
Sampling Semantic Data Stream: Resolving
Overload and Limited Storage Issues

Naman Jain1, Manuel Pozo2, Raja Chiky2, and Zakia Kazi-Aoul2

1 VIT University, Vellore, TN 632014, India
namanjain2009@vit.ac.in

2 ISEP - LISITE, Paris 75006, France
{manuel-jesus.pozo-ocana, raja.chiky, zakia.kazi}@isep.fr

Abstract. The Semantic Web technologies are being increasingly used
for exploiting relations between data. In addition, new tendencies of real-
time systems, such as social networks, sensors, cameras or weather in-
formation, are continuously generating data. This implies that data and
links between them are becoming extremely vast.
Such huge quantity of data needs to be analyzed, processed, as well as
stored if necessary. In this paper, we propose sampling operators that
allow us to drop RDF Triples from the incoming data. Thereby, helping
us to reduce the load on existing engines like CQELS, C-SPARQL, which
are able to deal with big and linked data. Hence, the processing efforts,
time as well as required storage space will be reduced remarkably.
We have proposed Uniform Random Sampling, Reservoir Sampling and
Chain Sampling operators which may be implemented depending on the
application.

Keywords: Big Data, Linked data-stream, Processing time, Sampling

1 Introduction

The semantic web handles many systems, such us Twitter, Facebook or Google,
which generate increasing volumes of semantic data everyday. The problem of
“too much (streaming) data but not enough (tools to gain and derive) knowl-
edge” was tackled by [7]. They envisioned a Semantic Sensor Web (SSW), in
which sensor data are annotated with semantic metadata to increase interoper-
ability and provide contextual information essential for situational knowledge.
CQELS[6], SPARKWAVE[5], C-SPARQL[3] etc. are existing technologies to ex-
ploit these semantic and streaming (continuous and infinite) data, and are based
on recommended standard RDF, as the format of representation.

CQELS[6] is a native approach in an RDF environment based on ‘white-
boxes’. It provides its own processing model and its own operators to deal
with streams, for example, window operators or query semantic operators. C-
SPARQL[3] on the other hand, uses a ‘black-box’ approach which delegates
the processing to other engines such as stream/event processing engines and
SPARQL query processors by translating to their provided languages.

41T. Herawan et al. (eds.), Proceedings of the First International Conference
on Advanced Data and Information Engineering (DaEng-2013), Lecture Notes
in Electrical Engineering 285, DOI: 10.1007/978-981-4585-18-7_
� Springer Science+Business Media Singapore 2014

5,



Although almost all the engines are based on the SPARQL Language, there
are only a few systems which are able to process big quantity of data on the fly.
Moreover, these engines do not feature any tool that would allow them to reduce
the processing efforts and improve the processing time. For many applications,
we must obtain compact summaries of the stream. These summaries could al-
low accurate answering of queries with estimates, which approximate the true
answers over the original stream [4].

Thus, we propose the implementation of such sampling operators that could
be used in conjunction with other existing real-time engines. These sampling op-
erators will allow us to deal with the requested population by applying heuristic
methods. Uniform Random Sampling, Reservoir Sampling and Chain Sampling
were implemented on the data streams and were then compared with the er-
ror percentage, storage requirements and the load suffered by the engine. Thus,
these sampling methods will help reduce processing time and the required mem-
ory space.

2 Extension to Existing Systems

We propose to extend existing semantic data stream querying engines by creating
an external abstraction of the sampling operator. The extension acts as follows:

First, we recognize the different operators of the language and split the initial
query according to them. This will allow us to use the same operator at different
levels of the query: in the input, for sampling static data or streaming data and
in the output to sample the result of the query, or both simultaneously.

RDF
Static

RDF Stream

Black Box
Engine Result

Input
Sampling

Output
Sampling

Fig. 1. Block Diagram

After splitting the query, we make syntax correction. If we identify any er-
rors in our operator, we stop the execution of the query. Hence, if everything is
correct, we create a key-value map where we store all the resources and all the
requested sampling actions. Thus, we can apply the sampling operator indepen-
dently by creating a thread for each of them.

64 Pcocp"Lckp"gv"cn0



We start the abstraction of the operator by taking out all the sampling
instances in the query. This will allow us to avoid the correction of the rest of
operators and leave the task to the specific engine itself.

When we send this query to the engine, as shown in Figure 1, it will run all
the threads in charge of each source. By adapting those threads, we apply the
sampling method just before the data comes to the engine, thus discharging the
processing tasks. In a similar way, we adapt the output of the engines, in order
to apply sampling methods at the output and lighten storage space.

3 Sampling Methods

The query would contain the information of sampling type and the sampling per-
centage for each unique stream. We apply the appropriate sampling method for
each stream in different threads. We used Uniform Random Sampling, Reservoir
Sampling and Chain Sampling to compare their advantages and disadvantages.
We may choose an appropriate sampling method depending on the application
used for.

We have implemented our sampling operators with CQELS[6] and C-SPARQL
[3] engine. Example below shows simple type of sampling at 50% i.e. taking one
triple and dropping the next one, using CQELS as:

PREFIX lv: <http://deri.org/floorplan/>

SELECT ?person ?locName

FROM NAMED <C:/floorplan.rdf>

WHERE {

STREAM <C:/rfid.stream> [NOW] [SAMPLING %50]

{?person lv:detectedAt ?loc }

GRAPH <C:/floorplan.rdf> {?loc lv:name ?locName } }

[OUTSAMPLING %80]

We implemented Output Sampling using
Operator : [OUTSAMPLING % {Sampling Percentage}]

As shown in Figure 1, the output of the engine goes through this operator and
is given as final result only if the operator permits. Normal sampling algorithm
has been used for this i.e. if %80 is specified, then only 4 out of 5 results are
termed as final results. If Output Sampling operator is not specified, then the
percentage is assumed to be 100 and no result is left out after the processing is
done by the engine.

The sampling operators can also be implemented on similar systems like
Sparkwave[5], ETALIS[1] after changing few configurations. In this paper, we
use CQELS engine for the experimentation and the query is about computing
average of 8-hour daily maximum ozone concentrations as measured by Clean
Air Status and Trends Network (CASTNET) in United States of America. The
RDF data contains 2,159,133 triples consisting of 308,380 number of entries.3

3 http://data-gov.tw.rpi.edu/wiki/Dataset_8/

Ucornkpi"Ugocpvke"Fcvc"Uvtgco<"Tguqnxkpi"Qxgtnqcf 65



3.1 Uniform Random Sampling

In this sampling method, incoming triples are sent to the engine, only if uniform
random generation of true/false, with a probability equal to sampling percentage
divided by 100, returns true. This helps to keep number of samples in proportion
to total incoming data.
Operator : [UNISAMPLING %{Sampling Percentage}]

�����������������	
 ������������������� �����������������	
 �����������������	
 ���������������

����

�

����

�����

�����


����


����

	����

�
��
��
	

��


��
��
��

�������	
��
�������	
��
�������	
��
�������	
��

Fig. 2. Sample size variation/ Number of triples processed by engine in Uniform Ran-
dom Sampling (During time span of 1 minute)

The query4 is of the form

WHERE {

STREAM <C:/data-8.stream> [NOW][UNISAMPLING %60]

{?location vocab:ozone_8hr_daily_max ?value} }

Figure 2 shows sample size variation and number of triples processed by the
engine. They both are same in this type of sampling as there is no removal of
elements from the sample. This sampling method is less preferred as the sample
size keeps on growing, which may lead to shortage of storage space, and even
the outdated data element will be existing.

3.2 Reservoir Sampling

The problem of maintaining a sample of specified size ‘k’ is overcome by Reservoir
Sampling [8]. In this, we add the triple ‘i’ to the sample with probability k/i and
discarding a randomly chosen element from the reservoir (the sample) to make
room for the new element.
Operator : [RESSAMPLING {Reservoir Size}]
4 PREFIX & SELECT operators are omitted here to avoid repetition

66 Pcocp"Lckp"gv"cn0



������������� ������������� ������������� ������������� �������������

����

��������
���� ��������
���� ��������
���� ��������
���� ������������� ������������� ���������
���

������
������ ������
������ ������
������ ������
������ ������
�������������

���� �������

���� �������

���� �������

���� �������

����
�

���


��

���

���

���

���

�
��
��
	

��


��
��
�� ���������	
����	��

���������	
����	���
���������	
����	���
���������	
����	�

(a) Sample Size variation after using Reservoir Sampling

������������� ������������� ������������� ������������� �������������

����

��������
���� ��������
���� ��������
���� ��������
���� ������������� ������������� ���������
���

������
������ ������
������ ������
������ ������
������ ������
�������������

���� �������

���� �������

���� �������

���� �������

����
�


��

���

���

���

�
��
��
	

��

�
	��
��
�

��
��

�
�

��
��
��

���������	
����	��
���������	
����	���
���������	
����	���
���������	
����	�

(b) Load on engine after using Reservoir Sampling

Fig. 3. Plot of sample size variation and load on engine after using Reservoir Sampling
(All plots are for the same time duration of 1 minute)

For instance, here reservoir size of 500 ensures that the number of samples at
any point may not exceed 500. Initially, triples are added to the reservoir until it
is full. Then incoming triples, with stream number ‘i’ are added with probability
500/i, after replacing a randomly chosen element from the reservoir. The query
becomes:

WHERE {

STREAM <C:/data-8.stream> [NOW][RESSAMPLING 500]

{?location vocab:ozone_8hr_daily_max ?value} }

Figure 3a shows that the sample size becomes constant after the reservoir is
full and Figure 3b shows number of triples processed by the engine over the
time. This sampling method helps us to limit the maximum storage space of the
samples, but is not favorable when recent data is more important, as the sample
data may have ‘expired’. A significant reduction in load on the engine can also
be noted in Figure 3b when compared to Figure 2.

Ucornkpi"Ugocpvke"Fcvc"Uvtgco<"Tguqnxkpi"Qxgtnqcf 67



3.3 Chain Sampling

Babcock et al. [2] proposed the Chain Sampling method for sequence based
windows. In this method, if the window size is ‘n’ we add each new element ‘i’ in
the sample with probability min(i,n)/n. As each element is added to the sample
we choose an index, in the range (i+1,i+n), of the element that replaces it when
it expires. Once the element with that index arrives, we store it and choose the
index which replaces it when it expires, thus forming a chain of replacements.
STEP operator is used to specify the size of steps that the sequence based window
takes.

������������������� ��������
���������� ������������������� ������������������
 ������������������
 ���������������

����

�

���


��

���

���

���

�
��
��
	

��


��
��
��

�������	�
������
�������	�
�������
�������	�
�������
�������	�
�����

(a) Sample Size variation after using Chain Sampling

������������������� ��������
���������� ������������������� ������������������
 ������������������
 �������������

����

�


���

����

����

����

�����

�
��
��
	

��

�
	��
��
�

��
��

�
�

��
��
��

�������	�
�����
�������	�
�������
�����	
���
�
���
�����	
���
�
���

(b) Load on engine after using Chain Sampling

Fig. 4. Plot of sample size variation and load on engine after using Chain Sampling
(All plots are for the same time duration of 1 minute)

Operator : [CHNSAMPLING{WindowSize} STEP{StepSize}]
and the query is of the form

WHERE {

STREAM <C:/data-8.stream> [CHNSAMPLING 500 STEP 2]

{?location vocab:ozone_8hr_daily_max ?value} }

68 Pcocp"Lckp"gv"cn0



The above query shows that window size ‘n’ is 500 and window moves in steps of
2. Figure 4a shows that the sample size increases as the window size is increased
but Figure 4b shows that number of triples being processed by the engine is
lower for higher window sizes. We also note from Figure 3b and Figure 4b that
load on the engine is much higher for Chain Sampling.

Chain Sampling ensures to keep sample elements which are present only in
the window and eliminates the problem of ‘expired element’ in the sample. But,
the act of storing replacements does not reduce the memory space requirements
and load on the engine as effectively as Uniform Random Sampling and Reservoir
Sampling.

Table 1. Variation of Sample size, Load on engine and Error due to different sampling
methods

Method Para- Sample Triples Effective % Triples % of
meter Size Processed Sampling % Processed Error

Uniform 20 10034 10034 20.06 20.06 0.1819
Random 40 19993 19993 39.98 39.98 0.1540
Sampling 60 29998 29998 59.99 59.99 0.0793
[Sampling %] 80 40002 40002 80.00 80.00 0.0494

500 500 2807 1.00 5.61 1.3532
Reservoir 1000 1000 4925 2.00 9.85 0.8041
Sampling 2000 2000 8445 4.00 16.89 0.6047

[Reservoir Size] 5000 5000 16490 10.00 32.98 0.3123
10000 10229 42589 20.45 85.17 0.4410

Chain 20000 13183 36332 26.36 72.66 0.5774
Sampling 30000 14857 31260 29.71 62.52 2.5181

[Window Size] 40000 16116 27298 32.23 54.59 0.6559

4 Experimentation

The queries in Section 3 were first executed without any sampling, and then
after incorporating different sampling operators. After computing 50,000 entries
of 8-hour daily maximum ozone concentrations, without any sampling operator,
their average was found to be 49.9161. Also, the average of results obtained
by 20 iterations (after applying each sampling operator) is demonstrated in the
Table 1. All results are for 50,000 entries. The % of error was also computed
for all sampling operators with a specific parameter as shown in Table 1. It was
done by finding average of relative difference, of experimental value from actual
value (49.9161, in this case), for all 20 iterations of the same query.

We may note that in Uniform Random Sampling probability of error reduces
as the sampling percentage is increased while load on the engine is in coali-
tion with the sampling percentage specified. In Reservoir Sampling, we see that

Ucornkpi"Ugocpvke"Fcvc"Uvtgco<"Tguqnxkpi"Qxgtnqcf 69



the probability of error reduces with increase in reservoir size and a significant
reduction in sample size as well as load on the engine is observed.

In Chain Sampling percentage of error depends on the elements in the current
window and an improvement in sample size is observed in comparison to Uni-
form Random Sampling but load on the engine is comparatively high as sample
replacements are also required to be processed by the engine.

5 Conclusion

The growing generated data from web applications is becoming a problem for the
processing systems, and the relation between data is causing troubles when at-
tempting to exploit data repositories. Therefore, In this paper we have proposed
an extension of a real-time request system that allow us to reduce processing
tasks and memory space requirements.

Different sampling methods suggested are useful for different applications.
For example, if accuracy is required then we may go for Uniform Random Sam-
pling with appropriate sampling percentage, and if memory size is fixed, we
should go for Reservoir Sampling. Chain Sampling with suitable window size is
favourable only when the samples need to be ‘new’. In near future, we will build
the sample according to the importance of incoming data elements, rather than
randomly choosing them.

References

1. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in etalis. Semantic Web, 3(4): 397–407 (2012)

2. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over
streaming data. In Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, pp. 633–634. Society for Industrial and Applied Mathematics
(2002)

3. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-sparql:
Sparql for continuous querying. In: Proceedings of the 18th international conference
on World wide web, pp. 1061–1062. ACM (2009)

4. Cohen, E., Cormode, G., Duffield, N.: Structure-aware sampling on data streams.
In: Proceedings of the ACM SIGMETRICS joint international conference on Mea-
surement and modeling of computer systems, pp. 197–208. ACM (2011)

5. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over rdf data streams. In Proceedings of the 6th ACM International
Conference on Distributed Event-Based Systems, pp. 58–68. ACM (2012)

6. Le-Phuoc, D., Dao-Tran, M., Parreira, J. X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: The Semantic
Web–ISWC 2011, pp. 370–388. Springer (2011)

7. Sheth, A., Henson, C., Sahoo S. S.: Semantic sensor web. Internet Computing
12(4), pp. 78–83. IEEE (2008)

8. Vitter, J. S.: Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software (TOMS), 11(1):37–57 (1985)

6: Pcocp"Lckp"gv"cn0


	Sampling Semantic Data Stream: ResolvingOverload and Limited Storage Issues
	1 Introduction
	2 Extension to Existing Systems
	3 Sampling Methods
	3.1 Uniform Random Sampling
	3.2 Reservoir Sampling
	3.3 Chain Sampling

	4 Experimentation
	5 Conclusion
	References




