
Negative Selection Algorithm: A Survey on the
Epistemology of Generating Detectors

Ayodele Lasisi1, Rozaida Ghazali1, and Tutut Herawan2

1 Faculty of Computer Science and Information Technology
Universiti Tun Hussein Onn Malaysia

86400, Parit Raja, Batu Pahat, Johor, Malaysia
lasisiayodele@yahoo.com, rozaida@uthm.edu.my

2 Faculty of Computer Science and Information Technology
University of Malaya, 50603, Kuala Lumpur, Malaysia

tutut@um.edu.my

Abstract. Within the Artificial Immune System community, the most
widely implemented algorithm is the Negative Selection Algorithm. Its
performance rest solely on the interaction between the detector genera-
tion algorithm and matching technique adopted for use. Relying on the
type of data representation, either for strings or real-valued, the proper
detection algorithm must be assigned. Thus, the detectors are allowed
to efficaciously cover the non-self space with small number of detectors.
In this paper, the different categories of detection generation algorithm
and matching rule have been presented. Briefly, the biologial and artifi-
cial immune system, as well as the theory of negative selection algorithm
were introduced. The exhaustive detector generation algorithm used in
the original Negative Selection Algorithm laid the foundation at profer-
ring other algorithmic methods based on set of rules in generating valid
detectors for revealing anomalies.

Keywords: negative selection algorithm, data representation, detector
generation algorithm, matching rule

1 Introduction

Negative Selection Algorithm (NSA), a significant set of rules within Artificial
Immune System (AIS), announces its presence in the computer security domain.
It is especially directed for use in anomaly detection and change detection. The
process imitates T-cells detection execution of foreign invaders in the human
body. In other to attain its target of recognition and elimination accordingly,
the detector generation algorithm and matching technique plays a crucial role.
Depending on the data representation, strings (binary) or real-valued represe-
nation, the appropriate detector generation algorithm and matching rule will
be utilized. Forrest et al. [1] used the exhaustive detector generation algorithm
based on r-contiguous matching rule. The drawback is that it is a costly com-
putation in terms of time and space. Some other improved detector generation

167T. Herawan et al. (eds.), Proceedings of the First International Conference
on Advanced Data and Information Engineering (DaEng-2013), Lecture Notes
in Electrical Engineering 285, DOI: 10.1007/978-981-4585-18-7_ ,
� Springer Science+Business Media Singapore 2014

20



algorithms were proposed, these are linear-time, binary, greedy, and Negative
Selection using Mutation (NSMutation) detector generation algorithms. Also
different matching algorithms have been introduced as well. These are related
to binary string representation. The detector generation schemes are different
for real-valued representation. This goes for the matching techniques too. More
information shall be presented in the latter section of this paper.

This paper reports and focus on the detector generation methods of nega-
tive selection algorithm. The different matching algorithms were discussed. It
examines in detail the process of generating detectors from the original method
to the various improvements carried out by researchers. These are geared at
reducing the number of detectors to its minimum moving a step higher than
the previous methods. It is believed that this review will further enhance our
understanding and knowledge behind the detector generation process of NSA.
The arrangement of the paper is organized as follows: Section 2 introduces bio-
logical immune system. Section 3 briefly describes artificial immune system. The
concept of negative selection algorithm is mentioned in section 4. Afterwards,
data representation and matching techniques occupies section 5, while detector
generation algorithms used in NSA are elaborated in section 6. Conclusion sums
up the paper in section 7.

2 Biological Immune System

The Biological Immune System (BIS), an integral part of the vertebrate immu-
nity over centuries, is a dynamic, powerful, intelligent, and interconnection of
different components of the body, working in totality to fight, defend, and pre-
vent pathogenic organisms’ entrance into the body. The postulation of immuno-
logical concept of the body mechanisms defending against pathogens through
immunoglobulin called antibodies gave birth to immunity [2]. Two major func-
tions attributed to BIS are: protection from foriegn invaders, and maintaining
homeostasis [3, 4]. However, there are still inquiries by immunologist about the
precise function of the immune system because of its sophisticated nature. As
such, it goes to show that the immune system has inherent capabilities which
surpasses what is being obtained now (i.e innate and adaptive system; and hu-
moral and cellular processes) in guarding the body from pathogen invasion [5].
Boukerche et al. [6] gave the properties of immune systems as detection, diver-
sity, learning, and tolerance. The immune system utilizes two lines of defenses
known as the innate immune system and adaptive immune system [7,8]. Innate
immunity is the first line defense and its non-specific. Non-specific in that, it
does not concentrate on a particular kind of pathogen. Adaptive immunity on
the other hand handles such invasions that bypass the innate immunity line of
defense. It is specific as it targets, matches a particular pathogen, and stores in
memory the structure of that pathogen for faster detection and elimination if
encountered again.
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3 Artificial Immune System

Artificial Immune System (AIS) is a computational paradigm that has evolved
over the past two decades with algorithms developments mimicking the immune
system processes. It connects and fosters the immunology, computer science,
and engineering disciplines [9, 10]. Theoretical immunology models the immune
system for in-depth knowledge of its behaviour [11]. Coupling the theoretical
immunology with observed immune functions, principles and models introduces
AIS as being able to cope effectively with changing situations and also suitable
for problem solving [12]. Such problem solving tasks include but not limited
to pattern recognition, learning, memory acquisition, distributed detection, and
optimization [13]. Among AIS researchers, three (3) definitions have gained pop-
ularity, and only one of these is widely accepted as defined in [12].

Undoubtedly, the works of Bersini and Varela [14], pioneer in the use of
metaphor for immune network theory, and Forrest et al. [1] announces the path-
way from immunology to computing. The immune network theory was the focus
of Hugues Bersini and Francisco Varela, abstracted from the way the natural
immune network memorizes and functions leading to models and algorithms.
Collaboration with researchers of the same field of interest popularized the con-
cept [14, 15]. Self-non-self discrimination as it applies to computer security was
the intention of Stephanie Forrest and her colleagues [1]. They were inspired
at how the immune system recognizes self (normal) from non-self (abnormal)
and a Negative Selection Algorithm (NSA) was proposed, thus becoming the
pioneers of AIS algorithm development. It sets in motion the modeling and de-
velopment of immune functions and properties of a number of AIS algorithms.
A detailed review on theories and algorithms of artificial immune system can be
found in [10].

4 Negative Selection Algorithm

In the biological immune system, there exist cells responsible for battling and
annihilating intoxicated foreign molecules which are harmful to the body. T-cells,
a special kind of white blood cell called lymphocytes, falls under the umbrella of
the protecting cells. The receptors of T-cells are generated in a pseudo-random
manner which undergoes a censoring process in the thymus called negative se-
lection. In the thymus, the T-cells reacting to self cells are terminated while
those not reacting leave the thymus into maturation stage. At this stage, they
are equipped with the full functionality of protecting the body. Based on the
negative selection principle, Forrest et al. [1] proposed and developed the Nega-
tive Selection Algorithm (NSA) for detection applications. Two principal stages
of the NSA are the generation stage and the detection stage. The production of
detector set is carried out at the generation stage, and these detector set are now
ultimately used for change detection. Steps in NSA execution is summarized as
follows [16]:

Given a universe U which contains all unique bit-strings of length l, self set
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S ⊂ U and non-self set N ⊂ U , where
U = S ⊂ U and S ∩N = ∅ .

1. Define self as a set S of bit-strings of length l in U .
2. Generate a set D of detectors, such that each fails to match any bit-string

in S.
3. Monitor S for changes by continually matching the detectors in D against

S.
Clearly, it can be deduced from the algorithmic steps that a kind of matching

rule is required, reflected in both stages of the algorithm. This matching rule
is hinged to a data representation method, invariably working in togetherness
for performing the change detection task. Thus, in the next section, we shall
elaborate on the data representation and matching techniques used by NSA for
generating detectors.

5 Data Representation and Matching Techniques

The success of the detector generation algorithms depends solely on how the data
is being represented and the matching technique adopted. For negative selection
algorithm, strings (or binary) representation and real-valued representation has
been widely used. Also, there is hybrid of both data representations which con-
sist of different data types such as integer, real value, categorical information,
boolean value, text information, etc. String representation has proved advan-
tageous owing to the fact that: 1) it can be eventually represented in binary
form; 2) anaylzed easily; and 3) beneficial for either textual or categorical infor-
mation [17]. However, it suffers from space complexity and scability issues [18].
As a result, real-valued representation emerged in dealing with real value data
types and also being suitable for real world applications. While data represented
in strings can be used with a variety of matching techniques, euclidean distance
is the primary matching technique used for real-valued representation [19]. Other
utilized techniques for representing real-valued data and those of string repre-
sentation are discussed below.

5.1 Matching Rule for Strings Representation

R-Contiguous Matching Rule. The interaction between antigens and an-
tibodies needs a proper representation and there must be an affinity funtion.
The r-contiguous matching rule was proposed by Percus et al. [20] in mapping
antibodies to antigens, and matching process is defined as follow:

Suppose we denote antigens as set of binary strings x = x1, x2, . . . , xn and
antibodies denoted by a detector d = d1, d2, . . . , dn. This notation shall be used
for the rest of this paper. The antibody matches the antigen if (1) holds:

∃i ≤ n− r + 1

∣∣∣∣∣ xj = dj , ∀ j = i, . . . , i+ r − 1 (1)

where | denotes such that, and ∀ is for-all or for any.
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The original NSA in [1] made use of the r-contiguous matching rule. With a
pre-defined window size r, two binary strings are set to match if identical.

R-Chunk Matching Rule. The r-contiguous matching rule described above,
and the matching rules for classifier systems in [21] inspired r-chunk matching
rule by Balthrop et al. [22]. The r-chunk rule encapsulate r-contiguous rule in
that all the r-bits in the window must be matched with the binary strings.
Therefore, any r-contiguous detectors can equally be represented as a set of r-
chunk detectors. It is defined as follow:

Given detector d = d1, d2, . . . , dm and binary strings x = x1, x2, . . . , xn with
m ≤ n and i ≤ n−m+ 1. The detector matches the binary strings if and only
if (2) is satisfied:

xj = dj ∀ j = i, . . . , i+m− 1 (2)

However, the distinguishing factor between r-contiguous and r-chunk match-
ing rule is that full length r-contiguous bits develops crossover holes as well as
length-limit holes, while r-chunk matching rule is devoid of this by eradicating
the problem posed by length-limit holes.

Hamming Distance. Jerne [23] proposed a computational model based on
idiotypic network theory which uses binary representation for the antibodies and
antigens. Hamming distance is the matching rule implemented for this model. It
is defined as follow:

Given detector d = d1, d2, . . . , dn and binary strings x = x1, x2, . . . , xn, the
detector matches binary strings if (3) is satisfied:

∑
i

x1 ⊕ di ≥ r (3)

where ⊕ is the exclusive-or (XOR) operator, the line over x1 ⊕ di is the NOT
operator, and 0 ≤ r ≤ n is a threshold value.

Additionally, variation of the Hamming distance known as Rogers and Tan-
imoto (R&T) matching rule was compared with several binary matching tech-
niques and results shows it stands out to be the best [24]. This hamming distance
has computational issues because it requires a huge number of steps in its exe-
cution. Thus, limits its application area.

5.2 Matching Rule for Real-Valued Representation

Euclidean Distance. This method of matching rule is widely incorporated for
real-valued representation [19]. Inspite of its suitability for real valued cordinates,
it yield undesirable results under large real-valued cases. Therefore, the best
performance is achieved with limited real-valued cases [25]. Given the cordinates
of detector d = d1, d2, . . . , dn and binary strings cordinates as x = x1, x2, . . . , xn,
the distance D existing between the detectors and binaries is shown in (4):
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D =

√√√√
n∑

i=1

(di − xi)2 (4)

Manhattan Distance. This is an alternative distance measure to euclidean
distance, also used for real-valued representation. It executes based on sum of
the absolute value of the detectors and binary strings as against the square of the
sum in euclidean distance. Given the cordinates of detector d = d1, d2, . . . , dn
and binary strings cordinates as x = x1, x2, . . . , xn, the distance D existing
between them is shown in (5):

D =

√√√√
n∑

i=1

|di − xi| (5)

Minkwoski Distance. Minkwoski distance is an abstraction of the Euclidean
distance and Manhattan distance [26], used by Dasgupta et al. [27] for aircraft
fault detection. The distance D of the Minkwoski distance is defined as in (6):

D = h

√√√√
n∑

i=1

|di − xi|h (6)

where h is real number such that h ≥ 1. When h = 1, it represents the Manhat-
tan distance; while for h = 2, Euclidean distance is being represented. Hamaker
and Boggess [28] presented several other matching techniques which are useful
for real-valued representation.

6 NSA Detector Generation Algorithms

Insight into the various detector generation algorithms with respect to the above
matching mechanism for strings representation and real-valued representation
shall be discussed. For string (or binary) representation, the Exhaustive Detec-
tor Generating Algorithm (EDGA) using the r-contiguous bits [20] was incorpo-
rated in the original work by Forrest et al. [1]. It imitates the T-cells generation
processes of the BIS by random generation of detectors, and matching with self
strings for creating a database of legitimate detectors to be used in detection
purpose. Time complexity and space complexity need to be considered greatly
in determining the degree at which detectors exert their authority. In other to
ascertain the computational complexities of the original NSA, a mathematical
expression was derived by D’Haeseleer et al. [29]. This, coupled with the experi-
ments carried out by Ayara et al. [30] proves that it is computationally expensive
as most randomly generated detectors are discarded.
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Furthermore, a modified version to EDGA using somatic hypermutation was
proposed in [12] called NSMutation. The proposition of other improved detector
generation algorithm, the linear-time detector generating algorithm and greedy
detector generating algorithm were reported in [31]. They are more deterministic
as against the randomized method of exhaustive detector generating algorithm.
The former has higher space complexity than EDGA, whereas for the latter,
a higher time complexity is observed but demonstrate to have increased cover-
age area with limited number of detectors leading to higher detection rate [17].
Still on the deterministic approach, Wierzchon [32] introduced a binary template
detector generating algorithm with increased efficiency which produces less num-
ber of detector to cover the search space. [30] went on to compare all the above
detector generating algorithm and results shows that NSMutation is more ex-
tensible. Table 1 below shows the time complexity and space complexity of the
above detector generation algorithms [29]. The terms used in the table denotes
the following: l is the length of strings; r is the matching threshold; m, matching
size; NS is the population of self data; NR, population of competent detectors.

Table 1. Complexities for detector generating algorithms based on strings (or binary)
representation

Algorithm Time Space

Exhaustive O(ml ·NS) O(l ·NS)

Linear O((l − r + 1) ·NSm
r) +O((l − r + 1) ·mr) +O(l ·NR) O((l − r + 1)2 ·mr)

Greedy O((l − r + 1) ·NSm
r) +O((l − r + 1) ·mr ·NR) O((l − r + 1)2 ·mr)

Binary Template O(mr ·NS) +O((l − r + 1) ·mr ·NR) O((l − r + 1) ·mr) +O(NR)

NSMutation O(ml ·NS) +O(NR ·mr) +O(NR) O(l(NS +NR))

Moreover, for real-valued representation, euclidean distance has been the
predominant matching rule used by detector generation algorithm [19, 33]. The
detector generation scheme can be hyper-rectangle [34], hyper-sphere [35], multi-
shape [36], and convex hull [18] based on research work at rightly representing
the detectors. They gained attention due to problems that surfaced from bi-
nary representation and are deemed fit for solving real world problems. Its first
representation was in the characterization of self and nonself space using ge-
netic algorithm in evolving the detectors. These resulted into hyper-rectangles
and called detector rules [34]. Thereafter, Real Valued Negative Selection (RNS)
that uses a detector generation algorithm resting on the idea of heuristic was
proposed [35]. As with the desired goal of other detectors, they tend to maxi-
mize the coverage of the non-self space. The matching technique used was fuzzy
membership function and thus, the detectors were hyper-spheres.

Also, Gonzalez et al. [37] put forward a RandomizedRNS (RRNS) by re-
placing the heuristic method with Monte Carlo simulation method. To further
proliferate the distribution of detectors in the non-self space, simulated annealing
was employed. In multi-shaped detector generation scheme, a structured genetic
algorithm was merged with various shapes of detectors. Monte Carlo estimation
method evolves the detectors which adequately cover non-self space [36]. A vari-
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able detector method called V-detector used euclidean distance in matching and
generating detectors. It shows to be efficient in terms of the number of detectors
generated [19]. Taking advantage of pseudo-random detector generation algo-
rithmic method, [18] proposed a Convex-Hull NSA (CH-NSA) using a matching
algorithm specifying if a point is within the convex hull. It supports dissimilar
anatomy of shapes, thus no special preference for any. Number of detectors gen-
erated are significantly less, yielding good performance with regards to coverage
area.

Generally, the aim of researchers are directed towards the creation of small
number of detectors that can competently cover the non-self space. Ma et al. [38]
gave a guided rule in effectively generating detectors stated as: (1) generating
detector covering the area of shape space, and (2) generating detectors that will
be in the surrounding of the inhabitant within the shape space. Strictly adhering
to this rule will increase accuracy and performance.

7 Conclusion

The overview of the detector generation algorithm as applied within NSA has
been outlined and given light in this paper. While the algorithms have provided
researchers with varying options based on data represenation, continual inves-
tigation at improving the existing ones marches on. The matching mechanism,
integrated with the detector generation algorithm, signifies both as the major
components for negative selection algorithm. The r-contiguous bit matching rule
and euclidean distance have established themselves as the dominant forces for
both string and real-valued representation respectively. Instructions leading to
generating less number of detectors was provided, and altogether producing an
increased performance. This will spur computer scientist at trying to have the
least minimum detectors as possible. While proper recognition has been duly
accorded due to the success rate of the detector generation mechanisms of NSA,
further experimental investigations are needed at collapsing the detectors with
minimum overlap so as to optimize its overall process.
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34. Dasgupta, D., González, F.: An immunity-based technique to characterize intru-
sions in computer networks. Evolutionary Computation, IEEE Transactions on
6(3) (2002) 281–291
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