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Vulnerabilities of Smart Grid State
Estimation Against False Data Injection
Attack

Adnan Anwar and Abdun Naser Mahmood

Abstract In recent years, Information Security has become a notable issue in the
energy sector. After the invention of ‘The Stuxnet worm’ [1] in 2010, data
integrity, privacy and confidentiality has received significant importance in the
real-time operation of the control centres. New methods and frameworks are being
developed to protect the National Critical Infrastructures like- energy sector. In the
recent literatures, it has been shown that the key real-time operational tools (e.g.,
State Estimator) of any Energy Management System (EMS) are vulnerable to
Cyber Attacks. In this chapter, one such cyber attack named ‘False Data Injection
Attack’ is discussed. A literature review with a case study is considered to explain
the characteristics and significance of such data integrity attacks.

Keywords State estimation � False data injection attack � Smart grid � Cyber
security � Data integrity attack

17.1 Introduction

Power system State Estimation has been widely used at the utility control centres
to know the system status during the power system operation. In order to ensure
the stability and reliability of the power system, network operator monitors and
controls the system states which are obtained from the state estimation processor.
Generally, State Estimator provides an estimation of the data for all measured and
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unmeasured quantities. This advanced tool also filters out the measurement errors
and noises and suppresses bad data. With the development of the power system
research and engineering, the modern State Estimation programs have advanced
capabilities which have enhanced the computational performances, as well as,
accuracy. However, the challenges of accurate and efficient State Estimation
programs have increased more because of the recent cyber attacks in the energy
system infrastructure.

In a recent report of the ‘Industrial Control Systems Cyber Emergency
Response Team (ICS-CERT)’, it has been mentioned that 198 cyber incidents
happened in the financial year 2012 among which 41 % happened within ‘Energy
sector’. In the first half of the financial year 2013, 200 incidents happened across
all sectors of the critical infrastructure among which the highest attack (111 in
incidents) happened in the energy sector (53 %) as shown in Fig. 17.1 [2].

From the last few years, distributed energy resources and storage devices are
widely used which have changed the power flow patterns of the grid [3]. These
renewable sources have intermittent nature and most of the time they are not
dispatchable. Therefore, demand response has been a crucial issue in a smart grid
environment. To face the challenges, Advanced Metering Infrastructures (AMI)
which is equipped with smart meters, may play a significant role. It is obvious that
the use of smart meters and advanced communication network has helped the
utility operators to implement the SCADA controls more easily; however, the
communication system of the cyber-physical smart grid has been more vulnerable
in terms of cyber attack which may affect the communication network. These types
of cyber related crimes may have devastating impact on the physical power grid
including operational failures and loss of synchronization of different critical
equipments of a power grid. Moreover, a large scale blackout may occur due to a
cyber attack in a smart grid.

In a smart grid environment, energy system control sector needs advanced
communication means among different parts of the network which increases the
use of commercial off-the-shelf technologies. As a result, the cyber security issues
arise. State Estimator, which is one key operational tool in the Energy Manage-
ment System, is also very vulnerable to cyber attacks. Due to any pre-planned
cyber attack in any State Estimation programs, bad data detectors may not be able
to identify the possible threats which are attacked by any intruder. As a result,
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State Estimation programs will provide wrong information to the system operator.
Based on the wrong estimation, operator may take misleading operational decision
resulting a vital problem in the stable operation of power system. Therefore,
advanced intrusion detection algorithms are desirable.

The organization of this chapter is as follows: A brief overview of traditional
State Estimation is discussed in Sect. 17.2. The problem formulation with solution
methodologies including Bad Data Detection techniques are also discussed in that
section. The overview of Sate Estimation in Distribution System and Smart Grid is
discussed in Sects. 17.3 and 17.4 respectively. A case study is illustrated to
describe the vulnerabilities of the Smart Grid State Estimation in Sect. 17.5. A
recent review on False Data Injection attack on State Estimator is discussed in
Sect. 17.6. Finally, the chapter is concluded with brief remarks. This chapter
intends to be a comprehensive reference in the field of cyber security of smart grid
infrastructure.

17.2 Power System State Estimation

State Estimation is one of the most traditional power system analysis tools for
reliable monitoring and control of Energy Management System. One early revo-
lutionary work based on power system static state estimation was proposed in [4]
and till then a significant number of research works have been conducted on this
imperative issue. Although the traditional State Estimation has a long history in
power transmission level, this powerful network analysis tool needs more attention
in the low-voltage power distribution level [5], especially, when the grid adopts
more communication infrastructures (i.e., Advanced Metering Infrastructure,
Phasor Measurement Units (PMUs), etc.) and Distributed Energy Resources
(DERs). As mentioned earlier, the evolution of the Smart Grid State Estimation
and the vulnerabilities of this estimation tool in terms of Data Integrity Attack will
be discussed in the following section; this section will provide a brief overview of
the significance of the traditional Static State Estimation and different methodol-
ogies and techniques involved with it. In this section, the importance of Bad Data
identification and well-established procedures of detecting bad data are also
discussed.

Basically, State Estimation is a procedure which is used to determine the most
approximate solution of the system states by analyzing the measured sensor values
and the equivalent calculated values. In power system theories and applications,
the term ‘state estimator’ implies a computer program for calculating the system
states based on the measured data at different nodes of the network and the laws of
electric power networks which explains the behavior of the physical network
model. The purpose of the state estimation is to estimate the unmeasured variables,
improve overall efficiency and to detect the bad measurement.
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Generally, the states in a power system are the complex voltage magnitude and
the angles of each bus. If the state vector is x, then the state vector for an ‘n’ bus
system will be:

x ¼ d2d3. . .. . .dnV1V2V3. . .. . .Vn½ �T ð17:1Þ

where, di indicates the phase angles and Vi the voltage magnitude at the i-th bus. It
is interesting to note that, the dimension of the state vector is (2n - 1) 9 1 as the
phase angle at the reference bus is considered to be known which is generally
assumed 0 rad. Although, the bus voltage magnitudes and angles are used in
practice, current magnitudes-angles and power flows are also considered as state
variables in some cases. At the first stage of the state estimation, measurement data
are obtained from the Remote Terminal Units (RTUs) which are equipped with
sensors. These measurements include voltage magnitudes, bus injections and both
real and reactive power flows through different components of the network.
However, the measurement data may be noisy and corrupted which increase the
risk of direct use of these data. If the system states are known, then it is expected
that from the laws of electric network (say, Kirchhoff’s Current Law or Kirchhoff’s
Voltage Law) it is possible to calculate the power flow pattern of the network.
However, it is not possible to directly measure the system states which motivate to
develop and improve the methodologies related to State Estimations. As a result, at
the second stage of state estimation, functions of state variables are used to cal-
culate the expected values of the measurement data. Finally, any established
method is employed to calculate the state variables from the measurement values
and the calculated values. One such widely adopted method is Weighted Least
Square (WLS) Method. After estimating the system states, the Bad Data Detection
program is perform to identify the corrupted data. All of the steps of the state
estimation are described briefly in following sub sections.

17.2.1 System Model of Measurement Data

Consider a measurement vector z for an n-bus system, where,
z 2 RM�1;M [ ð2n� 1Þ � 1. Therefore, z should be:

z ¼

z1

z2

:
zm

2
664

3
775

It is assumed that the measurement vector should contain some error with the
exact measurement function value. Therefore, z can be written as:

414 A. Anwar and A. N. Mahmood



z ¼

z1

z2

:
zm

2
664

3
775 ¼

h1 x1;x2;::;x3ð Þ
h2 x1;x2;::;x3ð Þ

:
hm x1;x2;::;x3ð Þ

2
664

3
775þ

e1

e2

:
em

2
664

3
775 ¼ h xð Þ þ e ð17:2Þ

where, h xð Þ ¼

h1 x1;x2;::;x3ð Þ
h2 x1;x2;::;x3ð Þ

:
hm x1;x2;::;x3ð Þ

2
664

3
775, e ¼

e1

e2

:
em

2
664

3
775, and, x ¼

x1

x2

:
xm

2
664

3
775

Here, h xð Þ is the calculated function values for the state variables. x is the
vector of state variables and e is the vector of measurement errors.

Generally, e is a zero-mean Gaussian noise vector where measurement errors
are independent. Therefore, E eið Þ ¼ 0;where i ¼ 1; 2; . . .;m. And E eiej

� �
¼ 0 and

Cov eð Þ ¼ E eeT½ � ¼ R ¼ diag ðr2
1; r

2
2; . . .; r2

mÞ.

17.2.2 Calculation of Measurement Function

h xð Þ is the vector of calculated functions. Generally, h :ð Þ is a set of nonlinear
functions of the state variables for AC approximations of the load flow equations
whereas it would be a set of linear functions if the load flow equations are for-
mulated considering DC approximations.

For a p-model of any network, the measurement function value can be calcu-
lated as follows [6]:

(a) Real and reactive power injection at bus i:

Pi ¼ vi

X
j2ni

vj Gij cos dij þ Bij sin dij

� �
ð17:3Þ

Qi ¼ vi

X
j2ni

vjðGij sin dij � Bij cos dijÞ ð17:4Þ

(b) Real and reactive power flow from bus i to bus j are:

Pij ¼ v2
i gsi þ gij

� �
� vivj gij cos dij þ bij sin dij

� �
ð17:5Þ

Qij ¼ �v2
i bsi þ bij

� �
� vivjðgij cos dij � bij sin dijÞ ð17:6Þ
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(c) Line current flow magnitude

Iij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

ij þ Q2
ij

Vi

s
ð17:7Þ

where, the symbols have their usual meaning.
To calculate the h xð Þ values, any other functions can be used based on the

formulation of the network model. For example, a multi-phase power flow model
is proposed for state estimation in [7].

17.2.3 State Estimation: Formulation and Methodologies

As discussed, state estimation depends on the following equation,

z ¼ h xð Þ þ e ð17:8Þ

Therefore, state estimation can be formulated as an error minimization problem
which is in fact a convex optimization problem described below:

x0 ¼ arg min
Xm

i¼1

W zi � hi xð Þð Þ2 ð17:9Þ

where, W is the weighting matrix which can represents W ¼ R�1. To solve the
valuex0, an iterative approach may be adopted. Some popular techniques are
Gauss–Newton method and Newton–Raphson method [8]. Evolutionary algorithm,
i.e., swarm intelligence based approaches (Particle Swarm Optimization) have also
been used to solve this critical operational problem [9].

17.2.4 Bad Data Detection

Generally, it is assumed that the measured data will contain some errors. However,
sometimes, measured data is so faulty that it affects the state estimation and
inconsistent result occurs. As a result, Bad Data Detection becomes very important
to obtain a successful state estimation. Different methodologies are used to detect
and identify bad data. Such a widely adopted procedure is ‘Largest Normalized
Residual (LNR)’ method [10]. Once the system states (x0) are estimated, then the
residual is calculated as following

r ¼ z� h x0ð Þ ð17:10Þ

416 A. Anwar and A. N. Mahmood



At least one bad data exists if the value of the residual is less than a predefined
threshold, which can be written as follows:

Bad data exists if rj jj j\s
Some other techniques which are also used in literature are ‘The J x0ð Þ Per-

formance Index’, ‘Hypotheses Testing’, ‘Dormant and Perfect Measurement’,
‘Identification test’, etc. [8].

17.3 State Estimation for Distribution Networks

State Estimation of transmission system is a well-established area for real-time
monitoring and control of a complex power network. However, traditional tech-
niques and methodologies for transmission style State Estimation do not fit for a
low voltage power distribution network. Generally, balanced approximation of the
power system is considered in most of the traditional State Estimation techniques,
e.g., [6, 8]. Although this assumption of positive sequence network modeling is
valid for high voltage transmission network, but does not work well for low
voltage distribution system [11]. In reality, power lines are transposed and loads
are not balanced in a distribution network. Moreover, there are three, two, and
single-phase lines and transformers are both delta and wye connected. As a result,
rather than a positive sequence modeling of the network, it is essential to have full
multi-phase modeling for accurate simulation of distribution network as mentioned
in [12]. Considering a-b-c phase modeling, some early researches on Distribution
State Estimation are proposed in [11, 13, 14], where these issues are clearly
pointed out. Other than this multi-phase property and untransposed phase con-
ductors, distribution network exhibits some other characteristics as below [15, 16]:

(a) Feeders are mostly radial in nature
(b) Distributed loads with a small geographical area
(c) High R/X ratio
(d) Presence of Distributed Generation and no conventional generation
(e) Very low redundancy of measurement units.

Due to the distinct features of radial low voltage distribution feeders, Distri-
bution State Estimation is different from the traditional one. Moreover, analysis
procedure of this real-time operational tool is very challenging because of the
following properties [17]:

(a) Limitation of measurement devices
(b) The pseudo-measurement of load data is obtained from the historical load data

which may have very limited accuracy
(c) Significant number of current measurement devices are used.

These challenges are increased a lot in a smart grid environment which will be
discussed in the next section.
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17.4 Smart Grid State Estimation

Smart Grid State Estimation needs to face the new requirements and challenges of
the future renewable energy based sustainable self-healing intelligent smarter grid.
Different new aspects will have significant impact on the Smart Grid State Esti-
mation. Three major aspects have been identified in [5] which will be discussed
here briefly:

(a) Development of Advanced Measurement Technologies: Generally, measure-
ment data of a power system is obtained through the SCADA network. Tra-
ditionally, RTUs are used for this purpose. RTU is a microprocessor-controlled
electronic device that is responsible to measure network traffic through sensors
and to transmit the telemetry data to the Distribution Management System for
further processing. These measurements are non-synchronized and obtained
too infrequently to understand the system operational characteristics. Espe-
cially capturing system dynamics is too difficult [5]. In recent years, PMUs
have been adopted widely for better real-time monitoring and control of smart
grid. PMUs have several advantages over traditional measurement devices,
such as:

• It captures data more frequently, e.g., 20*60 times per second [17].
• Measurement data are synchronized as they are sampled according to the Global

Positioning System (GPS).
• Current measurement is also possible to those nodes where PMU is placed.
(b) New regulatory and pricing issues: In a Smart Grid concept, new regulatory

issues are arising. In a consumer-centric electricity market, end users are
capable to produce electricity and sell those to the Distribution Network
Operator (DNO). There arises the need of dynamic pricing and new regulatory
issues. As a result, DNO must have a clear knowledge about the whole dis-
tribution network, especially regarding the power flows through all the phases
of the utility distribution grid. To obtain an accurate power flows, the role of
Smart Grid State Estimation is vital.

(c) Demand response and Distributed Energy Resources: In order to fulfil the ever
growing load demand, co-generation, distributed generation and storages are
being employed in the grid. These devices are making the grid active from its
traditional passive manner which will introduce a bi-directional power flow
[18]. In order to understand the flow pattern, distribution network needs
advanced modelling and analysis capabilities which motives to develop
advanced State Estimation tools for Smart Grid.

Realizing the needs for developing accurate and fast State Estimation algo-
rithms, a significant number of research works are going on throughout the world
[19–24]. A multi-level State Estimation framework for Smart Grid is proposed in
[19] where authors propose a new paradigm based on multi-level communication
and computation architecture. At the lowest level, a local State Estimation (LSE) is
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proposed to deal with the distribution substation and its downstream radial feeders.
Computed state variable values are then transmitted through the aid of commu-
nication infrastructure to its upper level which is Transmission System Operator
(TSO) level. Rather than calculating only from ‘raw’ data, this time TSO-level SE
will get a chance to update, smooth and modify the data from LSE by comparing
with the raw measurement data. At the final stage, Regional State Estimation
(RSE) will synchronize and purify the data obtained from TSO level SE.
Numerical simulation is also carried out to explain and evaluate the working
procedure of this multi-level schema in [19].

Signal Processing based approaches have also been used to solve this critical
real-time operating problem. One such method is Belief Propagation based method
to solve Distribution State Estimation [20]. One major challenge of Distribution
State Estimation is limited measurement devices. The method proposed in [20]
solves the problem of sparse measurement by addressing Belief Propagation based
method for real-time Distribution State Estimation. One more advantage of this
method is that it can deal with the renewable energy based distributed power
generation sources. The performance of the proposed method is compared with the
Electric Power Research Institute’s distribution system analysis tool openDSS.

In [21], authors propose a method for Distribution State Estimation with the
deployment of PMUs and Smart Meters. Authors suggest that rather than mixing
the traditional meter measurements and the measurements obtained from
Advanced Metering Infrastructure (AMI) and PMU, a two-step approach can be
adopted. The advantage is that the current configurations of EMS software need
not to be changed. According to that, a traditional State Estimation is performed at
the first step and finally PMU measurements are considered to update and modify
the pre-processing data.

Considering renewable energy resources, a method for State Estimation based
on evolutionary algorithm is proposed in [25]. The proposed method can consider
different practical issues including unbalanced power flows, VAR compensators,
Voltage Regulators (VRs), tap changing transformers, etc.

17.5 Vulnerabilities of Smart Grid Sate Estimation:
A Case study

Recent literature shows that a significant improvement of Smart Grid State Esti-
mation is noticeable in terms of ‘accuracy’ and ‘efficiency’. However, this oper-
ational tool is very prone to cyber vulnerabilities as discussed in [26]. As the State
Estimation is highly dependent on the measurement data, any intruder can inject
‘False Data’ in such a way that the system is unable to detect it. Figure 17.2 shows
such kind of scenario when State Estimation is under attack. This type of malicious
modification of measurement data is known as ‘False Data Injection Attack’ [26]
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or ‘Data Integrity Attack’ [27]. In the following sub-section, a step-by-step pro-
cedure of a false data injection attack is explained with example.

In terms of computational complexity, simplified DC approximation of a power
network has more advantages over AC model of a power system. Instead of
solving ‘N’ nonlinear equations, one need to solve a set of linear equations in DC
approximation where the bus voltage is considered to be known and equivalent to
1 pu. As DC approximation does not need any iterative method, it is faster and
reduces the computational burden in the State Estimation process.

For a DC State Estimation, the problem can be defined as:

z ¼ Hxþ e ð17:11Þ

where, z is the vector of measurement data and z 2 RN ; H is the Jacobian matrix
and e is the error term. When the meter error follows normal distribution with zero
mean, the solution becomes as follows [26]:

x0 ¼ ðHT WHÞ�1HT Wz ð17:12Þ

where, W is a diagonal matrix as follows:

W ¼
r�2

1 � � � :

..

. . .
. ..

.

: � � � r�2
m

2
64

3
75 and r�2

i is the variance of i-th meter.

In order to avoid the bad measurement, the measurement residual z�Hx
should be below than the threshold value s. Generally, it can be said that there is at
least one bad data if z�Hxj jj j[ s, otherwise, Bad Data does not exist. However,
this assumption is not valid all time. Here, an example is shown to describe how to
introduce False Data Injection Attack into the State Estimation. The theoretical
concept is adopted from [26].

u
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Fig. 17.2 State estimation under attack [36]
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In this case, a three bus test system is considered as shown in Fig. 17.3, where
three measurement devices are connected to measure the power through the lines
1–2, 1–3 and 3–2. The measurement powers are P12 = 0.62 pu, P13 = 0.06 pu,
P32 = 0.37 pu and r ¼ 0:01. Here, h1 and h2 are the state variables and h3 ¼ 0
which is the reference angle. As, the problem solves DC state estimation, the
voltages are considered 1 pu.

Following the DC power flow equations:

h1 xð Þ ¼ P12 ¼
ðh1 � h2Þ

X12
¼ ðh1 � h2Þ

0:2
¼ 5ðh1 � h2Þ ð17:13Þ

h2 xð Þ ¼ P13 ¼
ðh1 � h3Þ

X13
¼ ðh1 � h3Þ

0:4
¼ 2:5h1 ð17:14Þ

h3 xð Þ ¼ P32 ¼
ðh3 � h2Þ

X32
¼ ðh3 � h2Þ

0:25
¼ �4h2 ð17:15Þ

So, the H matrix becomes,

H ¼
5 �5

2:5 0
0 �4

2
4

3
5

Bus 1 Bus 2

Bus 3

P12

P13
P32

X12 = 0.2 Pu

X13 = 0.4 Pu

X23 = 0.25 Pu

1 = ? 2 = ?

3 =0θ

θθ

Fig. 17.3 Three-bus test system
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Following the Eq. (17.12), the values of the state variables become,

h1 ¼ 0:0286

h2 ¼ �0:0943

Therefore,

h ¼ ½0:0286� 0:0943�T

Now, the residual matrix r becomes,

r ¼ z� Hx0ð Þ ¼
0:62
0:06
0:37

2
4

3
5�

5 �5
2:5 0
0 �4

2
4

3
5 0:0286
�0:0943

� �
¼

0:62
0:06
0:37

2
4

3
5�

0:614
0:0714
0:3771

2
4

3
5

¼
0:0057
�0:0114
�0:0071

2
4

3
5

So, the squared error is, z�Hx0j jj j2¼ 0:00021429.
This value is very close to zero and it can be said that a good assumption of the

state variables are made.
Now, an attack scenario is introduced. It has been assumed that the measure-

ment data is corrupted by the malicious modification of the measured data and

therefore z becomes za where za ¼ zþ a and a is the attack vector. Here, a ¼
ða1; . . .; amÞT and m is the rank of z. It is expected that due to the change of the
measured vector the values of the state variables will be altered. Considering that
effect, the new state variables will be x0false, where x0false ¼ x0 þ c. Here, c is a vector
of non-zero values with a length n. According to [26], the residual of the base case

( z�Hx0j jj j) and modified case ( za �Hx0false

���
���

���
���) would be same if a ¼ Hc that

means a is a linear combination of column vectors of H. At this stage four sce-
narios are considered as described below:

Scenario 1: This is the base case where no malicious modification of the mea-
sured data is made and therefore, it is assumed that the residual lies within the
threshold and there is no probability of a False alarm. In the base case, the values of
the measured data are PBase-12 = 0.62 pu, PBase-13 = 0.06 pu, PBase-32 = 0.37 pu.

Scenario 2: In this scenario, measured data are modified arbitrarily. Say, the
corrupted measurements are PFalse1-12 = 0.63 pu, PFalse1-13 = 0.05 pu, PFalse1-

32 = 0.35 pu.
Scenario 3: In this scenario, measured data are modified following the Attack

Definition proposed in [26]. Considering c as a vector of non-zero arbitrary chosen
values of length n:

c ¼ c1; . . .; cnð ÞT¼ 0:0050:001½ �T
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Then, the attack vector a would be

a ¼ Hc ¼
5 �5

2:5 0
0 �4

2
4

3
5 � 0:005

0:001

� �
¼

0:02
0:0125
�0:004

2
4

3
5

So, corrupted measurement would be za ¼ zþ a, therefore,
PFalse2-12 = 0.6400 pu, PFalse2-13 = 0.0725 pu, PFalse2-32 = 0.3660 pu.
Scenario 4: The attack formulation in this scenario is the same as it is discussed

in the previous scenario, however, the value of c is different which is
c ¼ c1; . . .; cnð ÞT¼ 0:010:04½ �T )

Therefore,

a ¼ Hc ¼
5 �5

2:5 0
0 �4

2
4

3
5 � 0:01

0:04

� �
¼
�0:15
0:0250
�0:16

2
4

3
5

So, corrupted measurement would be za ¼ zþ a, therefore,
PFalse2-12 = 0.4700 pu, PFalse2-13 = 0.0850 pu, PFalse2-32 = 0.2100 pu.
Now, the results obtained from the previous scenarios are discussed. The base

case is already discussed in the previous section. According to that, the state

variables obtained in the base case are h ¼ 0:0286� 0:0943½ �T . Using these val-

ues, the squared error becomes, z�Hx0j jj j2¼ 0:00021429. Considering this error
value as normal operating limit (that means, it is less than the threshold s), we will
evaluate how other corrupted measurement data in scenario 2, 3 and 4 perform
during the bad data detection in the State Estimation process.

Now, the second scenario is considered where the vector of corrupted mea-
surement data is

za ¼
0:63
0:05
0:35

2
4

3
5

Considering that, the value of h becomes,

hScenario2 ¼ ½0:0313� 0:0919�T

So, the residual matrix r becomes,

rScenario2 ¼ z� Hx0ð Þ ¼
0:63
0:05
0:35

2
4

3
5�

5 �5
2:5 0
0 �4

2
4

3
5 0:0313
�0:0919

� �
¼

0:0141
�0:0282
�0:0176

2
4

3
5

Using these values, the squared error becomes, z�Hx0j jj j2¼ 0:0013 which is
greater than the squared error in the base case. As a result, the False Data Injection
attack may not be overlooked and be detected in the Bad Data Detection test. So,
the intruder may not be successful to plan an attack.
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At this stage of the discussion, Scenario 3 and Scenario 4 are considered where
measurement data are also corrupted like the Scenario 2 but the attack vectors are
created following the method described in [26]. Using those corrupted data State
Estimation is performed and the obtained state variables are as follows:

hScenario3 ¼ 0:0336� 0:0933½ �T

and

hScenario4 ¼ ½0:0386� 0:0543�T

So, the residuals are

rScenario3 ¼ z� Hx0ð Þ ¼
0:6400
0:0725
0:3660

2
4

3
5�

5 �5
2:5 0
0 �4

2
4

3
5 0:0336
�0:0933

� �
¼

0:0057
�0:0114
�0:0071

2
4

3
5

rScenario4 ¼ z� Hx0ð Þ ¼
0:4700
0:0850
0:2100

2
4

3
5�

5 �5
2:5 0
0 �4

2
4

3
5 0:0386
�0:0543

� �
¼

0:0057
�0:0114
�0:0071

2
4

3
5:

So, the squared error for both the case is z�Hx0j jj j2¼ 0:00021429.
In scenario 3 and scenario 4, the three measurement devices show different

measurement data as they are attacked by the intruder and therefore, the system
operator obtains two different set of state variables for these two different sce-
narios. But it is interesting to note that the residual values and squared errors
calculated from both of these scenarios are the same and that is equal to the base
case. Therefore, it is expected that the error value is below than the threshold and it
will pass the Bad Data Detection technique although attack has been launched. So,
the results can be summarized in Table 17.1.

From the Table 17.1, it can be seen that no bad data is detected in Scenario 1,
Scenario 3 and Scenario 4. Although there is no False Data Injection attack in
Scenario 1 but measurement data is manipulated in the remaining two scenarios.
However, bad data detection technique fails to detect that. It is also interesting to
note that squared error term for the above discussed cases is 0.00021429 but state
variables vary a lot. As a result, the system operator may take misleading
decisions.

17.6 Vulnerabilities of Smart Grid State Estimation:
A Review

The new class of False Data Injection attack is first proposed in [26]. In that
literature, authors show that the DC State Estimation is very vulnerable to mali-
cious modification of the measurement data. With theorem and proof, some
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heuristic approaches are proposed to attack the DC state estimation. Both random
attacks and targeted attacks are considered. Two limitations of the proposed
methodology are:

(1) The attacker needs the system ‘Configuration’ information prior to the attack,
(2) The proposed methodology is developed only for DC State Estimation.

A technique to detect false data injection is proposed in [28], where authors
have focused on detecting a set of sensors whose measurements need to be pro-
tected in order to capture the false data injection in a DC State Estimator. The
work presented in that paper considers the proposed attack model of [26]. The
relation between the change of topology and the attack scenario is not considered
in this research work [28].

The impact of False Data injection attack on the energy market is discussed in
[29] which show that a successful attack can introduce a financial disaster. In that
research, a convex optimization problem is formulated to find profitable attack.
Although False Data Injection Attack is discussed based on financial issues, the
work does not provide any intrusion detection or prevention technique to mitigate
the problem.

A protection strategy against the False Data Injection Attack is proposed in
[30]. In this research, the authors propose an effective algorithm to identify and
protect the key measurements easily. A strategic plan for placement of PMU units
is also described here. This work focuses system operator’s point of view to utilize
limited resources against the False Data Injection Attack. However, this paper does
not consider accurate nonlinear AC State Estimation to define and protect attacks
in power grid.

Generally, the bad data detection technique relies on the residual errors of the
State Estimation procedure. However, it has been proven that this type of meth-
odology for Bad Data Detection is vulnerable to False Data Injection Attacks [26].
To detect bad data, a Generalized Likelihood Ratio Test (GLRT) is proposed in
[31]. This paper also considers the False Data Injection Attack from an intruder’s
point of view where attacker knows the information of mean-square error and
GLRT of the system operator. This paper also limits the research idea to DC State
Estimation.

Table 17.1 Comparison of different attack scenarios

Case False data injection attack State variables Squared error Bad data detection

h1 h2

Scenario 1 No 0.0286 -0.0943 0.00021429 Not detected
Scenario 2 Yes 0.0313 -0.0919 0.0013 Detected
Scenario 3 Yes 0.0336 -0.0933 0.00021429 Not detected
Scenario 4 Yes 0.0386 -0.0543 0.00021429 Not detected
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Impact of cyber attack on the State Estimation considering a non-linear model
is analyzed in [32]. Two widely used Bad Data Detection techniques are consid-
ered for comparison. This work concludes that False Data Injection Attack has a
better probability to remain undetected if the attacker has a more accurate model of
the system.

Another defense strategy against False Data Injection attack is proposed in [33].
The proposed detection framework has two stages. At the first stage, a linear
unknown parameter solver is used and finally, a CUSUM algorithm is used to
detect the intrusion maintain a certain low level of detection error rate.

Vulnerabilities of AC State Estimation due to the False Data Injection Attack
are discussed in [34]. This work extends the hidden False Data Injection Attack
model of [26] from a DC approximation to a non-linear AC model. Here, authors
propose a Graph-theory based approach to determine critical measurement com-
ponents which are vulnerable to cyber-attacks.

From the literature review, some decisions may be taken:

• From the attacker’s point of view:

(a) Detail system model should be considered during the attack creation
(b) Different techniques exist to detect the Bad Data. It is important to note that

attack vectors should be able to hide against most of the Bad Data Detection
techniques.

(c) Attack should be introduced with limited knowledge of system and resources.

• From the system operator’s point of view:

(a) System operator should be aware about the possible attack scenarios.
(b) Strategic protection and defense model should be introduced.

A brief description of different types of cyber attacks considering smart grid is
given in [35].

17.7 Concluding Remarks

The role of State Estimation is crucial to operate the system in a stable condition.
In recent time, Smart Grid State Estimation is very vulnerable to False Data
Injection Attacks. In this chapter, the overview of State Estimation in both
transmission level and distribution level is discussed. The evolution of State
Estimation in the Smart Grid and its requirements are also explained. The review
of False Data Injection attack is explained with a case study. It is expected that
utilities, industries and academics should be more concerned to develop the
countermeasures and protection strategies against this type of attacks.
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