
Chapter 14
Thermal Stability: Atomic Cohesive
Energy

• Critical temperature for phase transition depends on the atomic cohesive energy
that is the product of bond number and bond energy.

• The skin of a solid generally melts prior to the bulk (supercooling) and some
interfaces melt at temperatures higher than the bulk melting point
(superheating).

• Group IIIa and IVa atomic clusters show superheating because of the bond
nature evolution.

• A dual-shell model describes the TC for ferromagnetic, ferroelectric, and
superconductive phase transitions because of the involvement of both the long-
and the short-range interactions.

• Activation energy for diffusion and epitaxial growth is proportional to the
atomic cohesive energy; growing temperature controls the crystal size and
associated properties.

14.1 Cohesive Energy

14.1.1 Definition

The cohesive energy of a solid (Ecoh) is an important quantity used to accounting
for the binding strength of a crystal. The Ecoh is equal to the energy dividing the
entire crystal into the individually isolated atoms by breaking all bonds involved.
The Ecoh is given as: Ecoh(N) = NEB = NzbEb, if no atomic CN imperfection is
considered. The cohesive energy for an atom in the bulk, or atomic coherency, EB,
is the sum of the bond energy Eb over all its atomic CN, EB = zbEb, for a specific
atom in the bulk, EBz = zEz is the cohesive energy for an atom with z neighbors.

The heat required for releasing an atom from a solid is the right atomic cohesive
energy. Phase transition by loosening the atom requires energy that is a fraction of
the EB. The atomic EB varies with, not only the atomic CN, but also the CN
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reduction induced bond strength gain. The under-coordinated surface atoms will be
generally less thermally stable than those inside the core interior, unless the
strength gain of the remaining bonds overcomes the effect of coordination
reduction, EBz [ EB. For large bulk materials, effects of surface CN imperfection
is negligible but, for small particles, surface effects become dominant because of
the appreciably large fraction of such under-coordinated atoms at the surface.

The mean value of the EBz is responsible for the fall (undercooling) or rise
(overheating) of the Tm of a surface and a nanosolid. The EBz is also responsible
for other thermally activated behavior such as phase transition, catalytic reactivity,
crystal structural stability, alloy formation (segregation and diffusion), and sta-
bility of electrically charged particles (Coulomb explosion), as well as the crystal
growth and atomic diffusion, atomic gliding displacement that determine the
ductility of nanosolids.

14.1.2 Known Mechanisms

14.1.2.1 Surface Area Difference

One approach to determine the Ecoh of a nanosolid is to consider the difference
between the surface area of the entire particle and the overall surface area of all the
constituent atoms being isolated one from another [1]. For a spherical dot with
R radius and N atoms of diameter d0, the Ecoh equals to the energy required to
generate the area difference, DS, between the isolated N atoms and the nanodot
without changing the volume:

N4p d0=2ð Þ3=3 ¼ 4p Rð Þ3=3 ðvolume-conservationÞ
DS ¼ p Nd2

0 � 2Rð Þ2
h i

ðSurface-area-differenceÞ

(

Letting the surface energy per unit area at 0 K be c0, and then the overall
Ecoh(N) is,

Ecoh Kð Þ ¼ c0DS ¼ pNd2
0c0 1� N�1=3
� �

¼ Ecoh 1ð Þ 1� a=Kð Þ

�

Ecohð1Þ ¼ pNd2
0c0 is the cohesive energy of the N atoms without the effect of

atomic CN imperfection. The factor a varies with the shape and dimensionality of
the solid. For a cube, the factor is 9/4 [1]; for a spherical dot, it is 1/2.

Considering situations of both the isolated and the embedded nanosolids with
involvement of the interface and surface contributions [2]:

EB;s ¼ EB þ 3b EB=2þ kEm=2ð Þ½ �=4
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yields the mean atomic cohesive energy,

EB Kð Þ ¼ EB þ c0 EB;S � EB

� �
¼ EB þ 3c0 kbEm � 2� bð ÞEB½ �=8

where b is the ratio of the interface area to the entire surface area, k denotes the
degree of cohesion between the nanocrystal and the matrix with atomic cohesive
energy EB. For a nanocrystal wholly embedded in the matrix, b = 1 and k = 1; for
an isolated crystal, b = 0 and k = 0 [3].

14.1.2.2 Atomic CN Difference

By considering the effect of surface CN imperfection, Tomanek et al. [4] derived
the EB for an individual atom denoted i:

EB;i ¼ zi=zbð Þ1=2EB 1ð Þ þ ER

ER representing the repulsive interaction is negligible at equilibrium. The mean
EB in a nanosolid is obtainable by summing all bonds over all the N atoms:

EB Nð Þh i ¼
X
hi;Ni

zið Þ1=2Ei

.
N

A theory established based on the framework of the latent heat and the size-
dependent cohesive energy agrees with experimental data results of W and Mo
nanosolids [5].

14.1.3 BOLS Formulation

The BOLS notation considers variation of atomic Ecoh from atoms in the skin only.
Using the same spherical dot containing N atoms with Ni atoms in the ith surface
shell, the average Ecoh Nð Þh i, or EB Nð Þh i is,

Ecoh Nð Þh i ¼ NzbEb þ
X
i� 3

Ni ziEi � zbEbð Þ

¼ NEB 1ð Þ þ
X
i� 3

NizbEb zibEib � 1ð Þ

¼ Ecoh 1ð Þ 1þ
X
i� 3

ci zibC�m
i � 1

� �" #

¼ Ecoh 1ð Þ 1þ DBð Þ
or; EB Nð Þh i ¼ EB 1ð Þ 1þ DBð Þ

ð14:1Þ
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where Ecoh(?) = NzbEb represents the ideal situation without CN imperfection.
The zib = zi/zb is the normalized CN and Eib = Ei/Eb % Ci

-m is the binding
energy per coordinate of a surface atom normalized by the bulk value. For a free
surface, DB \ 0; for an intermixed interface, DB may vary depending on the
interfacial bond energy.

The following scaling relationships formulate the size dependence of EB,

DEBðKÞ
EB 1ð Þ

¼

P
i� 3 ci zibc�m

i � 1
� �

¼ DB ðBOLSÞP
i� 3 c0i zibð Þ1=2�1

h i
¼ D0B ðCN-lossÞ

�a=K ¼ dB ðArea-differenceÞ

8><
>:

ð14:2Þ

where ci * sCi/K and c0i * si/K are the surface-to-volume ratio in the corre-
sponding formulations. Figure 14.1 shows the match between these notations and
measurements of the size-dependent EB Kð Þh i of Mo and W nanosolids [6]. From a
numerical viewpoint, one could hardly tell which model is preferred to others
though physical indications of the compared models are different.

14.1.4 Atomic Vacancy Formation

As an element of structural defects, atomic vacancies, or point defects are very
important in materials and have remarkable effect on the physical properties of a
material such as electrical resistance, heat capacity, and mechanical strength. A
vacancy formation is associated with local strain, densification, quantum entrap-
ment, and polarization.

Atomic vacancy formation needs energy to break all the bonds of the specific atom
to its surroundings, which is the same to the atomic EB though structure deformation
or relaxation is involved upon vacancy formation. However, the structural defor-
mation or relaxation costs no additionally external energy. Vacancy volume should
be greater than the atomic size because of the atomic CN imperfection induced
contraction of bonds surrounding the vacancy. The measured EB is subject to
accuracy. For instance, the EB of a Mo atom varies from 2.24 to 3.30 eV [8].
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Fig. 14.1 Comparison of the
modeling predictions with
experimental results on the
size-dependent EB of Mo and
W nanosolids [6]. Numerical
agreement is nearly identical
for the compared models
albeit the different physical
origins (Reprinted with
permission from [7])
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Theoretical efforts can predict the EB of limited numbers of metals and alloys, but the
theories are rather complicated [9].

14.1.4.1 Brook’s Convention

Brooks [10] assumed the crystal is isotropic and considered the formation of a
vacancy as an equivalent to creating new surface, equal to the area of one unit cell,
being approximately the spherical surface of the atomic volume. He also assumed
that the surface tension of the hole would shrink the vacancy size by distorting the
rest of the crystal elastically. Then, the EB for atomic vacancy formation inside a
bulk solid equals the minimum of the sum of the increased surface energy and
distortion energy,

EB ¼ pd3
0c0G c0 þ Gd0ð Þ�1

G is the shear modulus and c0 the surface energy per unit area surrounding the
vacancy. Introducing the size effect to the d0, G, and c0, the relative change in the
mean EB in a nanoparticle becomes,

Ep � EB

EB

¼
d3

p

d3
0

Gd0 þ c0

Gdp þ c0

� �
� 1

where Ep and dp are the corresponding vacancy formation energy and mean atomic
diameter in the nanosolid.

An extension of Brook’s approach to nanostructures assumed that the G and the
c0 of a nanosolid remain the bulk values [11]. The key factor influencing the Ep of
a spherical dot of diameter D is the size-dependent atom size. Assuming that a
small shrink of eD (e � 1) results from the hole volume contraction, the surface
energy variation Dc, and the strain-dependent elastic energy f of the particle
become,

Dc ¼ pD2 1� eð Þ2�1
h i

c0

f ¼ pGD3e2 ð14:3Þ

At equilibrium, the total energy F, or the sum of Dc and f, is minimal, that is,
dF/de = 0, and then, the strain of the particle becomes

e ¼ 1þ G=c0ð ÞD½ ��1

The average size dp of an atom shrinks due to the presence of G and c0,
dp ¼ d0 1� eð Þ:
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14.1.4.2 BOLS Formulation

The following compares Brook’s approximation and the BOLS correlation on the
bond strain of a nanosolid:

Ddp

d0
¼

� 1þ G=c0ð ÞD½ ��1ffi �Kdc= K þ Kdcð Þ ðBrookÞP
i� 3

ci Ci � 1ð Þ ¼ Dd BOLSð Þ

(

where Kdc = c0/(2d0G) is the critical value and K remains its usual meaning of
dimensionless form of size. Further simplification of Eq. (14.3) leads to the atomic
vacancy formation energy in a nanometric system as given in comparison with the
BOLS derivative:

DEB Kð Þ
EB 1ð Þ

¼
� 1þ K=að Þ�1ffi �KEc= KEc þ Kð ÞP
i� 3

ci zibC�m
i � 1

� �
¼ DB

(
ð14:4Þ

where a ¼ 2gd0 þ 3ð Þ
�

2d0 g2d0 þ gð Þ½ � (*10-1 level) and g = G/c0 *10 nm-1.
KEc = a/(2d0) is the critical value of K. For Pd and Au nanosolids, the critical KEc

and Edc values are calculated based on the given G and c0 bulk values, as listed in
Table 14.1.

Figure 14.2 compares the predictions of the two models. At the lower end of the
size limit (K = 1.5), the particle diameter contracts by 40 % associated with 12 %
reduction in the EB according to Brook’s convention [11]. In comparison, the

Table 14.1 Shear modulus, surface energy and the calculated a values for Pd and Au

G (1010 N/m2) [12] c0 (J/m2) [13] a/nm KEc/Kdc

Pd 4.36 2.10 0.104 0.1894/0.8770
Au 2.60 1.55 0.119 0.2066/1.035
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Fig. 14.2 Comparison of a the bond (particle size) contraction and b atomic vacation-formation
energy derived from the BOLS premise and from Brook’s approach for Pd and Au nanosolids
(Reprinted with permission from [7])
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BOLS correlation predicts a 25 % bond contraction and 70 % lower of the EB for
the smallest size. The approximation based on Brook’s relation overestimates the
bond contraction and underestimates the EB suppression because of the assumption
of size-independent G and c0. Actually, the atomic vacancy should expand instead
as the remaining bonds of the surrounding atoms contract. The strain of the entire
nanoparticle arises from surface bond contraction and has little to do with the
atomic void inside. One may note that EB varies from site to site due to the
difference of atomic CN environment at various locations of the solid.

14.2 Liquid–Solid Phase Transition

14.2.1 Undercooling: Skin Pre-Melting

Undercooling and overheating are the mostly attended activities of materials at the
nanoscale. In many cases, surface liquidation and evaporation often occur at
temperatures lower than the corresponding bulk values [14–16]. Likewise, liquid
surface freezes at lower temperatures [17]. For substrate-supported nanosolids
with relatively free surfaces, the Tm decreases with particle size (termed as und-
ercooling). In contrast, as per the existing experimental evidence for embedded
nanosolids, the Tm can be lower than the bulk Tm for some matrices. However, the
same nanosolid embedded in some other different matrices may melt at temper-
atures higher than the bulk Tm (overheating). Overheating of 115 K occurs to
Pb(111) films confined in an Al(111) matrix [18]. The Tm suppression for a free
surface corresponds to the reduced degree of confinement and the increased
entropy of the molecules at the surface compared with atoms in the bulk, whereas
the Tm elevation or depression of the embedded nanosolids depends on the
coherency between the nanosolids and the embedding matrix [19, 20].

There is an extensive database describing surface and nanosolid Tm suppression
[21–26]. For instance, a photoelectron emission study [27] confirmed that lithium
(110) surface melting occurs 50 K below the bulk Tm (454 K). A temperature-
resolved XRD analysis revealed that the Tm of nanometer-sized drugs (polymer)
also drops (by 33 and 30 K for 7.5-nm-sized griseofulvin and 11.0-nm-sized
nifedipine, respectively) in a 1/R fashion [28]. STM measurements of a reversible,
temperature-driven structural surface phase transition of Pb/Si(111) nanoislands
indicates that the transition temperature decreases with inverse of domain size and
the phase transition is independent of the processes of cooling or heating [29].

The Tm of a Pd nanowire is lower than the bulk value but higher than that of the
cluster with countable number of atoms proceeding in a surface pre-melting
manner. A quasi-liquid skin grows from the surface radially inward for both cluster
and wire, followed by a breakdown of order in the remaining solid core at the
transition temperature [30].
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The size effect on the nanosolid melting has been modeled in terms of classical
thermodynamics and atomistic MD simulations [31–46]. In general, the size-
dependent Tm(K) follows the empirical scaling relationship:

DTm Kð Þ
Tm 1ð Þ

¼ �KC

K
; ð14:5Þ

where KC is the critical size at which the nanosolid melts completely, or the
Tm(KC) = 0 K. The physics behind the KC is the focus of modeling studies.

14.2.1.1 Classical Thermodynamics

Classical thermodynamics based on the surface Laplace and the Gibbs–Duhem
equations [43] have derived that KC obeys the following relations [41, 44]:

KC ¼
�2

Hm 1ð Þ
�

rsv � rlv qs=qlð Þ2=3; HGMð Þ
rsl 1� K0=Kð Þ�1þrlv 1� qs=qlð Þ; LSMð Þ

rsl; 3 rsv � rlvqs=qlð Þ=2½ � LNGð Þ

8<
:

where Hm is the latent heat of fusion. q is the mass density and r the interfacial
energy. Subscripts s, l, and v represent the phases of solid, liquid, and vapor,
respectively. The critical value of RC (= KCd0) is normally several nanometers.
These expressions correspond to three outstanding mechanisms in terms of clas-
sical thermodynamics:

1. The homogeneous melting and growth (HMG) model [32, 33] considers the
equilibrium between the entire solid and the entire molten particle, which
suggests that the melt proceeds throughout the solid simultaneously. This
model describes well the case of smallest nanoparticle with KC equal to three or
less or otherwise to larger values with void defects being involved.

2. The liquid shell nucleation (LSN) model [34] assumes that a liquid layer of
thickness K0 is in equilibrium at the surface, which indicates that the surface
melts before the core of the solid.

3. The liquid nucleation and growth (LNG) model [37, 38] suggests that melting
starts by the nucleation of a liquid layer at the surface and moves into the solid
as a slow process with a definite activation energy. The LSN and the LNG are
valid to the melting of a flat surface or a larger nanoparticle.

14.2.1.2 Atomistic Models

Models based on atomistic/MD attribute the critical RC to:
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RC ¼
5,230 v0c; v0 ¼ 4pd3

0

�
3

� �
Liquid-dropð Þ

amd0; am � constantð Þ Surf-phononð Þ
R0

1�b
1�R0=R

� 	
; Surf-RSMDð Þ

8><
>:

ð14:6Þ

The liquid-drop model [47] relates the Tm to the Ecoh of the entire particle of
N atoms. With the involvement of surface, the Ecoh equals the difference between
the volume cohesive energy (NEB) and the surface energy (4pd0

2N2/3c). The mean
cohesive energy per atom with volume v0 in the solid is EB(R) = EB - EB,SN-1/3,
where EB,S = 4pd0

2c is the cohesive energy for an atom at the surface. The relation
between the EB and the EB,S is given empirically as, EB;S ¼ 0:82 EB [48]. Based on
the Lindemann’s criterion of melting, the Tm of the bulk material follows [49],

Tm 1ð Þ ¼ nf 2
e EB

�
3kBZð Þ / EB ð14:7Þ

where n is the exponent of the repulsive part of the interaction potential between
constituent atoms, Z is the valence of the atom, which is different from the atomic
CN (z). The coefficient fe is the thermal expansion magnitude of an atom at Tm. At
Tm, the fe is less than 5 % [50, 51]. The Tm depends simply on the mean atomic
EB Kð Þh i of the solid. Replacing the EB with the size-resolved EB(K), Nanda et al.

[47] derived the liquid-drop model for the Tm(K) based on the relation:

Eb 1ð Þ ¼ g1bTm 1ð Þ þ g2b ð14:8Þ

where the constant g2b represents 1/z-fold of the enthalpy of fusion and atomiza-
tion, which is required for evaporating an atom from the molten state. g1b is the
specific heat per coordinate in the bulk. The g1b and g2b values are tabulated in
Table 14.1 [47]. According to the liquid-drop notation, the critical radius at which
Tm(KC) approaches 0 K is in the range of 0.34 (for Mn) and 1.68 nm (for Ga) [47].

The surface-phonon instability model [40, 52, 53] suggests that the Tm(K) var-
ies with Tm(?) and with the energy for defect formation at the surface. Within the
thermodynamic limit (particle radius larger than 2 nm), the effects of size
reduction and electronic excitation combine [54].

The lattice-vibration instability model [40, 55–59] extends Lindemann’s
vibrational-lattice instability criterion [60]. The melting behavior of a nanosolid is
related to the ratio (b) of the root-mean-square displacement (RMSD, d2) of an
atom at the surface to the RMSD of an atom inside a spherical dot. b is a size-
independent parameter:

b ¼ d2
s Dð Þ

�
d2

b Dð Þ ¼ d2
s 1ð Þ

�
d2

b 1ð Þ

The KC is determined by K0 = s (dimensionality) at which all the constituent
atoms have surface features. This model indicates that if b[ 1, the surface melts
below the bulk Tm, and vice versa. According to the RMSD, a nanosolid of KC = s
radius will melt at 0 K.
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14.2.2 Overheating: Interface Effect

In the case of embedded nanosolids, the coefficient of surface energy will be
replaced by the interfacial energy if surfaces are completely saturated with atoms
of the surrounding matrix. Nanda et al. [47] introduced the ratio as a perturbation
of surface energy between the matrix and the embedded specimen,

DTm Kð Þ
Tm 1ð Þ

¼ �KC

K
1� cMat

c

� �

If the surface energy of the matrix cMat [ c, the core nanosolid melts at a
temperature that is higher than its bulk counterpart. This expression matches the
experimental data of Pb particles embedded in an Al matrix but overestimates
the Tm for Indium particles embedded in an Al matrix by some 10–20 K using the
known c and cMat values.

Based on the size-dependent magnitudes of the atomic vibrations, Jiang et al.
[40, 61] extended the Tm(K) model for the overheating, according to which
overheating is possible if the diameter of the matrix atoms is smaller than the
atomic diameter of the embedded nanosolid. Therefore, adjusting the b value in
the RMSD model describes both overheating and undercooling of a nanosolid.
Overheating happens when b\ 1, which means that the matrix confines the
vibration of the interfacial atoms.

However, MD simulations [62] suggest that atoms in the bulk interior of a
freestanding nanosolid melt prior to the surface that melts at relatively higher
temperatures. This prediction seems to be conflicting with existing database but as
discussed shortly for the overheating of the smallest Ge+ and Sn clusters. In
contrast, MD calculations [63] of the melting evolution, atomic diffusion and
vibrational behavior of bcc metal vanadium nanoparticles with diameters around
2–9 nm suggest that the melting proceeds in two stages. A stepwise pre-melting of
the skin of two or three atomic layers happens first and then an abrupt melting of
the entire cluster follows. The heat of fusion of nanoparticles is also inversely
proportional to the nanoparticle size.

The models of LSN, HMG and LNG suit only the cases of Tm suppression
(DTm \ 0) while the liquid-drop and the RMSD models cover both the underco-
oling and the overheating. For particles larger than several nanometers, all the
models worked sufficient well despite the disputable mechanisms.

14.2.3 BOLS Formulation

A Taylor’s series of the binding energy of a pair of atoms can be decomposed as
energies of binding at 0 K, Eb(d0), and the thermal vibration energy, EV(T):

262 14 Thermal Stability: Atomic Cohesive Energy



Etotal r; Tð Þ ¼
X

n

dnu rð Þ
n!drn

� �

r¼d0

r � d0ð Þn

¼ u d0ð Þ þ 0þ d2u rð Þ
2!dr2






d0

r � d0ð Þ2þd3u rð Þ
3!dr3






d

r � d0ð Þ3. . .

¼ Eb d0ð Þ þ
k

2
r � d0ð Þ2þ k0

6
r � d0ð Þ3þ � � �

¼ Eb d0ð Þ þ EV Tð Þ ¼
0; Evaporationð Þ

EC; Critical� TCð Þ

�

ð14:9Þ

The term of n = 0 corresponds to the minimal binding energy at T = 0 K,
Eb(d0) \ 0. The term n = 1 is the force [ou rð Þ=orjd0

= 0] at equilibrium and terms
with n C 2 correspond to the thermal vibration energy, EV(T). The TC can be any
critical temperature for event such as liquid–solid, liquid–vapor, or other phase
transition, like magnetic and ferroelectric transitions. By definition, the thermal
vibration energy of a bond is,

EV Tð Þ ¼ d2u rð Þ
2!dr2






d

r � dð Þ2þd3u rð Þ
3!dr3






d

r � dð Þ3. . .

ffi lx2 r � dð Þ2
.

2þ 0½ r � dð Þn [ 2�

	 kv r � dð Þ2
.

2 ¼ g1T

ð14:10Þ

where r - d0 is the magnitude of lattice vibration. l is the reduced mass of a dimer
of concern. The term qv = lx2 is the force constant for lattice vibration with an
angular frequency x.

The physical argument for the BOLS iteration is that, if one wishes to peel off
or loosen an atom in the solid thermally, one must supply sufficient thermal energy
to overcome the cohesion that binds the specific atom to its surrounding neighbors.
The thermal energy required to loosen one bond is the separation of Eb(TC) -

Eb(T), see Sect. 14.2. If the EV(T) is sufficiently large, all the bonds of the specific
atom will break and this atom will leave the solid. At the evaporating point of any
kind of solid, Etotal = 0; at the critical point, Etotal = EC. One may consider step-
by-step the energies required for melting (or dissociating) a bond, an atom, and
then shell-by-shell of a nanosolid of radius lined with K atoms.

The thermal energy required for loosening a bond of an atom in the bulk by
raising the temperature from T to TC equals,

ET ¼ Eb TCð Þ � Eb Tð Þ ¼ g1 TC � Tð Þ / Eb 0ð Þ ð14:11Þ

The energy required for melting the entire atom in a bulk is proportional to the
EB(0), which is a sum of the single bond energy over all the coordinates.

Melting a nanosolid comprising N atoms in a shell-by-shell manner requires
thermal energy that is proportional to the cohesive energy of the entire solid:
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Tm Kð Þ / Ecoh Kð Þ ¼ NzbEb þ
X
i� 3

Ni ziEi � zbEbð Þ ð14:12Þ

If the bond nature in the solid is homogenous, the Ecoh may vary from material
to material, but for a specific sample, the fraction of the Ecoh needed for the phase
transition is fixed for a specific process occurring to the specimen [49]. The
relative change in Tm(K) and TC(K) is then:

DTmðKÞ
Tm 1ð Þ

¼ DTCðKÞ
TC 1ð Þ

¼ DEBðKÞ
EB 1ð Þ

¼
X
i� 3

ci zibc�m
i � 1

� �
¼
X
i� 3

ci a� 1ð Þ ¼ DB

ð14:13Þ

The temperature is always the same throughout the specimen in operation
whereas the intrinsic TC,i may vary from site to site if the sample contains atoms
with different CN, such as atoms at the surface, grain boundary, or sites sur-
rounding voids or stacking faults.

This mechanism explains why the latent heat of fusion of a solid has a broad
range of measured values rather than appearing as a sharp peak [41, 64]. For a
solid with numerous randomly distributed defects, the mechanism of random
fluctuation melting [39] could dominate because energies required for breaking
one bond or dissociating an individual atom with different CN are different. This
mechanism also explains the broad temperature range for glass transition of an
amorphous state as the random distribution of atomic CN imperfection in the
amorphous solid. Glass transition happens in a range of temperatures and it is
material processing condition dependent [65].

On the other hand, from a classical thermodynamic point of view, the thermal
energy ET required for the liquid–solid phase transition can be estimated by
integrating the specific heat over the entire solid with and without CN imperfection
from zero to the Tm:

DETðKÞ
ET 1ð Þ

¼
R Tm Kð Þ

0 Cp Kj; Tð ÞdTR Tm 1ð Þ
0 Cp 1; Tð ÞdT

� 1 ffi DTm Kjð Þ
Tm 1ð Þ

¼ DB ð14:14Þ

with the assumption of CP(K, T) % CP(?, T) % CV(?, T) = constant in the
entire temperature range [66]. It is true in fact that CP(K, T) = CP(?,
T) = CV(?, T) = constant. The Debye temperature and therefore the specific
heat CP are size and temperature dependent [56, 67]. This effect results in a 3–5 %
deviation of the CP value. Besides, (CP - CV)/CV * 3 % [66]. Compared with
the precision in determining the size and shape of a nanosolid, such errors are
negligible.

Actually, measurements [68–70] revealed that the CP varies insignificantly with
the particle size in the measuring temperature range. Therefore, it is acceptable to
simplify the CP as a constant in the integration. Such simplification may lead to
slight deviation in the integration in Eq. (14.14) from the true value. Nevertheless,
one should particularly note that the deviation of the integration from true value
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only affects the precision of the m value or the effective zib, and it does not change
the nature of the phenomenon.

14.2.4 Verification: Liquidation and Evaporation

Equation (14.13) indicates that the size-dependent DTm(K)/Tm(?) originates from
the relative change in the EB,i of a surface atom to the bulk value. The DTm(K)/
Tm(?) follows the scaling law given in Sect. 14.2. Figure 14.3 compares pre-
dictions using parameters given in Table 14.2 with the measured size-dependent
melting behavior of metals, semiconductors, inert gases, and methyl chloride
polymer (m-Cl), as well as embedded systems showing overheating effects. The
size-dependent evaporating temperatures (Teva) of Ag and CdS nanosolids also
follow the trend of prediction.

The matching between BOLS prediction and measurements provides additional
information about the mode of epitaxial crystal growth and the bonding status
between the nanosolid and the substrate. Results show that Al nanosolids grown on
a SiN substrate are more plate-like (s = 1) throughout the measured size but Sn on
SiN and Au on C are more spherical-like (s = 3) at particle sizes smaller than
10 nm. The melting profiles show that at the smaller size range, Au/W interface
promotes more significantly the melting of Au (undercooling) than the Au/C
interface. The silica matrix causes a slight overheating of the embedded Au solid
compared with the curves for Au on the other two substrates. The deviation from
theory and experiment also provides information about the difference in interfacial
energy between the particles and the substrates.

The BOLS premise indicates that the overheating of In/Al (Tm,In/Tm,Al = 530/
932), Pb/Al (600/932), Pb/Zn (600/692), and Ag/Ni (1235/1726) [71] results from
the interfacial bond strengthening. An atom performs differently at a free surface
from this atom at the interface. Although the coordination ratio at the interfaces
suffers little change (zib * 1), formation of the interfacial compound or alloy
alters the nature of the interatomic bond that should be different in strength. In this
case, one may replace the zibCi

-m with a parameter a to describe the interfacial
bond enhancement, as indicated in panel (g).

Numerical fitting turns out the a value of 1.8, which indicates that an interfacial
bond is 80 % stronger than the bond in the parent bulk. If one considers the bond
contraction, 0.90 * 0.92 [72], as the As and Bi impurities in CdTe compound, the
m value is around 5.5–7.0. The high m value indicates that bond nature indeed
evolves from a compound with m around four to a value of more covalent nature.
Therefore, the deformed and shortened interfacial bond is much stronger. This
finding means that electrons at an interface are deeply entrapped and densified.
Therefore, it is understandable that twins of nanograins [73] and the multilayered
structures [74] are stronger and thermally more stable.

It is anticipated therefore that a thin insulating layer could form in a hetero-
junction interface because of the interfacial bond nature alteration and the charge
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Fig. 14.3 Agreement between predictions (solid lines) and experimental observations of the
size-and-shape dependence of the Tm suppression of a Sn and Al on Si3N4 substrate [66, 70], b In
and Pd, c Au on C [33], W [32] and embedded in Silica [78], d Ge and Si, e Bi and CdS, f Kr, Ne
and O, and m-Cl, g overheating of embedded In and Pb, h Teva of Ag and PbS nanosolids [79].
Parameters and references are given in Table 14.2 (Reprinted with permission from [7])
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trapping effect. This anticipation explains the high interfacial stress (rP) of junc-
tion dislocations in aluminum [75] and provides new insight into the deformation
of ultrafine-grained metals. The interface bond strengthening also explains the fact
that a monolayer GaAs coating on a Ge(110) surface could raise the Tm (1211 K)

Table 14.2 Parameters used in calculations presented in Fig. 14.3

Medium Tm(?) Tm intercept Data sources (Ref.)

Al-01 (on SiN) 933.25 [69]
Al-02 [80]
Sn-01 (on SiN) 505.06 [81]
Sn-02 [82]
Au/C 1337.33 [33]
Au/SiO2 [78]
Au/W 947 [32]
Ag 1,234
In-01 429.76 438.9 [24]
In-02 433 [82]
In-03 443 [83]
Pb-01 600.6 632.6 [84]
Pb-02 600.6 607 [24]
Si-01 1,685 1,510 [85]
Si-02 [86]
Ge-01 (beginning) 930 910 [87]
Ge-02 (ending) – 1023.3
Ge-03 (recrystallization) 1260.8
CdS 1,678 1,346 [14]
Bi-01 544.52 [24]
Bi-02 618.9 [82]
Bi-03 559.9 [88]
Bi-04 587.6 [89]
Bi-05 557.8 [90]
Kr 116 109.2 [91]
O 54.4 [92]
Ne 24.6 [85]
Methyl chloride (m-Cl) 175.6 [91]
In/Al-01 429.76 433 [93]
In/Al-02 429.76 423.8 [82]
Pb/Al-01 933.25 613.2 [19]
Pb/Al-02 [94]
Pb/Al-03 [95]
Pb/Al-04 [96]
Pb/Zn 692.73 [92]

Tm is the intercept of least-root-mean-square linearization of the experimental data that calibrate
the measurements. Atomic sizes are referred to Appendix A2
For metals, m = 1. For embedded system, the zibCi

-m is replaced with a constant a that describes
the bond strength enhancement due to the alloying at the interfaces
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with an association of a dramatic drop of the diffusion coefficient of the Ge atoms.
In contrast, a Ge monolayer coating on a GaAs(110) surface lowers the Tm of
GaAs (1,540 K) by 300 K. Therefore, overheating is subject to the configuration
of the hetero-junction interface and their respective Tm(?) as well.

The Tm of Si and CdS nanosolids appeared to be lower than the expected values
with m = 4.88 for Si. The reason of the deviation could be the definition of
melting temperature that may refer to temperature of coalescence or complete
melting. For instance, MD calculations revealed that [76] coalescence occurs at
temperatures lower than the cluster Tm, and that the temperature difference
between coalescence and melting increases with cluster size reduction. In the
normalization of the scaling relation, the coalescence temperature is lower than the
Tm and the coalescence T drops faster than Tm with solid size. The size-dependent
Tm of Kr, Ne, and O solids follow the curve of m = 4.88 as well, despite the
accuracy of measurement. The In particle encapsulated in silica exhibits over-
heating while the In embedded in Vycor glass shows no overheating effect. From
the RMSD instability point of view, the interfacial binding constrains the RMSD of
the interfacial atom to be smaller than that of a bulk atom [40].

Equation (14.13) indicates that the quantity a ¼ zi=zbC�m
i dictates the process

of overheating (a[ 1, Tm elevation for chemically capped nanosolids) or und-
ercooling (a\ 1, Tm suppression of freestanding nanosolids). For a capped
nanosolid, zi/zb * 1, the a represents the interfacial bond strength. For a free-
standing nanosolid, there are two possibilities for a[ 1. One is that the
m increases as zi is reduced and the other is that the Ci is much lower than the
prediction [77].

14.2.5 Tm Oscillation

14.2.5.1 Observations

The hardness of a bulk material is proportional to its Tm. However, the skin of a
solid is generally harder, but the melts more easily than the core interior. XRD in
ultrahigh vacuum [44] reveals that the Tm of Pb nanosolids drops with crystallite
size, which follows the liquid-skin melting mechanism. Such melting behavior is
demonstrated via the reversible growth of a 0.5-nm (2 atomic diameters)-thick
liquid skin on 50-nm-sized crystallites.

It is surprising, however, that a freestanding nanosolid at the lower end of the
size limit, or clusters containing 10–50 atoms of Ga+ or IV-A elements, melts at
temperatures that are 10–100 % or even higher than the bulk Tm(?) [29, 97–100].
For example, Gaþ39�40 clusters melt at about 550 K, while a Gaþ17 cluster does not
melt even up to 700 K compared with the Tm(?) of 303 K [97]. Small Sn clusters
with 10–30 atoms melt at least 50 K above the Tm(?) of 505 K [22]. Numerical
optimizations suggest that Gaþ13 and Gaþ17 clusters melt at 1,400 and 650 K [98]
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and Snn (n = 6, 7, 10 and 13) clusters melt at 1,300, 2,100, 2,000, and 1,900 K,
respectively [100]. For a Sn10 cluster, the structural transition happens at 500 and
1,500 K and the structural transition of a Sn20 cluster occurs at 500 and 1,200 K
[101]. The Snþ10 and Snþ11 clusters survive up to 1,073 K while Sn clusters con-
taining n [ 19 and n \ 8 atoms are less thermally stable as melting occurs at
773 K or below [102]. Sn19 can remain solid up to 673 K while Sn20 melts below
673 K.

Calculations [99] suggested that the IV-A elements, Cn, Sin, Gen, and Snn

(n * 13) clusters melt at temperatures higher than their Tm(?). The measured Tm

for Bi particles of 7 nm in radius was similar, being up to 50 K above the value
predicted by the homogeneous melting model [103]. The C13 cluster prefers a
monocyclic ring or a tadpole structure, which is most probable to appear in the
simulated annealing when the temperature is between 3,000 and 3,500 K.
Numerical calculations, suggested that at the smallest sizes, carbon atoms tend to
form tubes or fullerene rather than tetrahedron diamond. Although the Tm may be
overestimated to some extent for the smallest clusters [100], the calculated Tm

elevation follows the trend of measurement.
The Tm elevation of the smallest Ga and Sn nanosolid corresponded either to

the bond nature alteration from covalent-metallic to pure covalent with slight bond
contraction [98, 104], or to the significant geometrical reconstruction as Ge, Si,
and Sn clusters are found to be stacks of stable tricapped trigonal prism units
[105].

14.2.5.2 BOLS Formulation

The generality of the atomic clusters is the atomic CN that is one or two lower than
the atomic CN at a flat surface, four. As demonstrated in Sect. 14.3, only one CN
loss makes a great difference—the bond is much shorter and stronger than the
bonds at the surface.

The Tm oscillation over the whole range of sizes for Sn and Ga+ clusters can be
formulated by varying the bond nature index m as a function of z. Optimization
leads to the relation that expresses the m value over the range from seven at z = 2
to one at z [ 4:

m zð Þ ¼ 1þ 12= 1þ exp z� 2ð Þ=1:5½ �f g

Figure 14.4 shows that the Tm curves drop generally with size and then bends
up at K [ 3 (Log(K) [ 0.5, or z [ 3) for higher m values. If the Tm rise originates
from the Cz deviation without bond nature change, the bond will contract to
Cz = 0.77 = 0.082. A 92 % bond contraction is impossible. Therefore, the m
value, or the bond nature, must change with CN for these elemental solids. As the
smallest clusters are not spherical in shape, the equivalent size might be subject to
adjustment.
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The m(z) modification matches closely the measurement of Gaþ17, Gaþ39�40,
Sn19–31, and Sn500 clusters, and Sn nanosolids deposited on Si3N4 substrate as well
[64]. Calculations [100] show that the Tm transition for Sn6–13 happens at Sn7.
Results indicate that the nature of the Sn–Sn and the Ga–Ga bond indeed evolves
from metallic covalent to pure covalent as atomic CN reduces to much lower
values, as expected by Chacko et al. [98].

This bond nature evolution also complies with findings that the Al–Al bond for
under-coordinated or distorted Al atoms at grain boundaries [106] and at free
surfaces [107] becomes shorter (*5 %) and stronger with increasing covalent
character [108]. However, bond nature evolution in Alþ49�60 clusters appears not
as significant as occurred in Sn and Ga, as the Tm for Alþ49�63 is 300 K lower than
the Tm(?). The abrupt Tm rise (*180 K) for Alþ51�54, Snþ10�11 and Snþ19�20

clusters [109] may be partly due to the closed shell structures that are highly
thermally stable [110, 111].

Results show that bonding to two neighbors is stronger for an IV-A atom than
bonding with three or more due to the bond nature evolution. This mechanism
explains why a C13 cluster prefers a ring or a tadpole structure with each atom
having two bonds, or tubes, or GNR sheet, or fullerene having three neighbors
rather than the densely packed tetrahedron structure of four neighbors [99]. For the
covalent, Si (m = 4.88) and C (m = 2.56) clusters should also show the Tm ele-
vation (bending up) at K \ 3 with fewer than four neighbors.

The bond nature evolution may be the unique property of the III-A and IV-A
elements with a larger number of electrons as compared to Al (m * 2), Ga
(m = 6–7), C (m = 2.56), Si (m = 4.88), and Sn (m = 6–7).
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Fig. 14.4 Comparison of the predicted Tm ossification with those measured from Gaþ13�17 [91,
97], Snþ10�19 [102], Snþ19�31 [22], Gaþ39�40 [97], Sn500 [112], and Sn nanosolid on Si3N4 substrate
[64]. The Tm deviation of Alþ50�60 clusters [109] from the predictions indicates that the bond
nature alteration of Al is less significant compared to Sn and Ga bonds. Ideal fit is reached with a
function of m(z) = 1 ? 12/[1 ? exp(z - 2)/1.5] to let m transit from 7 at z = 2 to 1 when z [ 4
[113]
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14.2.6 Remarks

The BOLS premise has reconciled the undercooling, overheating, and oscillating
of the Tm over the whole range of sizes of various specimens to the effect of atomic
CN imperfection and bond nature alteration. Atomic CN revised cohesive energy
of the under-coordinated system determines the geometrical reconstruction, sur-
face lattice/phonon instability, and surface energy. Actually, the surface and
interfacial energy, surface stress, the local mass density of liquid and solid are all
functions of atomic separation and bond energy that are subject to the BOLS
correlation.

The Tm suppression is directly related to the atomic CN imperfection and its
effect on the bond strength. The Tm elevation of embedded system is related to the
strengthening of the interfacial bond. The Tm oscillation over the whole range of
size of III-A and IV-A elements results from atomic CN variation and bond nature
evolution.

14.3 Solid Phase Transition

14.3.1 Observations

With reduction in a solid size, the phase stability of the solid becomes lower as
well. The TC of ferromagnetic [114–116], ferroelectric [117–119], and supercon-
ductive [120–122] nanosolids can be modified by adjusting the shape and size of
the nanosolid. The tunable TC will be an advantage for sensors or switches that can
be functioning in a designed temperature range.

14.3.1.1 Ferromagnetic TC

For ferromagnetic nanosolids, such as Fe, Co, and Ni and their alloys or com-
pounds [123–125], the TC reduces with the particle size or with the thickness of the
films [114, 116, 126–133]. The TC of Prussian blue nanowire is also reduced with
respect to the bulk [134] due to the diminution of the average number of nearest
magnetic neighbors and magnetic exchange interaction constants. According to the
scaling theory [135], a spin–spin correlation length (SSCL, or n) limitation model
[136, 137] defines the SSCL as the distance from a point beyond which there is no
further correlation of a physical property associated with that point. Values for a
given property at distances beyond the SSCL are purely random. The SSCL
depends functionally on temperature as n = n0(1 - T/TC)-v, with v being a uni-
versal critical exponent. The SSCL premise indicates that the n is limited by the
film thickness. If the n exceeds the film thickness K, the TC will be lower than the
bulk value. The SSCL mechanism gives rise to the power-law form of TC(K) that

14.2 Liquid–Solid Phase Transition 271



involves two freely adjustable parameters, k and C (or C0). The k value varies from
unity to 1.59 for the mean-field approximation and the three-dimensional Ising
model, respectively [127, 135, 137]:

DTCðKÞ
TCð1Þ

¼ ðC0KÞ�k ð14:15Þ

An alternative non-continuous form based on the mean-field approximation
covers the thinner scales [138]:

DTC Kð Þ
TC 1ð Þ

¼ � nþ1
2Kj

� 	k
; K [ nð Þ

K�1
2n � 1; K\nð Þ

8<
: ð14:16Þ

This relation shows that TC varies linearly with K and approaches to zero at
K = 1 (single atom). If k = 1, there is a discontinuity at K = n.

The TC change in a spherical nanosolid is often related to the counts of surface
bonds [139]. If the number of exchange bonds per unit volume inside the bulk is z,
the number of bonds for the magnetically active surface atom is z/2 or less. The TC

is proportional to the mean number of exchange bonds per unit volume, and then,
the relative change in the TC is:

DTC Kð Þ
TC 1ð Þ

¼ � sDK

2K
ð14:17Þ

where DK is the thickness of the layer with half-depleted exchange bonds. The
quantity DK is an average that characterizes the features of the surface CN-defi-
cient structure of a nanosolid. If DK is independent of the particle radius K, the TC

drops with K and the critical KC at which TC is zero is sDK/2. This relation
characterizes qualitatively the interrelation between the degree of magnetic
structure disorder and the particle size for Fe3O4 spherical dots [140] by setting the
critical thickness DK of half (for larger size) and two (for the smallest size) atomic
sizes.

14.3.1.2 Superconductive TC

Highly dispersed superconducting nanosolids can be coupled due to the proximity
effect when the interparticle spacing is of the order of twice the penetration length
of the superconducting order parameter in the normal phase [141, 142]. The
electronic energy levels of the sample are discrete, with a mean-level spacing of
Kobo gap dK for fine metallic particles [143, 144]: dK = 4EF/3n � 1/V � K-3. As
pointed out by Anderson [145], superconductivity would not be possible when dK

becomes larger than the bulk EG. Thus, the relation between the superconducting
phase transition and the energy-level spacing for spherical granules follows the
relation [146, 147]:
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Ln TC Kjð Þ
�

TC 1ð Þ
� �

¼
X

2
�

2mj þ 1
� �� �

� tanh p=2ð Þ 2mj þ 1
� �

2pkBTC

�
dK

� �� �
� 1

� �

Index mj is the magnetic quantum number. Estimation using this relation yields
a 2.5 nm critical size for the disappearance of superconductivity of Pb nanosolid.
Experiments of Giaver and Zeller [122] on Sn confirmed the existence of a
metastable energy gap only for particles larger than 2.5 nm. However, the TC for
Pb is detectable when the grown Pb atomic layers on Si substrate are four and
more [148]. The TC suppression of Pb embedded in the Al-Cu-V matrix [121] does
not follow this relation but the following:

TC Kð Þ ¼ TC 1ð Þ exp �KC=Kð Þ

with TC(?) = 7.2 K for Pb [120]. Due to the finite number of electrons in each
particle (between 1,000 and 64,000 depending upon the grain size), the conven-
tional BCS approach loses its validity because the bulk BCS theory of super-
conductivity assumes an infinite number of electrons. Small size implies fewer
electrons at the Fermi surface and the increased separation of Kubo levels.
Additionally, energy-level spacing may be larger compared to thermal energy
kBT. Therefore, the assumption of metallic behavior of these particles is subject to
examination.

The TC of superconductive MgB2 thin films decreases and the residual resis-
tance increases when the epitaxial MgB2 thin films become thinner [120, 149]. At
sizes larger than 300 nm, the TC saturates at 41.8 K. The resistivity also saturates
to the bulk value of 0.28 X cm at 300 nm. A possible explanation of higher TC is
the strain in the film, while the grain size is not likely to be the direct cause of the
thickness dependence of TC. XRD revealed that the a lattice expands from the bulk
value of 0.3086 to 0.3095 nm while the c lattice contracts from 0.3524 to
0.3515 nm for a 230-nm-thick MgB2 film [150]. Hur et al. [151] reported a higher-
than-bulk TC in MgB2 films on boron crystals and suggested that it is due to tensile
strain. A TC elevation is possible by compressing the c-axis [152]

14.3.1.3 Ferroelectric TC

Unlike ferromagnetic and superconductive nanosolids that show smaller critical
sizes for TC = 0 K, a ferroelectric nanosolid often shows larger critical size at
which the ferroelectric feature disappears [153]. Reducing the grain size from
1,200 to 50 nm results in a progressive reduction in tetragonal distortion, heat of
transition, TC, and relative dielectric constant of BaTiO3 crystal [154]. The critical
size for ferroelectricity disappearance is in the range of 10–30 nm. A combination
of the size effect and the size-dependent ‘dilution’ effect of a grain boundary ‘dead’
layer could be the cause depressing the relative permittivity. The remnant polari-
zation of the nanoscaled Pb(Zr, Ti)O3 thin films decreases from 6.0 to 2.5 lC/cm2,
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while the coercive field increases from 50 to 150 kV/cm, with the decrease in film
thickness from 152 to 32 nm [155].

Theoretical approaches for the ferroelectric depression include: (1) pseudospin
theory based on the Ising model in a transverse field, (2) macroscopic Landau
theory with consideration of surface effects, and (3) a polaron model for the very-
long-wavelength region. The Landau-type model of Zhong et al. [156] considers
the surface and non-equilibrium energy by introducing a surface extrapolation
length d to the size-depressed TC of ferroelectric nanosolids, expressed using the
Ising premise, Jij = J/rij

r. r = 0 corresponds to an infinite-range interaction and
r = ? to a nearest-neighbor interaction [157].

Bursill et al. [158] assumed that the Landau-Ginzburg-Devonshire (LGD)
coefficients in the Gibbs energy change with particle size. Huang et al. [159]
combined the LGD theory and the BOLS correlation to study the size effect of
ferroelectrics. The model assumes that the surface bond contraction is the origin
for the size effect [160], which was confirmed by measurements. For example,
barium titanate particles consist of a shell of cubic material surrounding a core of
tetragonal material [161–163].

The following scaling relation is widely used to fit the TC suppression of
ferroelectric nanosolids [118],

DTC Kð Þ=TC 1ð Þ ¼ C=ðK � KCÞ ð14:18Þ

where C and the KC are adjustable parameters. The proper form of the dividend
seems to be K ? KC instead of K = KC. Jiang et al. [164] adopted their model for
Tm suppression to the size-dependent TC of the ferroelectric nanosolids as:

TC Kð Þ=TC 1ð Þ ¼ exp �2S0 3RS K=KC � 1ð Þ½ ��1
n o

KC ¼ a90 2kBab2� ��1

8<
:

where S0 is the transition entropy and RS is the ideal gas constant. a is the thermal
expansion coefficient and b the compressibility. The constant a90 denotes the
density of 90� domain walls. This relation reproduces the measured TC suppression
of BaTiO3 and PbTiO3 nanosolids with the known S0 values.

14.3.1.4 Antiferromagnetic Transition

When a sufficiently large magnetic field is applied along the preferred axis, the so-
called spin-flop reorientation occurs, i.e., a 90� rotation of the sublattice vectors, in
the antiferromagnetic a-Fe2O3 nanosolids [165]. Both the spin-flop field, HS-F

(T = 0), and the Morin transition temperature (TM) decrease with particle size in a
K-1 way and approach to zero when the diameter is smaller than 8 nm, for
spherical particles [166]. Table 14.3 features the size-dependent HS-F and TM

values.
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The CN of the surface spins determines a variety of reversal paths and in turn
affects both the exchange and anisotropy fields [165]. Therefore, the surface spins
undergo spin-flop instability at field that is much lower than the field for the bulk.
For Ho films, the helical antiferromagnetic ordering temperature, called Néel
temperature (TN), decreases with film thickness [167]. The offset thickness is 11
ML for metallic Ho films in comparison with the value of 16 ML for Cr in
sputtered, epitaxial Fe/Cr(001) superlattice [168]. In the Pr0.5Ca0.5MnO3 nano-
wires, a ferromagnetic transition occurs at *105 K; the antiferromagnetic tran-
sition happens at 175 K; and the charge ordering transition is suppressed from the
bulk value of 245 K [169].

14.3.2 BOLS Formulation

An extension of the BOLS correlation into the Ising model could improve the
insight into size-induced TC suppression of ferromagnetic, ferroelectric, and
superconductive nanosolids as well as the TM and HS-F for antiferromagnetic
heminatite.

14.3.2.1 Ising Model

The Hamiltonian of an Ising spin system in an external field B is expressed as
[138],

Hex ¼
X
hi;ji

JijSiSj � glBB
XN

i¼1

Si / zid
�1
i

The Hex is identical to the atomic EB under zero external field, B = 0. Si and Sj

is the spin operator in site i and site j, respectively. Jij is the exchange strength
between spins, which is inversely proportional to atomic distance. The sum is over
all the possible coordinates, zi. For phase transition, the thermal energy required is
in equilibration with a certain portion of the exchange energy. This mechanism
leads to the case being the same as for Tm suppression as described in Eq. (14.13).

Table 14.3 Size dependence
of the Morin temperature
(TM) and the spin-flop
transition field at T = 0 (HS-

F,0) for the heminatite
nanosolids [165]

D/nm TM/K HS-F,0/Tesla

36.4 186 1.7
40.0 200 2.5
82.7 243 5.4
159.0 261 6.6
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14.3.2.2 High-Order CN Imperfection: The Dual-Shell Model

For ferroelectric systems, the exchange energy also follows the Ising model, but
the Sj here represents the quanta of a dipole or an ion (called quasi-dipole) that is
responsible for the ferroelectric performance. The difference in the correlation
length is that the dipole system is longer than that of a ferromagnetic spin–spin
system. Usually, dipole–dipole Van der Vaals interaction follows the r-6 type
whereas the superparamagnetic interaction follows an r-3 relation. Hence, it is
insufficient to count only the exchange bonds within the nearest neighbors for
atoms with distant interaction in a ferroelectric system.

A dual-shell model describing the short- and the long-range interactions in the
ferromagnetic nanosolid is necessary [170]. A critical exchange correlation radius
KC can be defined to count contributions from all atoms within the sphere of radius
KC. Therefore, the sum in Eq. (14.13) changes from the zi neighbors to atoms
within the KC-sized correlation volume.

For a ferroelectric spherical dot with radius K, one needs to consider the
interaction between the specific central atom and its neighbors within the critical
volume VC = 4pKC

3 /3, in addition to the BOLS correlation limited to the skin. The
ferroelectric property drops down from the bulk value to a value smaller than 5/16
(estimated from Fig. 14.5) when one goes from the central atom to the edge along
the radius. If the surrounding volume of the central atom is smaller than the critical
VC, the ferroelectric feature of the central atom attenuates; otherwise, the bulk
value remains. For an atom in the ith surface layer, the number of the exchange
bonds loss is proportional to the volume Vvac that is the volume difference between
the two caps of the VC-sized sphere as illustrated in Fig. 14.5a. Therefore, the
relative change in the ferroelectric exchange energy of an atom in the ith atomic
layer to that of a bulk atom due to volume loss becomes,

DEexc;i

Eexc 1ð Þ
¼ VC � Vvac;i

VC

� 1 ¼ �Vvac;i

VC

¼ dV ;i ð14:19Þ

14.3.2.3 Generalization of TC Suppression

Considering the BOLS correlation for the nearest neighbors and the volume loss of
long-order CN imperfection, we have a generalized form for the TC suppression for
the ferromagnetic, ferroelectric, and superconductive nanosolids (m = 1 in the
Ising model):

DTC Kð Þ
TC 1ð Þ

¼ DEexc Kð Þ
Eexc 1ð Þ

¼
P

i� 3 ci zibC�1
i � 1

� �
¼ DB short-order-lossð ÞP

i�KC
cidV ;i þ DB ¼ DCOH long-order-lossð Þ

�

ð14:20Þ
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For a short-order spin–spin interaction, the sum is over the outermost three
atomic layers in terms of BOLS whereas for a long-order dipole–dipole interac-
tion, the sum is within the sphere of the critical volume VC. Therefore, DK in
Eq. (14.17) is not a constant. In the BOLS premise, the ci is not always propor-
tional to the inverse radius, which drops instead from unity to infinitely small when
the particle grows from atomic scale to macroscopic size. Meanwhile, the zi and
the Ci vary with the curvature of the sphere.

Figure 14.5b shows the general KC dependence of the ferroelectric TC shift
involving both the volume loss and the BOLS effect. For KC = 5 example, bond
contraction lowers the TC by -41.1 % and the volume loss lowers the TC by
-53 % and the overall TC shift is -94 %.

14.3.3 Verification: Critical Size

Least-root-mean-square linearization of the measured size-dependent TC repre-
sented by Eq. (14.20) gives the slope B0 and an intercept that corresponds to the
bulk TC(?). The B0 = KDCOH for a ferroelectric system. For a ferromagnetic
system, B0 = KDB is a constant without needing numerical optimization. Calcu-
lations based on Eq. (14.20) were conducted using the average bond length
(appendix A2) and the known TC(?) values listed in Table 14.4.
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Table 14.4 BOLS predicted critical correlation radius (KC) in comparison with the documented
R0C of magnetic, ferroelectric, superconductive, and antimagnetic nanosolids

Materials TC(?)/K KC/RC(nm) R0C/nm (Ref.)

Fe 1,043 1 0 [116]
Co 1,395 1 0 [114]
Ni 631 1 0 [114]
Fe3O4 860 1 0 [140]
PbTiO3 773 4/1.04 6.3 [118], 4.5 [117]
SrBi2Ta2O9 605 4/1.0 1.3 [119]
PbZrO3 513 8/2.3 15 [174]
BaTiO3 403 100/24.3 24.5 [177], 55 [173]
MgB2 41.7 3.5/1.25 1.25 [175]
Pb 7.2 3.5/1.25 1.25 [121]

0 5 10 15 20
-100

-80

-60

-40

-20

0(a)

T
c 

sh
if

t 
(%

)

K

 1-Ni/Cu(100)
 2-Ni/Cu(100)
 3-Ni/Cu(111)
 4-Ni/Cu(110)
 5-Ni/Cu(100)
 plate
 rod
 dot

0 5 10 15 20 25
-80

-60

-40

-20

0(b)

T
c 

sh
if

t
(%

)

K

 1-Ni(111)/Re(0001)
 2-Ni(111)/W(110)
 plate
 rod
 dot

0 5 10 15 20

-80

-60

-40

-20

0(c)

T
c 

sh
if

t
(%

)

K

 1-Co/Cu(111)

 2-Co
1
Ni

3
/Cu(100)

 3-Co
1
Ni

9
/Cu(100)

 plate

 rod

 dot

0 20 40 60 80 100

-40

-30

-20

-10

0(d)

T m
 s

u
p

p
re

ss
io

n
 (

%
)

K

 Plate, m = 1

 Dot,   m = 1

 Fe3 O4

Fig. 14.6 Comparison of the predicted TC suppression with observations of a Ni thin films: data
1 [130], data 2, 3, and 4[138], data 5[114], b data 1[172] and data 2 [129], c Co films [114], and
d Fe3O4 nanosolids [140] (Reprinted with permission from [7])

278 14 Thermal Stability: Atomic Cohesive Energy



Figure 14.6 shows the TC suppression for ferromagnetic Ni, Co, and Fe3O4

nanosolids. For ultrathin films, the measured data are closer to the predicted curve
for a spherical dot. This coincidence indicates that at the beginning of film growth,
the films prefer island patterns that transform gradually into a continuous slab. For
a ferroelectric system, we need to optimize the KC value by in computation to
match theoretical curves to the measured data.

Figure 14.7 shows the TC suppression of ferroelectric PbTiO3 [117], SrBi2-

Ta2O9 [119], BaTiO3 [173], and antiferroelectric PbZrO3 [174] nanosolids. For
ferroelectric and superconductive nanosolids, TC = 0 K occurs at Vvac = VC,
which means that KC corresponds not to TC = 0 K, but to a value that is much
lower than room temperature. The difference in the optimized KC by different
approaches, as compared to Table 14.4, lies in that the ci is not a constant but
changes with particle size.

Comparing the BOLS prediction to the measured TC suppression of super-
conductive MgB2 nanosolids in Fig. 14.8 leads to an estimation of the critical
radius KC = 3.5 of measurement (RC * 1.25 nm) [175]. For the smallest MgB2

crystals, the relative Bragg intensities of the allowed reflections can only match
during Rietveld refinement by introducing statistically distributed B-vacancies,
with the refined value falling from 1 to 2/3. This fact means that the average CN of
Mg to B atoms falls from 12 to 8, which indicates the loss of superconductivity due
to the under-coordination effect [176]. Therefore, long-range interaction is
important to the superconductive TC. For an Al–Cu–V embedded Pb nanosolid
[121], the KC is around 1, being the same to the ferromagnetic solid. For the
antiferromagnetic a-Fe2O3, a spin-flop transition at a critical size of 8 nm results
also from the high-order CN imperfection. Therefore, the long-order interaction
dominates the TC for all the ferroelectric, antiferroelectric, and superconductive
nanocompounds.
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14.4 Diffusion and Crystal Growth

14.4.1 Diffusivity

14.4.1.1 Observations

The kinetics of diffusion occurring in nanostructured materials is a subject of
intensive study [178, 179]. Materials at the nanoscale showed sharp acceleration of
diffusion [180], indicating the lowered activation energy of diffusion. The acti-
vation enthalpies for the interfacial diffusion are comparable to those for surface
diffusion, which are much lower than those for diffusion along grain boundaries
[181, 182].

Measuring grain boundary diffusion fluxes of Cu and creep behavior of coarse-
grained and nanostructured Ni samples at 423 and 573 K [183] revealed that the
creep acceleration behavior is grain size-dependent because of the high diffusivity
in the finer grain material. Fe-tracer diffusion in submicrocrystalline Pd powders
demonstrates that interfacial diffusion occurs at relatively low temperatures
accompanied by a substantial recovery of grain growth [184]. Atomic defects
trigger the recovery processes and the crystal growth occurring in a main recovery
stage at 500 K. The under-coordinated atoms surrounding the defects are
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responsible for the onset of diffusion in the interfaces as these atoms are mobile in
this temperature regime.

By means of surface mechanical attrition treatment (SMAT) to a pure iron
plate, Wang et al. [185] fabricated a 5-lm-thick Fe surface layer composed of
10–25-nm-sized grains without porosity or contamination on the Fe plate. They
measured Cr diffusion kinetics within a temperature range of 573–653 K in the
nano-Fe-coated plate. The diffusivity of Cr in the nanocrystalline Fe is 7–9 orders
higher in magnitude than that in a Fe lattice and 4–5 orders higher than that in the
grain boundaries (GBs) of a-Fe. The activation energy (EA) for Cr diffusion in the
Fe nanophase is comparable to that of the GB diffusion, but the pre-exponential
factor is much higher. The enhanced diffusivity of Cr in Fe corresponded to a large
volume fraction of non-equilibrium GBs and a considerable amount of triple
junctions in the presence of the nanocrystalline Fe samples.

Under the given conditions, copper atoms were not detectable in the coarse-
grained Ni even at a depth of 2 lm. However, the diffusive copper fluxes in
nanostructured Ni penetrate into a depth greater than 25 and 35 lm at 423 and
573 K, respectively [183]. This information leads to the GB diffusion coefficients
of copper in nanostructured nickel as derived as follows.

As no migration of the GBs in nanostructured Ni was observed at 423 K, the
diffusion coefficient, Db, can be determined using the equation describing the
change in the GB impurity concentration versus time t of the diffusion at annealing
[186]:

cðx; tÞ ¼ c0erfc x
�

2
ffiffiffiffiffiffiffi
Dbt
p� �� �

where c0 is the concentration of copper in the skin. The depth x is the distance
from the surface at which log c = -1 (c = 0.1 %, which corresponds to the
resolution limit of the SIMS unit). An extrapolation of the experimental concen-
tration curve at x ? 0 gives the value of c0. In this case, Db = 1 9 10-14 m2/s
(t = 3 h).

Grain growth occurs in nanostructured nickel annealed at 573 K, and the grain
boundary migration occurs at the velocity of V * 7 9 10-11 m2/s. In this case,
the Db follows [186]:

cðx;V ; bÞ ¼ c0 exp �x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=Dbbb

p� 	

Considering the diffusion width of the boundary bb = 10-8 m, one can obtain
the Db = 1.4 9 10-12 m2/s, which is two orders higher than that for the same
sample annealed at 423 K. These experimental data demonstrate the increase in
the GB diffusion coefficient of copper in nanostructured Ni in comparison with that
happens in the coarse-grained nickel.

The interdiffusion between Ag and Au is enhanced when the Au particle size is
reduced [187]. For the very small particles (\4.6 nm initial Au-core size), these
two metals are almost randomly distributed within the particle; for larger particles,
the diffusion boundary is only one monolayer. These results are beyond the scope
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of surface pre-melting effect. Defects at the bimetallic interface seemed to enhance
the radial migration of one metal into the other [187].

In situ four-point probe measurements of the onset temperature at which the
electrical resistivity deviates from linearity during the temperature ramping [188]
revealed that at the deviation point, the Ag thin films become unstable due to void
formation and growth during annealing. In vacuum, Ag thin films thicker than
85 nm on SiO2 substrates are thermally stable. Using the Arrhenius relation in
terms of onset temperature and film thickness, an EA of 0.326 ± 0.02 eV is
obtained for the onset of Ag agglomeration ramped at a rate of 0.1 �C per second.
This value is consistent with the EA for surface diffusion of Ag in a vacuum.
Therefore, Ag agglomeration and surface diffusion share the same EA, both of
which depend on the atomic cohesive energy.

The high diffusivity at the nanoscale also enhances diffusion of a liquid into the
nanosolid [189]. Powder nanosolids as electrodes in chemical sensors show much
improved diffusion efficiency (10–104) [189]. Further, the powder ultramicro-
electrode can significantly enhance the mass transportation rate from solution to
the nanosolids surface, being irrespective of particular catalytic material [190,
191].

14.4.1.2 BOLS Formulation

According to the BOLS, atomic CN imperfection suppresses the EB that is
responsible for the EA loss in atomic diffusion, agglomeration, and glide dislo-
cation. The diffusivity D follows the Arrhenius relation,

D 1; Tð Þ ¼ D0 exp �EA 1ð Þ=kBTð Þ ð14:21Þ

where the activation enthalpy of diffusion is EA(?) = 1.76 eV and the pre-
exponential factor is D0 = 0.04 cm2 s-1 for gold. Incorporating the BOLS into the
interdiffusion and nanoalloying by letting EA � EB and hence the EA is atomic CN
dependent.

Diffusing an atom into the solid requires energy to relax partially the bonds for
atom dislocations. Applying Eq. (14.12)–(14.21) by considering the size effect,
one has,

D K; Tð Þ
D 1; Tð Þ ¼ exp �EA Kð Þ � EA 1ð Þ

kBT

� �

¼ exp �EA 1ð Þ
kBT

EB Kð Þ
EB 1ð Þ

� 1

� �� �

¼ exp
�EA 1ð Þ

kBT
DB

� �

D K; Tð Þ ¼ D0 exp
�EA 1ð Þ

kBT

Tm Kð Þ
Tm 1ð Þ

� �
¼ D0 exp

�EA 1ð Þ
kBT

1þ DB½ �
� �

ð14:22Þ
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Therefore, the nanodiffusivity increases at the nanoscale because of the reduced
atomic EB. The D(K, T) drops with the Tm(K)/Tm(?) ratio in an exponential way.
This formulation provides a feasible mechanism for the nanoalloying, nanodiffusion,
and nanoreaction in the grain boundaries where under-coordinated atoms dominate.

However, oxidation resistance of a Si nanorod exhibits oscillation features
[192]. At the lower end of the size limit, Si nanorod can hardly be oxidized, as
oxide tetrahedron formation is strongly subject to the atomic geometrical envi-
ronment. For instance, oxidation happens preferentially at the densely packed
diamond [111] plane of C3v symmetry rather than the loosely packed (110) surface
[193]. The high surface curvature of Si nanorod and the shortened surface bond
resists the formation of an oxide tetrahedron.

Figure 14.9 compares the measured size-dependent Tm suppression and diffu-
sion-coefficient enhancement of silica-encapsulated gold particles [78] in com-
parison with BOLS prediction. The trend similarity shows the correlation between
the diffusivity and activity in terms of activation energy.

14.4.2 Crystal Growth

14.4.2.1 Liquid–Solid Epitaxy

Knowing the initial stages of growth of nanometer-sized crystals from the molten
or amorphous matrix is a challenging issue. This process largely determines the
resulting microstructure of a polycrystalline material, which is extremely difficult
to study experimentally due to the small size of the clusters and the short time
period involved. MD simulation results on the homoepitaxial growth and melting
of Si provide an example for the understanding in terms of the transition-state
theory of crystal growth.
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According to transition-state theory, the driving force, FC, for the movement of
the liquid–crystal interface is the free energy difference between the liquid and bulk
crystal. This difference is approximately proportional to the magnitude of the
undercooling, Tm - T. The velocity of the moving interface, V, is proportional to the
driving force V = kFC, where k is the mobility of the liquid–crystal interface. This
interfacial mobility determined by the movement of the atoms in the liquid phase as
atoms residing in the crystalline phase are far less mobile. Therefore, this mobility is
proportional to the thermally activated atomic diffusion in the liquid phase. As is
well established, Tm suppression happens in a cluster of finite size due to atomic CN
imperfection, which contributes to the free energy of the liquid–crystal interface.

The Tm drop with solid size is a reflection of the reduced atomic EB and the
mobility activation energy EA (� atomic EB) of the liquid–crystal interface, which
is essentially the same to that for liquid diffusion. In the study of growth and
melting of Si, the crystal front velocity follows the Stillinger–Weber (SW)
potential that consists of additive two-body and three-body energy terms. The
three-body term is zero for the perfect-crystal structure at T = 0 K, but even at
high temperature, the three-body term is relatively low in the crystalline phase
(e.g., the three-body energy is about 0.1 eV/atom at T = 1,200 K). In contrast, the
liquid phase is characterized by a larger three-body energy (-1 eV/atom). Using
this large difference, Keblinski [86] calculated the amount of crystal and liquid
phase present in the simulated cell simply by monitoring the total three-body
energy and using it as reference for the corresponding values of the bulk liquid and
bulk solid at the same temperature.

The size-dependent Tm(K) contributes to the growth/melt behavior of clusters
with various initial sizes as a function of temperature. The free energy of the
cluster results from the surface and the bulk contributions. The surface contribu-
tion, US, approximates the product of the surface area and the liquid–solid inter-
facial free energy, cls, such that US = AclsK

2, where A is a geometrical constant
(for a spherical dot, A = 4pd0

2). The bulk contribution, UB, approximates the
product of the volume of the cluster and the difference in free energy densities
between solid and liquid, Du, such that UB = BDuK3, where B is another geo-
metrical constant (for a spherical cluster B = 4pd0

3/3).
The difference between crystal and liquid free energy densities in the vicinity of

the Tm is proportional to the magnitude of undercooling (or overheating),
Du = u0(T - Tm(K)), where u0 is a constant (Du correctly vanishes at Tm). For a
given temperature, the critical cluster size corresponds to the maximum of the free
energy U = US ? UB. By differentiating the free energies with respect to the
cluster size K, one finds the maximum at T = Tm(K) - ccsl/K, where c is a
constant depending on A, B, and u0. The linear dependence of the Tm on the
inverse of the crystalline size implies that the interfacial energy, csl, does not
change significantly with temperature, from the first-order approximation. In
reality, the interfacial energy varies with both size and temperature.

In order to understand the temperature dependence of the growth rate in terms
of undercooling and thermally activated interfacial mobility, one may assume that
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in the classical nucleation theory, growth takes place on an atom-by-atom basis.
Hence, the average rates of crystallization and dissolution are [86]:

m
 ¼ m0 exp 
 Du� DAcslð Þ= 2kBTð Þ½ � � EA=kBTf g

where DA = An+1 - An is an increase in the interfacial area due to the attachment
of an atom to the crystal. The m is the thermal vibration frequency of the interfacial
atom. The cluster growth velocity resulting from the difference between m+ and m-,
which yields

Vgrow� exp �EA=kBTð Þ sinh Du� DAcsl½ �= 2kBTð Þf g
ffi Du� DAcsl½ �= 2kBTð Þf g exp �EA=kBTð Þ

ð14:23Þ

The argument of the hyperbolic sine is small near the Tm (it is exactly zero at
the Tm(K)). Equation (14.23) indicates that the rate of the growth/melting is driven
by the lowering of the free energy, Du� DAcsl, while the interfacial mobility is
determined by the EA for diffusion jumps of the interfacial atoms. Noting that DA
is proportional to K-1 and Du = u0(T - Tm(K)), and then, the scaling law for
melting applies DTm(K) * csl/K. (Tm(K) is the temperature at which Vgrow = 0.)
For planar growth, the interfacial contribution to the free energy disappears; thus,
Vgrow is zero exactly at the Tm(?) (Du = 0).

For a given cluster size, the free energy term can be expanded around its
Tm(K) such that

Vgrow Kð Þ� Tm Kð Þ � Tð Þ=T½ � exp �EA=kBTð Þ ð14:24Þ

This process describes the kinetics of liquid-nanosolid dissolution and growth.
The EA obtained from the best fits are 0.75 ± 0.05 eV for 2.0- and 2.6-nm solids
and 0.85 ± 0.05 eV for 3.5-nm solids, respectively. This result complies with the
BOLS expectation that the mean atomic EB increases with solid size. Incorporating
the BOLS correlation to the Tm(K) and EA (K), Eq. (14.24) becomes,

DEA Kð Þ
EA 1ð Þ ¼

DTm Kð Þ
Tm 1ð Þ ¼ DB

Vgrow Dð Þ� Tm 1ð Þ 1þ DBð Þ � Tð Þ=T½ � exp � EA 1ð Þ 1þ DBð Þ½ �=kBTf g
ð14:25Þ

The exponential part is the same to the diffusivity (see Eq. (14.22)). Size-
induced perturbation appears twice in this formulation. Results in Fig. 14.9a show
the mobility of the liquid–solid interface that is determined by diffusion in the
adjacent bulk liquid, which is exactly the case of homoepitaxial growth.

14.4.2.2 Vapor Phase Deposition

The knowledge of size-dependent melting provides guidelines for controlling the
size of nanosolid growth on heated substrates in vapor deposition and modulating
the crystal size by annealing. For a given substrate temperature (TS), there will be a
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minimum critical size of the grown particle. Thus, any particle larger than this
critical size will grow and remain. If the incident sourcing cluster size is smaller
than the critical size, the particles will melt upon deposition and they will coag-
ulate to produce clusters equal to the critical size or larger. If the TS is higher than
the Tm, the landed clusters merge and then evaporate [79]. This intuition implies
that the TS should be as low as possible if one wants to obtain smaller particles.

This mechanism also applies to controlling the sinterability of nanosolids. In
fact, the solid size of an oxide increases with annealing temperature [195] and
agglomeration happens at a certain size range at room temperature in the process
of ball milling [196, 197]. The TS-related nucleation and agglomeration explains
why the topmost Bi layers on graphite start to lose long-range order at 10–15 K
below the Tm(?) of Bi, 544.52 K and why nucleation occurs at *125 K below
the Tm(?). The temperature of melting and solidification of the same surface is
different [198].

Normally, the TS(K) for growth is around 0.3 times the Tm(K) [194, 199],

TS s;KCð Þ ¼ 0:3Tm s;Kð Þ ¼ 0:3Tm 1ð Þ 1þ DBð Þ

Delta ¼ triangleB ffi D0B=KC ;

which gives the thermally stable critical size at the given TS:

KC ¼
�D0B

1� TS s;Kð Þ= 0:3Tm 1ð Þ½ � ¼
s
P

3 Ci 1� zibC�m
i

� �
1� TS s;Kð Þ= 0:3Tm 1ð Þ½ � ð14:26Þ

The constant D0B = -2.96 for a spherical metallic dot (m = 1; s = 3; KC [ 3).
The critical size and the number of atoms in the deposited nanosolid depend on the
TS s;Kð Þ=0:3Tm 1ð Þ ratio.

Figure 14.10b formulates the RC (= KCd) dependence on the TS. With the
known atomic size d and Tm(?), one is able to control the crystal size [200]. This
relation predicts that a monatomic layer of metals (s = 1) could only growth at
TS = 0 K or nearby. This prediction is in accordance with observations, For
instance, monolayer Pd forms on Si surface only at 4 K or below [148].

14.4.3 Thermally Control of Crystal Size and Bandgap

Grain size that determines the bandgap of a nanosolid semiconductor is control-
lable by programming the growing or annealing temperature TS [195]. For the
post-annealing process, the as-grown particle size (K0) and threshold temperature
(Tth) are involved. The high-energy grain boundary does not gain mobility until
reaching Tth, at which grains grow upon heating to minimize the overall energy.
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With Tth and K0 being taken into consideration, Eq. (14.26) evolves into the form
describing the Ta dependent of the critical size:

Ta � Tth ¼ 0:3Tm Kð Þ ¼ 0:3Tm 1ð Þ 1þ K�1D0B
� �

K � K0 ¼ D0B
ðTa�TthÞ= 0:3Tm 1ð Þ½ ��1 ¼

D0Bj j
1�ðTa�TthÞ= 0:3Tm 1ð Þ½ �

(
:

This relation indicates that the crystal size is dominated by the term (Ta - Tth)/
[0.3Tm(?)]; grain grows as Ta rises when Ta [ Tth. The grain radius K is hence
controllable by tuning the Ta.

The inset in Fig. 14.10 shows the SEM micrograph of spontaneous grain
growth at different temperatures. Both the crystal size and the bandgap agree with
the BOLS expectation on the Ta dependence of the physical properties.
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Fig. 14.10 a MD simulation of size and temperature dependence of Si nanosolid melting
(negative) and growth (positive) [86]. b Agreement between BOLS predictions with measure-
ments [194] of TS = 0.3Tm dependence of critical sizes for W (Tm(?) = 3,695 K), Ni
(1,728 K), and Ag (1,235 K) nanocrystal growth. ZnO Size control of c the crystal size and d the
EPL and EPA by a programmable annealing at: (1) as-grown, (2) 773 K, (3) 873 K, and (4) 923 K
(Reprinted with permission from [7])
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14.5 Summary

The BOLS correlation has enabled the thermodynamic behavior of a nanosolid to
be consistently formulated and understood in terms of atomic cohesive energy
modulation. The difference between the cohesive energy of an atom at the surface
and that of an atom inside the solid determines the fall or rise of the Tm of a surface
and a nanosolid. The TC suppression for ferromagnetic, ferroelectric, and super-
conducting nanosolids follows the same trend of Tm whose change follows the
BOLS prediction including the short- and the long-range interactions.

Numerical match between predictions and measurements for a number of
specimens reveals that the short spin–spin correlation dominates the exchange
interaction in the ferromagnetic Fe, Co, Ni, and Fe3O2 nanosolids, whereas the
long-range interaction dominates the exchange energy for the ferroelectric PbTiO3,
PbZrO3, SrBi2Ta2O9, and BaTiO3, and the superconductive MgB2 nanosolids.

The BOLS premise also reconciles the activation energy for diffusion,
agglomeration, and nucleation in crystal growth and the temperature dependence
of the crystal size in annealing and vapor–solid epitaxial growth. It is possible to
tune the crystal size and properties such as the band gap of noncrystallite by
controlling the processing temperatures.
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