
Shared-Table for Textual Data Clustering in Distributed

Relational Databases

Wael M.S. Yafooz , Siti Z.Z. Abidin

, Nasiroh Omar and Rosenah A. Halim

Faculty of Computer and Mathematical Sciences, UiTM Shah Alam, Selagor, Malaysia

Waelmohammed1@hotmail.com,{zaleha,nasiroh,rosenah}

@tmsk.uitm.edu.my

Abstract. High-performance query processing is a significant requirement of

database administrators that can be achieved by grouping data into continuous

hard disk pages. Such performance can be achieved by using database partition-

ing techniques. Database partitioning techniques aid in splitting of the physical

structure of database tables into small partitions. A distributed database man-

agement system is advantageous for many businesses because such a system

aids in the achievement of high-performance processing. However, massive

amount of data distributed over network nodes affect query processing when re-

trieving data from different nodes. This study proposes a novel technique based

on a shared-table in a relational database under a distributed environment to

achieve high-performance query processing by using data mining techniques. A

shared-table is used as a guide to show where the data should be saved. Thus,

the efficiency of query processing will improve when data is saved at the same

location. The proposed method is suitable for news agencies and domains that

rely on massive amount of textual data.

Keywords- database clustering, relational database, distributed environment

1 Introduction

A relational database management system (RDBMS) is the backbone of numerous

businesses for its robust data structure in managing, organizing, and retrieving data.

The digital work of any firm can be processed in a same place based on a centralized

database or at different areas based on a distributed database. The workload or ―data-

base transaction‖ in a centralized database is based on one machine. By contrast, a

distributed database consists of more than one machine, thus improving system per-

formance because the workload is divided [1], which is the concern of this study.

However, the increasing amount of massive data in different network nodes will af-

fect the query processing efficiency. The efficiency of database query can be better

when data resides in same node thus the transportation cost in the network is also

reduce [2]. Transportation cost, which is the time it takes to retrieve data from differ-

ent nodes, is an important factor that must be considered in distributed databases.

Therefore, database partitioning, clustering and fragmentation is used exchangeable,

49T. Herawan et al. (eds.), Proceedings of the First International Conference
on Advanced Data and Information Engineering (DaEng-2013), Lecture Notes
in Electrical Engineering 285, DOI: 10.1007/978-981-4585-18-7_
� Springer Science+Business Media Singapore 2014

6,

which is employed to reduce the process of searching and retrieving for the required

data by grouping data into continuous hard disk pages. In this way, the number of disk

access is reduced, and the number of pages transfers from the secondary to primary

storage, is minimized [3].

Database partitioning techniques aid in the splitting of the physical structure of da-

tabase tables into small partitions based on the collected workload of database trans-

actions. Thereafter, such workload is clustered based on the most accessed attributes

or on the most similar records that may be accessed together. The physical structure

of table is then divided in a process called splitting. Numerous attempts at database

partitioning have been made. These attempts can be categorized into vertical [1, 4-8],

horizontal [2, 9, 10], and mixed partitioning [11, 12].

Vertical partitioning is a method that groups the most frequent attributes (col-

umns), which are accessed together into same network node. In vertical partitioning,

response time will be reduced when searching for the required data because transpor-

tation cost decreases and most frequent attributes are stored in same network node or

in a close network node. Users often do not need all the data on attributes; they only

need specific tuples (records). Therefore, horizontal partitioning groups database

records based on predicate or statistical analysis of the workload. Mix partitioning,

which employs both vertical and horizontal clustering, is a good choice because

records hold more data that are irrelevant to the requested information (more

attributes).

All the aforementioned techniques can be static or dynamic. For static techniques,

the data position never changes, depending on the base design. However, queries for

any business change over time. All database partitioning methods employ meta-based

statistical analysis (database workload information). Many studies focus on vertical

clustering because it is more difficult to implement than horizontal clustering. How-

ever, all these techniques lack content similarity among data, which can be advanta-

geous for many online news agencies or relational databases that store a large amount

of textual data such as news articles, conference papers, and libraries.

This study proposes a novel technique based on shared-table. Shared-table holds

frequent terms and named entities that can be found in any textual data that require

storage in a relational database. In addition, shared-table conation columns hold the

network node that stores such data. Thus, utilizing the shared-table conation column

can be a guide for the next textual document to be stored if the documents bear any

similarity with textual data in the network nodes. The similar textual data will then be

stored in the same location (network node). Thus, the query will retrieve such data

when requested from one network node or close network. Therefore, the efficiency of

query processing will improve because data is clustered in same location or in a

closed location.

The remainder of this paper is organized as follows: Section 2 presents some re-

lated works on database clustering. Section 3 explains the distributed database envi-

ronment architecture. Section 4 discusses the idea of shared-table. Section 5 shows a

comparison between existing methods and shared-table. Finally, Section 6 presents

the conclusion of this paper.

50 Shared-Table for Textual Data Clustering in Distributed

2 Related Studies

This section presents several studies on database clustering techniques. These studies

can be categorized into three: vertical, horizontal, and mix database clustering.

Vertical clustering approaches can be categorized into four: affinity-based [1, 5,

13-15], graph-based [15, 16], genetic algorithm-based [8, 12, 17], and transaction-

based [3]. Most of these approaches are implemented in centralized [14, 15] or distri-

buted environments [1, 2, 7, 11, 16, 18].The idea of vertical (attributes) clustering in

an affinity-based approach begins with a constructed matrix called Attribute Usage

Matrix (AUM) based on the Bond Energy Algorithm (BEA) [19]. BEA rearranges

rows (attributes) and columns (transactions) into a two-dimensional matrix called

AUM. Thus, the relationship between rows and columns can be informative. Most

frequently accessed attributes are grouped together in one diagonal block. However, a

clustering process can be evaluated based on user intervention to determine the simi-

larity between attributes and the occurrence of overlapping [20]. AUM is extended to

determine the degree of similarity between attributes based on the developed Affinity

Attribute Matrix (AAM). However, AAM can only measure the similarity between

two attributes in a column or in a row. Therefore, Navathe et al., [14] extended the

work in [13] by proposing Navathe Vertical Clustering (NVP). NVP consists of two

phases. The first phase involves the construction of the AAM, which is used as an

input to perform clustering in the Clustered Affinity Matrix (CAM). Subsequently,

CAM is used as an input in the second phase. The second phase performs iterative

binary partitioning for existing clusters. However, time complexity is high because of

the number of iterations in binary partitioning. In addition, overlapping between clus-

ters is allowed. Therefore, S. B. Navathe & Ra [15] converts AAM into a graph-based

approach to reduce time complexity. However, this method can only be applied in a

small or centralized database.

Affinity-based methods lack the objective function [21]. Therefore, Muthuraj and

Chakravarthy [20, 21] proposed an objective function called Partition Evaluator to

assess clusters in a vertical database partitioning algorithm. In addition, the affinity

concept only measures similarity between two attributes. Therefore, a transaction-

based approach has been introduced by [3], where an efficient vertical clustering algo-

rithm called Optimal Binary Partition Algorithm (OBP) was proposed. OBP clusters

attributes based on a set of transactions. Important attributes often appear together in

transactions. However, a large number of transactions in OBP affect the time execu-

tion of a query. Thus, time complexity increases. Therefore, Song and Gorla [8] pro-

posed a genetic algorithm for database partitioning in a distributed database to gener-

ate more attribute partitions. However, genetic algorithms (GAs) are time-consuming.

Several attempts have been made to achieve vertical partitioning.

 All the aforementioned methods collect workloads, conduct statistical analyses,

and partition tables based on the results of analysis. However, Abuelyaman [1] intro-

duced ―StatPart‖ based on a study of the environment and future tasks as a basis for

attribute clustering at the initial stage of database design. Dynamic Vertical Partition-

ing Partitions (DYVEP) data based on the automatic monitoring of query frequencies

introduced [7]. However, the communication cost within a distributed database is not

Wael M. S. Yafooz 51 et al.

considered. Therefore, Li and Gruenwald [4] proposed AutoClust, AutoClust as ex-

tended of [22] a previous version, AutoClust utilize a query optimizer to measure

performance based on estimated cost in distributed database which lack in DYVEP.

Current studies focus on partitioning multimedia databases. Thus, Rodriguez & Li

[6] introduced the Multimedia Adaptable Vertical Partitioning (MAVP).The MAVP

static and database administrator shave to provide the information that MAVP needs

to establish a vertical partitioning scheme. By contrast, [23] proved that Dynamic

Multimedia ON line Distribution (DYMOND) does not need a database administrator

because it automatically obtains all input information.

Predicate or affinity-based methods are the two main approaches in horizontal

(record) clustering. In the predicate approach, [10] terms that are homogeneously

accessible from different applications are mined and grouped together. However, this

method suffer requires the completion of the set of terms to perform record partition-

ing. Therefore, Ozsu & Valduriez [18] introduced efficient iterative algorithms called

COMMIN. COMMIN is used to identify a minimal and complete predicate min term

set from a predicate set of transaction queries. However, the min term predicate ap-

proach can hardly produce a complete predicate set. The affinity-based method,

which is used in vertical partitioning, was this introduced for horizontal clustering. [9]

used two matrixes: Usage Predicate Matrix (UPM) and Predicate Affinity Matrix

(PAM). Another research work utilizing PAM as input to GAs was introduced by

[24], where a horizontal fragmentation was considered a traveling salesman problem.

Khan & Hoque [2] recently introduced a new method for horizontal fragmentation

and allocation in a distributed database. The method focused on the locality of the

data recorded in a table called Attribute Locality Table precedence. This approach is

implemented at the initial stage of distributed database system design by collecting

information from a Create, Read, Update, and Delete matrix [25]. Mixed partitioning

is the process of implementing vertical partitioning first, followed by horizontal parti-

tioning, or vice versa. S. Navathe [11] Proposed mix database partitioning for a distri-

buted database system. The idea is to construct grid representations based on data

stored in attributes and records. The intersection between attributes and records is

presented in grid form. Another approach utilizes GAs for mix partitioning in a rela-

tional database [12, 17].

3 Distributed Database Architecture

 A distributed environment consists of numerous connected machines. The machines

can either be in the same or different geographical areas [1]. The workload in a dis-

tributed environment is divided among all machines to enhance system performance.

Thus, all machines run a parallel mechanism.

 Fragmentation and allocation are two main elements of distributed database man-

agement systems. Fragmentation is a method by which to divide the physical structure

of database tables into sub-tables. Figure 1 shows the environment structure of a dis-

tributed database.

52 Shared-Table for Textual Data Clustering in Distributed

Fig. 1. Structure of the distributed database.

Allocation is a method by which to transfer sub-tables to one site or more over the

network. In this way, if the user makes a query, the requested data will be retrieved

from one network node. Thus, data retrieval improves when data are retrieved from

more than one network node. Therefore, the transportation cost of data from the net-

work node to the user is less than that of retrieving data from different nodes, which

increases transportation cost.

4 Shared-Table

The proposed technique is designed for a relational distributed database. The tech-

nique, which deals with textual data, is called the Shared-Table Technique (STT).

STT can be implemented in all network nodes that have a terminal for input data. STT

will keep the database scheme as it is without partitioning. STT consists of a table and

two main procedures: Mining Term and Allocation. The table referred to is a database

table consisting of four columns: ID, Extracted_Data, Target_Node, and Time-

stamp_ID as shown in Table 1. The ID column provides the identifier number, whe-

reas the Extracted_Data column provides the extracted information comprising

named entities [26-28] and frequent terms [29, 30]. The node address is stored in the

Target_Node column, whereas the time of transaction is stored in the Time-

stamp_ID column . Thus, when the user enters textual data directly, the mining term

procedure runs.

The mining term procedure is the process of extracting the named entities and fre-

quent terms, which are then stored in the Extracted_Data column. Such informa-

tion will serve as a guide on where the subsequent textual data should be stored (in

which node). Thus, the storing process matches the mining terms of the new textual

data in the existing shared-table. Figure 2 shows a general view of the SST.

53Wael M. S. Yafooz et al.

Table 1. Structure and simple information of STT

ID Extracted_Data Target_Node Timestamp_ID

01 Malaysia,Najeeb, Ahmed, cairo,

performance, electricity,
N1

12/5/20013 01:20

02 TNG,Malaysia, Najeeb, electricity N1 12/5/20013 02:20

03 John,UK, Microsoft,Oracle N4 12/5/20013 02:25

04 IBM,Oracle, USA N4 15/5/20013 21:20

05 Football, Japan and China, team,

Player
N5

16/5/20013 15:20

Table 1 demonstrates the structure of the STT and simple information about tex-

tual data and networks nodes that hold such data. In ID column, the identifier number

of textual document is ―1‖. Identifier ―1‖ hold information of specific textual data

such as the most frequent terms and named entities of textual documents which

stored in network node ―N1‖, In the next record, identifier ―2‖ , its hold information

about textual data which are similar to textual documents that hold identifier number

―1‖ . Thus, both textual data stored in network node ―1‖. Each network node holds

textual documents that have similarity between its content. Such content is

represented by the named entities and most frequent terms of each textual document.

This method can be used as a guide on where data should be stored for easier retriev-

al. Therefore, retrieving process such data can be retrieved very fast rather than access

another network nodes over distributed environment. Furthermore, more other mani-

pulation for such data can be done very efficiently. For instance, deleting data that

belong to specific action or specific month (s), it can be remove, backup or update

without any additional transportation cost over such environment. In case the data are

fully or partially similar based on content between two network nodes, the re-

allocation procedure will transform the small-sized data from network node to another

network node that has large-sized data

Fig. 2. General view of shared-table technique.

54 Shared-Table for Textual Data Clustering in Distributed

 The re-allocation will consider and calculate the transportation cost to identify

close network nodes that also have small data that are similar to that of the current

node. This process is performed because the data that have to be transferred are often

similar to that of another network node. In this case, the data that have to be trans-

ferred may be integrated with a far network node, thus affecting the transportation

cost when retrieving data from these nodes. Therefore, the re-allocation procedure

facilitates calculation and provides a better solution for the re-allocation of data be-

tween network nodes. In each database transaction, all tables will be replicated among

all mining terms as new data are entered by the user.

Table 2. Transportation time between network nodes

Network Node Node1 Node2 Node3 Node4

Node1 0 2 1 3

Node2 2 0 2 1

Node3 1 2 0 2

Node4 3 1 2 0

The example of query processing improvement is shown in Table. The measure-

ment of transportation time between all network nodes is in seconds. If data is re-

quested in the user query where query is issued from node 1 and data is allocated in

different network nodes such as node number 2 and 3, a transportation time will oc-

cur in this case. There is also a processing time where it is a time taken to retrieve

data from the secondary storage. Thus, the total consuming time (TC) to retrieve such

data is the summation of transportation and processing time. TC= TC (Node1 to

Node2) +TC (Node1 to Node3) + PT. Suppose that the processing time is 1 second,

therefore, TC=2 +1+1=4. However, for data cluster that resides in the same network

node, the total consuming time (TC) is equal 1, which is only the processing time.

5 Conclusion

The SST, which can reduce transportation cost over distributed relational databases,

was introduced in this study. Query efficiency was improved by reducing the trans-

port cost in a distributed database management system. Enhances efficiency can be

achieved by grouping data that are likely to be accessed and retrieved together, specif-

ically textual data that often have similar content. The SST serves as a guide on where

data should be stored for easier retrieval. By utilizing the data mining concept, terms

along with the location in which they are stored (in which network node) are con-

tained in the shared-table.

Acknowledgment

The authors wish to thank Universiti Teknologi MARA (UiTM) for the financial

support. This work was supported in part by a grant number 600-RMI-/DANA

5/3/RIF (498/2012).

55Wael M. S. Yafooz et al.

References

1. Abuelyaman, E.S., An Optimized Scheme for Vertical Partitioning of a Distributed

Database. IJCSNS International Journal of Computer Science and Network Security, 2008.

VOL.8 No.1: p. 310-316.

2. Khan, S.I. and D.A.S.M.L. Hoque, A New Technique for Database Fragmentation in

Distributed Systems. International Journal of Computer Applications, 2010. Volume 5–

No.9: p. 0975 – 8887.

3. Chu, W.W. and I.T. Ieong, A Transaction-Based Approach to Vertical Partitioning for

Relational Database Systems. Software Engineering, IEEE Transactions on, 1993. VOL.

19, NO. 8.

4. Li, L. and L. Gruenwald, Autonomous Database Partitioning using Data Mining on Single

Computers and Cluster Computers. Proceedings of the 16th International Database

Engineering & Applications Sysmposium. ACM, 2012.

5. Ma, H., K.-D. Schewe, and M. Kirchberg, A Heuristic Approach to Vertical Fragmentation

Incorporating Query Information. Databases and Information Systems, 2006. 7th

International Baltic Conference on. IEEE: p. 69-76.

6. Rodriguez, L. and X. Li, A vertical partitioning algorithm for distributed multimedia

databases. . In e. a. A Hameurlain, editor, Proceedings of DEXA, . Springer Verlag, 2011.

Vol 6861 (544—558).

7. RodríguezA, L. and X. Li, A dynamic vertical partitioning approach for distributed database

system. Systems, Man, and Cybernetics (SMC), IEEE International Conference on. IEEE,

2011.

8. Song, S. and N. Gorla, A genetic Algorithm for Vertical Fragmentation and Access Path

Selection. The Computer Journal, 2000. vol. 45, no. 1: p. 81-93.

9. Zhang, Y., On horizontal fragmentation of distributed database design. in M. Orlowska &

M. Papazoglou, eds, Advances in Database Re- search, 1993. World Scientific Publishing:

p. 121-130.

10. Ceri, S., M. Negri, and G. Pelagatti, Horizontal data partitioning in database design. in Proc.

ACM SIGMOD, 1982.

11. S. Navathe, K.K., Minyoung Ra, Amixed fragmentation methodology for initial distributed

database design. Journal of Computer and Software Engineering 1995. 3.4 (1995): p. 395-

426.

12. Gorla, N., V. Ng, and D.M. Law, Improving database performance with a mixed

fragmentation design. J Intell Inf Syst (2012) 39, 2012. 39: p. 559–576.

13. Hoffer, H.A. and D.G. Severance, The Use of Cluster Analysis in Physical Database

Design. Proceedings First Internutionul Conference on Vety Large Data Bases, 1975.

14. Navathe, S., et al., Vertical partitioning algorithms for database design. ACM Transactions

on Database Systems (TODS) 9.4, 1984: p. 680-710.

15. Navathe, S.B. and M. Ra, Vertical Partitioning for Database Design: A Graphical

Algorithm. ACM SIGMOD Record 18.2, 1989.

16. Ra, M., Horizontal partitioning for distributed database design. In Advances in Database

Research, World Scientific Publishing, 1993: p. 101–120.

56 Shared-Table for Textual Data Clustering in Distributed

17. Ng, V., et al., Applying genetic algorithms in database partitioning. SAC '03 Proceedings of

the ACM symposium on Applied computing, 2003: p. 544-549.

18. Ozsu, M.T. and P. Valduriez, Principles of Distributed Database Systems. 2nd ed., New

Jersey: Prentice-Hall, 1999.

19. McCormick, W.T., P.J. Schweitzer, and T.W. White, Problem decomposition and data

reorganization by a clustering technique. 1972. Operations Research 20.5: p. 993-1009.

20. Chakravarthy, S., et al., An objective function for vertically partitioning relations in

distributed databases and its analysis. Distributed and parallel databases 2.2 1994. 183-207.

21. Muthuraj, J., et al., A formal approach to the vertical partitioning problem in distributed

database design. Parallel and Distributed Information Systems, Proceedings of the Second

International Conference on. IEEE, 1993.

22. Guinepain, S. and L. Gruenwald, Using Cluster Computing to Support Automatic and

Dynamic Database Clustering. Cluster Computing, 2008 IEEE International Conference on.

IEEE, 2008.

23. Rodríguez, L., et al., DYMOND: An Active System for Dynamic Vertical Partitioning of

Multimedia Databases. Proceedings of the 16th International Database Engineering &

Applications Sysmposium. ACM, 2012., 2012.

24. Cheng, C.-H., W.-K. Lee, and K.-F. Wong, A Genetic Algorithm-Based Clustering

Approach for Database Partitioning. Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on 2002. VOL. 32, NO. 3: p. 215-230.

25. Surmsuk, P. and S. Thanawastien, The Integrated Strategic Information System Planning

Methodology. 11th IEEE International Enterprise Distributed Object Computing

Conference, 2007.

26. Montalvo, S., F. Víctor, and M. Raquel, NESM: a Named Entity based Proximity Measure

for Multilingual News Clustering. Procesamiento de Lenguaje Natural, 2012. 48: p. 81-88.

27. Cao, T.H., T.M. Tang, and C.K. Chau, Data Mining: Foundations and Intelligent Paradigms

Springer Berlin Heidelberg, 2012: p. 267-287.

28. YafoozB, W.M.S., S.Z. Abidin, and N. Omar, Challenges and issues on online news

management. Control System, Computing and Engineering (ICCSCE),IEEE International

Conference on., 2011.

29. Krishna, S.M. and S.D. Bhavani, An Efficient Approach for Text Clustering Based on

Frequent Itemsets. European Journal of Scientific Research, 2010. ISSN 1450-216X Vol.42

No.3: p. 399-410.

30. Beil, F., M. Ester, and X. Xu, Frequent Term-Based Text Clustering. Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2002.

57Wael M. S. Yafooz et al.

	Shared-Table for Textual Data Clustering in DistributedRelational Databases
	1 Introduction
	2 Related Studies
	3 Distributed Database Architecture
	4 Shared-Table
	5 Conclusion
	References

