analysis, generator and load dynamics are not included. Although

the limitation of not using dynamics of generators and loads are well understood
but it is at least useful for modeling one mechanism of cascading failure that is
cascading overload. Also, Generation Shift Factors (GSF) and Line Outage Dis-
tribution Factors (LODF) [34] are used to recalculate flows in lines after distur-
bance. This helps achieving fast results without using actual load flow after each
disturbance. The speed and accuracy of the result and comparison with actual load
flow is out of the scope of this chapter and will be addressed in another research
article in future.

The transmission lines are removed if overloaded. The number of lines tripped
is taken as a measure of impact which is demonstrated in Fig. 18.6. It is clear that,
the number of overloaded lines in nominal and backward unidirectional flow
methods is almost same. The bidirectional flow model gives highest impact and a
large number of lines are overloaded for removing only seven nodes.

Also, time delayed over current relays are used in every line so if there is a lot
of overload it trips fast and if there is a little bit of overload it trips slowly. Another
thing that is added to the model is ramping up of generators. As the system
separates into sub grids, generators are allowed to ramp up or ramp down to
rebalance a little bit.
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So, if a component failure disturbs the supply–demand balance, through gen-
erator set-point adjustment this balance is achieved. But if there is not enough
ramping ability, then the ultimate choice is to trip lowest possible system load. The
total amount of load lost during the successive removal of nodes is used as a
measure of impact.

Figure 18.7 shows load loss as a percentage of total system loads. Up to six
node removal the load loss is nearly equal and does not increase much for both
unidirectional models. After five node removal, more than 50 % load of the system
need to be shedded to ensure secure and reliable operation of the remaining
system.

This introduces a new concept of power flowing from customer end towards the
grid. The bidirectional power flow changes the whole power flow pattern of the

Fig. 18.6 Number of
overloaded lines increases
drastically in bidirectional
flow based algorithm

Fig. 18.7 Three different
effects on load loss due to
loss of functionality of
important nodes in IEEE 30
bus system
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existing grid [18]. Analytical methods, technical strategies, control system and
protecting devices need to be changed along with, to mention a few. Metering and
protecting equipments will experience flows coming from the reverse side. Proper
operation of the equipments used earlier can be ensured either by changing the
instruments themselves or by incorporating new measurement techniques [27].

18.5 Rank Similarity of Critical Nodes

From the results of Sect. 18.4 it is clear that, the nodes found from bidirectional
flow model has much more impact than nominal and backward unidirectional
models. In order to analyze the effect of system change on ranks of critical nodes a
rank similarity analysis is performed. A structural change like change in the
direction of power flow is incorporated in the model and critical nodes are found
out for the modified system. This change in network corresponds to a situation
when there is a pushback of power from low voltage network via transmission
system to meet energy needs in other area.

Table 18.4 compares the changes in top ten critical nodes in IEEE 30 bus test
system. This analysis is carried out for bidirectional power flow model. Top row of
Table 18.4 corresponds to the topological state of the system. The first column
gives the top ten critical nodes from the bidirectional model. The rest of the
columns list change in critical nodes for changed topology. As for example, the
third column represents the top ten critical nodes when the nominal direction of
flow is changed through line 29–27. It is clear that; changed topology does not
affect much the node criticality.

On the other hand, slightly more change is observed in criticality for the uni-
directional model as shown in Fig. 18.8. When power flow pattern through the grid
is unidirectional, nominal unidirectional method is effective. But, in order to model

Table 18.4 Top ten critical nodes in bidirectional power flow model for IEEE 30 bus system
under various changed topological conditions

Nominal
case

Line
24–25

Line
29–27

Line
6–2

Line
17–10

Line
4–3

Line
10–6

Line
18–15

Line
30–29

Line
15–14

1 1 1 1 1 1 1 1 1 1
3 3 3 2 3 2 2 3 3 3
2 2 2 3 2 4 4 2 2 2
4 4 4 6 4 6 6 4 4 4
6 24 24 4 13 24 24 6 6 6
24 13 6 24 12 19 19 24 24 24
19 6 19 19 24 13 13 19 19 19
13 12 29 13 6 12 12 18 13 9
12 19 13 12 16 14 14 9 12 26
14 14 12 14 19 9 9 26 14 13
9 9 14 9 17 26 26 23 9 18
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the situation in the future smart grid, bidirectional model gives better result in
terms of rank similarity as given in Fig. 18.9.

This introduces a new concept of power flowing from customer end towards the
grid. The bidirectional power flow changes the whole power flow pattern of the
existing grid [18]. Analytical methods, technical strategies, control system and
protecting devices need to be changed along with, to mention a few. Metering and
protecting equipments will experience flows coming from the reverse side. Proper
operation of the equipments used earlier can be ensured either by changing the
instruments themselves or by incorporating new measurement techniques [27].

Fig. 18.8 Variation of ranks
of nodes in unidirectional
model of IEEE 30 bus test
system when the network is
modified slightly

Fig. 18.9 Rank similarity of
nodes in bidirectional power
flow model is better than that
of unidirectional one
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18.6 Conclusions

The prospect of complex network theory based research in analyzing the critical
components in smart grid environment is analyzed here with Monte-Carlo simu-
lation techniques on various standard test systems. A bidirectional flow graph is
constructed from the superposition of forward and backward unidirectional flow
graphs. The bidirectional flow graph captures the true power flow scenario of the
future smart electricity grid. Electrical centrality measure, motivated by closeness
centrality measure of power system, is used to find critical components. Four
different measures of impacts are analyzed to quantify the effect of removing
critical nodes from the grid. The results found from different measures show that,
bidirectional power flow based model is more effective in smart grid environment
than unidirectional ones. Rank similarity analysis shows that, critical nodes of
bidirectional models do not change much with system topology change as a result
of reverse power flow through transmission network in smart grid environment.
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