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Abstract. Metaheuristic techniques have been recently used to counter the prob-

lems like slow convergence to global minima and network stagnancy in back-

propagation neural network (BPNN) algorithm. Previously, a meta-heuristic 

search algorithm called Bat was proposed to train BPNN to achieve fast conver-

gence in the neural network. Although, Bat-BP algorithm achieved fast conver-

gence but it had a problem of oscillations in the gradient path, which can lead to 

sub-optimal solutions. In-order to remove oscillations in the BAT-BP algorithm, 

this paper proposed the addition of momentum coefficient to the weights update 

in the Bat-BP algorithm. The performance of the modified Bat-BP algorithm is 

compared with simple Bat-BP algorithm on XOR and OR datasets. The simula-

tion results show that the convergence rate to global minimum in modified Bat-

BP is highly enhanced and the oscillations are greatly reduced in the gradient 

path. 
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1 Introduction 

Back-propagation Neural Network (BPNN) is a very old optimization technique ap-

plied on the Artificial Neural Networks (ANN) to speed up the network convergence 

to global minima during training process [1-3]. BPNN follows the basic principles of 

ANN which mimics the learning ability of a human brain. Similar to ANN architecture, 

BPNN consists of an input layer, one or more hidden layers and an output layer of 

neurons. In BPNN, every node in a layer is connected to every other node in the adja-

cent layer. Unlike normal ANN architecture, BPNN learns by calculating the errors of 

the output layer to find the errors in the hidden layers [4]. This qualitative ability makes 

it highly suitable to be applied on problems in which no relationship is found between 

the output and the inputs. Due to its high rate of plasticity and learning capabilities, it 

has been successfully implemented in wide range of applications [5]. 
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Despite providing successful solutions BPNN has some limitations. Since, it uses 

gradient descent learning which requires careful selection of parameters such as net-

work topology, initial weights and biases, learning rate, activation function, and value 

for the gain in the activation function. An improper use of these parameters can lead to 

slow network convergence or even network stagnancy [5-6]. Previous researchers have 

suggested some modifications to improve the training time of the network. Some of the 

variations suggested are the use of learning rate and momentum to stop network stag-

nancy and to speed-up the network convergence to global minima. These two parame-

ters are frequently used in the control of weight adjustments along the steepest descent 

and for controlling oscillations [7].  

Besides setting network parameters in BPNN, evolutionary computation is also used 

to train the weights to avoid local minima. To overcome the weaknesses of gradient-

based techniques, many new algorithms have been proposed recently. These algorithms 

include global search techniques such as hybrid PSO-BP [8], artificial bee colony back-

propagation (ABC-BP) algorithm [9-10], evolutionary artificial neural networks algo-

rithm (EA) [11], genetic algorithms (GA) [12] and Bat based back-propagation (Bat-

BP) algorithm [13] etc. Unlike other algorithms, Bat-BP algorithm [13] shows high 

accuracy and avoids local minima. But, still some oscillations are detected in the gra-

dient trajectory. In-order to avoid extreme changes in the gradient due to local anoma-

lies [4-6], momentum coefficient is introduced in Bat-BP algorithm [13].  

In this paper, Bat-BP with momentum is compared with simple Bat-BP algorithm 

and validated on XOR and OR datasets. We find that by using an appropriate metaheu-

ristic technique such as BAT with BPNN enhanced with momentum coefficient can 

answer many limitations of gradient descent efficiently. The next two sections provide 

a brief discussion on BAT algorithm, followed by the proposed BAT-BP with momen-

tum algorithm, simulation results, and conclusions.   

2 The Bat Algorithm 

Bat is a metaheuristic optimization algorithm developed by Xin-She Yang in 2010 [14]. 

Bat algorithm is based on the echolocation behavior of microbats with varying pulse 

rates of emission and loudness. Yang [14] has idealized the following rules to model 

Bat algorithm; 

1) All bats use echolocation to sense distance, and they also “know” the differ-

ence between food/prey and back-ground barriers in some magical way. 

2) A bat fly randomly with velocity ( ) at position ( ) with a fixed frequency 

( min), varying wavelength  and loudness 0 to search for prey. They can au-

tomatically adjust the wavelength (or frequency) of their emitted pulses and 

adjust the rate of pulse emission  [0,1], depending on the proximity of their 

target. 

3) Although the loudness can vary in many ways, Yang [14] assume that the 

loudness varies from a large (positive) 0 to a minimum constant value . 
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Firstly, the initial position , velocity  and frequency  are initialized for each 

bat . For each time step , the movement of the virtual bats is given by updating their 

velocity and position using Equations 2 and 3, as follows: 
                            

                                                            (1) 

                                                       (2) 

                                                                                                            (3) 

Where  denotes a randomly generated number within the interval [0,1]. Recall that 

denotes the value of decision variable  for bat  at time step . The result of  in 

Equation 1 is used to control the pace and range of the movement of the bats. The 

variable * represents the current global best location (solution) which is located after 

comparing all the solutions among all the n bats. In order to improve the variability of 

the possible solutions, Yang [12] has employed random walks. Primarily, one solution 

is selected among the current best solutions for local search and then the random walk 

is applied in order to generate a new solution for each bat;        

       

                                                                                                      (4) 

 

Where, t stands for the average loudness of all the bats at time , and [−1,1] is a 

random number. For each iteration of the algorithm, the loudness  and the emission 

pulse rate  are updated, as follows: 

                                                      (5) 

                                                     (6) 

Where  and  are constants. At the first step of the algorithm, the emission rate,  

and the loudness,  are often randomly chosen. Generally, and 

12]. 

3 The Proposed BAT-BP Algorithm 

BAT is a population based optimization algorithm, and like other meta-heuristic algo-

rithms, it starts with a random initial population. In Bat algorithm, each virtual bat flies 

randomly with a velocity  at some position , with a varying frequency  and loud-

ness , as explained in the Section 2. As, it searches and finds its prey, it changes 

frequency, loudness and pulse emission rate . Search is intensified by a local random 

walk. Selection of the best continues until stopping criterion are met. To control the 

dynamic behavior of a swarm of bats, Bat algorithm uses a frequency-tuning technique 

and the searching and usage is controlled by changing the algorithm-dependent param-

eters [14].  
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In the proposed BAT-BP algorithm [13], each position represents a possible solution 

(i.e., the weight space and the corresponding biases for BPNN optimization in this pa-

per). The weight optimization problem and the position of a food source represent the 

quality of the solution. In the first epoch, the best weights and biases are initialized with 

BAT and then those weights are passed on to the BPNN where momentum coefficient, 

 is appended. The weights in BPNN are calculated and compared in the reverse cycle. 

In the next cycle BAT will again update the weights with the best possible solution and 

BAT will continue searching the best weights until the last cycle/ epoch of the network 

is reached or either the MSE is achieved.  

The pseudo code of the proposed Bat-BP algorithm is shown in the Figure 1: 

 
 

Step 1: BAT initializes and passes the best weights to BPNN  

Step 2: Load the training data 

Step 3: While MSE < Stopping Criteria 

Step 4: Initialize all BAT Population  

Step 5: Bat Population finds the best weight in Equation 4 and pass it on to the network, the 

weights,  and biases,  in BPNN are then adjusted using the follow-

ing formulae; 

                           

 

Step 6: Feed forward neural network runs using the weights initialized with BAT 

Step 7: Calculate the backward error 

Step 8: Bat keeps on calculating the best possible weight at each epoch until the 

Network is converged. 

End While 

Fig. 1. Pseudo code of the proposed Bat-BP algorithm  

4 Results and Discussions 

The simulations are carried-out on workstation equipped with a 2.33GHz Core-i5 pro-

cessor, 4-GB of RAM, Microsoft Windows 7 and MATLAB 2010. Three datasets such 

as 2-bit XOR, 3-Bit XOR and 4-bit OR were used. The performance of the Simple BAT 

BP [13] algorithm is analyzed and compared with the modified BAT-BP algorithm. 

Three layer back-propagation neural networks is used for testing of the models, the 

hidden layer is kept fixed to 10-nodes while output and input layers nodes vary accord-

ing to the datasets given. Log-sigmoid activation function is used as the transfer func-

tion from input layer to hidden layer and from hidden layer to the output layer. Momen-

tum coefficient of 0.03 is found to be optimal for the weight updating in modified Bat-

BP algorithm. A total of 20 trials, each trial consisting of 1000 epochs are run for each 

dataset. CPU time, average accuracy, and Mean Square Error (MSE) are recorded for 

each independent trials on XOR and OR datasets and stored in a separate file. 
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4.1 2-Bit XOR Dataset  

The first test problem is the 2 bit XOR Boolean function consisting of two binary inputs 

and a single binary output. In simulations, we used 2-10-1 network architecture for two 

bit XOR. For the simple Bat-BP and modified Bat-BP, Table 1, shows the CPU time, 

number of epochs and the MSE for the 2 bit XOR test problem. Figure 2 shows the 

‘MSE performance vs. Epochs’ of simple BAT-BP and modified Bat-BP for the 2-10-

1 network architecture. 

Table 1. CPU Time, Epochs and MSE for 2-bit XOR dataset with 2-10-1 ANN Architecture 

 

 

 

 

 

The modified Bat-BP algorithm avoids the local minima and converges on the pro-

vided network architecture successfully within 100 epochs as seen in the Table 1. The 

average CPU time is also reduced to a mere 0.44 from 2.39 CPU cycles in modified 

Bat-BP in Table 1. In Figure 2, the modified BAT-BP algorithm can be seen to con-

verge within 5 epochs and shows a smooth gradient while simple BAT-BP converges 

within 10 epochs and shows a lot of oscillations in the trajectory path.  

 

Fig. 2. (From Left to Right) Simple Bat-BP and modified Bat-BP convergence performance on 

2-bit XOR with 2-10-1 ANN Architecture 

4.2 3-Bit XOR Dataset  

In the second phase, we used 3 bit XOR dataset consisting of three inputs and a single 

binary output. For the three bit input we apply 3-10-1, network architecture. The pa-

rameter range is same as used for two bit XOR problem, for the 3-10-1 the network it 

has forty connection weights and eleven biases. For the simple Bat-BP, and modified 

Algorithms Simple BAT-BP Modified Bat-BP 

CPUTIME 2.39 0.44 

EPOCHS 23.25 7.9 

MSE 0 0 

Accuracy (%) 100 100 
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Bat-BP, Table 2 shows the CPU time, number of epochs and the MSE for the 2 bit XOR 

test problem.  

Table 2. CPU Time, Epochs and MSE for 3-bit XOR dataset with 2-10-1 ANN Architecture 

 

 

 

 

 

 

Fig. 3. (From Left to Right) Simple Bat-BP and modified Bat-BP convergence performance on 

3-bit XOR with 2-10-1 ANN Architecture 

In Table 2, modified BAT-BP algorithm can be seen converging with superior 1.68 

CPU cycles. While 1 percent improvement in average accuracy is recorded but no im-

provement in MSE is detected in modified Bat-BP, as seen in the Table 2. In Figure 3, 

we can see the simulation results ‘MSE vs. Epochs’ convergence performance for 3-bit 

XOR dataset on simple and modified Bat-BP algorithms. Oscillations in modified Bat-

BP can be seen controlled in the Figure 3. 

4.3 4-Bit OR Dataset 

The third dataset is based on the logical operator OR which indicates whether either 

operand is true. If one of the operand has a nonzero value, the result has the value 1. 

Otherwise, the result has the value 0. The network architecture used here is 4-10-1 in 

which the network has fifty connection weights and eleven biases. Table 3, illustrates 

the CPU time, epochs, and MSE performance of the simple Bat-BP, and modified Bat-

BP, algorithms respectively. Figure 4, shows the ‘MSE performance vs. Epochs’ for 

the 4-10-1 network architecture of the proposed Bat-BP algorithm. In Figure 4, we can 

see that modified Bat-BP is converging within 9 epochs which is much better than the 

22 epochs offered by simple Bat-BP. Also, it can be noted from the Table 3 that Bat-

Algorithms Simple BAT-BP Modified Bat-BP 

CPUTIME 4.05 1.68 

EPOCHS 23 25 

MSE 0.0625 0.05 

Accuracy (%) 93.69 94.99 
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BP comes with less CPU overheads and converges within 0.48 CPU cycles. Accuracy 

and the MSE was same for both algorithms, as shown in the Table 3. 

Table 3. CPU Time, Epochs and MSE for 4-bit OR dataset with 2-10-1 ANN Architecture 

 

 

 

 

 

 

Fig. 4. (From Left to Right) Simple Bat-BP and modified Bat-BP convergence performance on 

4-bit OR with 2-10-1 ANN Architecture 
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5 Conclusions 

BPNN algorithm is one of the most widely used procedure to train Artificial Neural 

Networks (ANN). But BPNN algorithm has some drawbacks, such as getting stuck in 

local minima and slow speed of convergence. Nature inspired meta-heuristic algorithms 

provide derivative-free solution to optimize complex problems. Previously, a meta-heu-

ristic search algorithm, called Bat was proposed to train BPNN to achieve fast conver-

gence rate in the neural network. Although, Bat-BP [13] algorithm achieved fast con-

vergence but it had a problem of oscillations in the gradient path, which can lead to 

Algorithms BAT-BP Modified Bat-BP 

CPUTIME 2.88 0.48 

EPOCHS 46.8 10.25 

MSE 0 0 

Accuracy (%) 100 100 
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sub-optimal solutions. In-order to remove oscillations in the BAT-BP algorithm [13] 

this paper, proposed the addition of momentum coefficient to the weights update in the 

Bat-BP algorithm. The performance of the modified Bat-BP is compared with the sim-

ple Bat-BP [13] algorithm by means of simulations on 2-bit, 3-bit XOR and 4-bit OR 

datasets. The simulation results show that the modified Bat-BP algorithm converges to 

the global minimum successfully showing a 0 MSE, less CPU cycles and 100 percent 

accuracy with almost no oscillations in the gradient descent path.  
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