
Countering the problem of oscillations in Bat-BP gradient

trajectory by using momentum

Nazri Mohd. Nawi1, M. Z. Rehman1, Abdullah Khan1

1Software and Multimedia Centre, Faculty of Computer Science and Information Technology,

Universiti Tun Hussein Onn Malaysia (UTHM).

P.O. Box 101, 86400 Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia.

nazri@uthm.edu.my, zrehman862060@gmail.com, hi100010@siswa.uthm.edu.my

Abstract. Metaheuristic techniques have been recently used to counter the prob-

lems like slow convergence to global minima and network stagnancy in back-

propagation neural network (BPNN) algorithm. Previously, a meta-heuristic

search algorithm called Bat was proposed to train BPNN to achieve fast conver-

gence in the neural network. Although, Bat-BP algorithm achieved fast conver-

gence but it had a problem of oscillations in the gradient path, which can lead to

sub-optimal solutions. In-order to remove oscillations in the BAT-BP algorithm,

this paper proposed the addition of momentum coefficient to the weights update

in the Bat-BP algorithm. The performance of the modified Bat-BP algorithm is

compared with simple Bat-BP algorithm on XOR and OR datasets. The simula-

tion results show that the convergence rate to global minimum in modified Bat-

BP is highly enhanced and the oscillations are greatly reduced in the gradient

path.

Keywords: metaheuristics, slow convergence, global minima, bat algorithm,

back-propagation neural network algorithm, Bat-BP algorithm, momentum.

1 Introduction

Back-propagation Neural Network (BPNN) is a very old optimization technique ap-

plied on the Artificial Neural Networks (ANN) to speed up the network convergence

to global minima during training process [1-3]. BPNN follows the basic principles of

ANN which mimics the learning ability of a human brain. Similar to ANN architecture,

BPNN consists of an input layer, one or more hidden layers and an output layer of

neurons. In BPNN, every node in a layer is connected to every other node in the adja-

cent layer. Unlike normal ANN architecture, BPNN learns by calculating the errors of

the output layer to find the errors in the hidden layers [4]. This qualitative ability makes

it highly suitable to be applied on problems in which no relationship is found between

the output and the inputs. Due to its high rate of plasticity and learning capabilities, it

has been successfully implemented in wide range of applications [5].

103T. Herawan et al. (eds.), Proceedings of the First International Conference
on Advanced Data and Information Engineering (DaEng-2013), Lecture Notes
in Electrical Engineering 285, DOI: 10.1007/978-981-4585-18-7_
� Springer Science+Business Media Singapore 2014

12,

Despite providing successful solutions BPNN has some limitations. Since, it uses

gradient descent learning which requires careful selection of parameters such as net-

work topology, initial weights and biases, learning rate, activation function, and value

for the gain in the activation function. An improper use of these parameters can lead to

slow network convergence or even network stagnancy [5-6]. Previous researchers have

suggested some modifications to improve the training time of the network. Some of the

variations suggested are the use of learning rate and momentum to stop network stag-

nancy and to speed-up the network convergence to global minima. These two parame-

ters are frequently used in the control of weight adjustments along the steepest descent

and for controlling oscillations [7].

Besides setting network parameters in BPNN, evolutionary computation is also used

to train the weights to avoid local minima. To overcome the weaknesses of gradient-

based techniques, many new algorithms have been proposed recently. These algorithms

include global search techniques such as hybrid PSO-BP [8], artificial bee colony back-

propagation (ABC-BP) algorithm [9-10], evolutionary artificial neural networks algo-

rithm (EA) [11], genetic algorithms (GA) [12] and Bat based back-propagation (Bat-

BP) algorithm [13] etc. Unlike other algorithms, Bat-BP algorithm [13] shows high

accuracy and avoids local minima. But, still some oscillations are detected in the gra-

dient trajectory. In-order to avoid extreme changes in the gradient due to local anoma-

lies [4-6], momentum coefficient is introduced in Bat-BP algorithm [13].

In this paper, Bat-BP with momentum is compared with simple Bat-BP algorithm

and validated on XOR and OR datasets. We find that by using an appropriate metaheu-

ristic technique such as BAT with BPNN enhanced with momentum coefficient can

answer many limitations of gradient descent efficiently. The next two sections provide

a brief discussion on BAT algorithm, followed by the proposed BAT-BP with momen-

tum algorithm, simulation results, and conclusions.

2 The Bat Algorithm

Bat is a metaheuristic optimization algorithm developed by Xin-She Yang in 2010 [14].

Bat algorithm is based on the echolocation behavior of microbats with varying pulse

rates of emission and loudness. Yang [14] has idealized the following rules to model

Bat algorithm;

1) All bats use echolocation to sense distance, and they also “know” the differ-

ence between food/prey and back-ground barriers in some magical way.

2) A bat fly randomly with velocity () at position () with a fixed frequency

(min), varying wavelength and loudness 0 to search for prey. They can au-

tomatically adjust the wavelength (or frequency) of their emitted pulses and

adjust the rate of pulse emission [0,1], depending on the proximity of their

target.

3) Although the loudness can vary in many ways, Yang [14] assume that the

loudness varies from a large (positive) 0 to a minimum constant value .

326 Pc|tk"Oqjf0"Pcyk"gv"cn

Firstly, the initial position , velocity and frequency are initialized for each

bat . For each time step , the movement of the virtual bats is given by updating their

velocity and position using Equations 2 and 3, as follows:

 (1)

 (2)

 (3)

Where denotes a randomly generated number within the interval [0,1]. Recall that

denotes the value of decision variable for bat at time step . The result of in

Equation 1 is used to control the pace and range of the movement of the bats. The

variable * represents the current global best location (solution) which is located after

comparing all the solutions among all the n bats. In order to improve the variability of

the possible solutions, Yang [12] has employed random walks. Primarily, one solution

is selected among the current best solutions for local search and then the random walk

is applied in order to generate a new solution for each bat;

 (4)

Where, t stands for the average loudness of all the bats at time , and [−1,1] is a

random number. For each iteration of the algorithm, the loudness and the emission

pulse rate are updated, as follows:

 (5)

 (6)

Where and are constants. At the first step of the algorithm, the emission rate,

and the loudness, are often randomly chosen. Generally, and

12].

3 The Proposed BAT-BP Algorithm

BAT is a population based optimization algorithm, and like other meta-heuristic algo-

rithms, it starts with a random initial population. In Bat algorithm, each virtual bat flies

randomly with a velocity at some position , with a varying frequency and loud-

ness , as explained in the Section 2. As, it searches and finds its prey, it changes

frequency, loudness and pulse emission rate . Search is intensified by a local random

walk. Selection of the best continues until stopping criterion are met. To control the

dynamic behavior of a swarm of bats, Bat algorithm uses a frequency-tuning technique

and the searching and usage is controlled by changing the algorithm-dependent param-

eters [14].

Eqwpvgtkpi"vjg"Rtqdngo"qh"Queknncvkqpu"kp"Dcv/DR 327

In the proposed BAT-BP algorithm [13], each position represents a possible solution

(i.e., the weight space and the corresponding biases for BPNN optimization in this pa-

per). The weight optimization problem and the position of a food source represent the

quality of the solution. In the first epoch, the best weights and biases are initialized with

BAT and then those weights are passed on to the BPNN where momentum coefficient,

 is appended. The weights in BPNN are calculated and compared in the reverse cycle.

In the next cycle BAT will again update the weights with the best possible solution and

BAT will continue searching the best weights until the last cycle/ epoch of the network

is reached or either the MSE is achieved.

The pseudo code of the proposed Bat-BP algorithm is shown in the Figure 1:

Step 1: BAT initializes and passes the best weights to BPNN

Step 2: Load the training data

Step 3: While MSE < Stopping Criteria

Step 4: Initialize all BAT Population

Step 5: Bat Population finds the best weight in Equation 4 and pass it on to the network, the

weights, and biases, in BPNN are then adjusted using the follow-

ing formulae;

Step 6: Feed forward neural network runs using the weights initialized with BAT

Step 7: Calculate the backward error

Step 8: Bat keeps on calculating the best possible weight at each epoch until the

Network is converged.

End While

Fig. 1. Pseudo code of the proposed Bat-BP algorithm

4 Results and Discussions

The simulations are carried-out on workstation equipped with a 2.33GHz Core-i5 pro-

cessor, 4-GB of RAM, Microsoft Windows 7 and MATLAB 2010. Three datasets such

as 2-bit XOR, 3-Bit XOR and 4-bit OR were used. The performance of the Simple BAT

BP [13] algorithm is analyzed and compared with the modified BAT-BP algorithm.

Three layer back-propagation neural networks is used for testing of the models, the

hidden layer is kept fixed to 10-nodes while output and input layers nodes vary accord-

ing to the datasets given. Log-sigmoid activation function is used as the transfer func-

tion from input layer to hidden layer and from hidden layer to the output layer. Momen-

tum coefficient of 0.03 is found to be optimal for the weight updating in modified Bat-

BP algorithm. A total of 20 trials, each trial consisting of 1000 epochs are run for each

dataset. CPU time, average accuracy, and Mean Square Error (MSE) are recorded for

each independent trials on XOR and OR datasets and stored in a separate file.

328 Pc|tk"Oqjf0"Pcyk"gv"cn

4.1 2-Bit XOR Dataset

The first test problem is the 2 bit XOR Boolean function consisting of two binary inputs

and a single binary output. In simulations, we used 2-10-1 network architecture for two

bit XOR. For the simple Bat-BP and modified Bat-BP, Table 1, shows the CPU time,

number of epochs and the MSE for the 2 bit XOR test problem. Figure 2 shows the

‘MSE performance vs. Epochs’ of simple BAT-BP and modified Bat-BP for the 2-10-

1 network architecture.

Table 1. CPU Time, Epochs and MSE for 2-bit XOR dataset with 2-10-1 ANN Architecture

The modified Bat-BP algorithm avoids the local minima and converges on the pro-

vided network architecture successfully within 100 epochs as seen in the Table 1. The

average CPU time is also reduced to a mere 0.44 from 2.39 CPU cycles in modified

Bat-BP in Table 1. In Figure 2, the modified BAT-BP algorithm can be seen to con-

verge within 5 epochs and shows a smooth gradient while simple BAT-BP converges

within 10 epochs and shows a lot of oscillations in the trajectory path.

Fig. 2. (From Left to Right) Simple Bat-BP and modified Bat-BP convergence performance on

2-bit XOR with 2-10-1 ANN Architecture

4.2 3-Bit XOR Dataset

In the second phase, we used 3 bit XOR dataset consisting of three inputs and a single

binary output. For the three bit input we apply 3-10-1, network architecture. The pa-

rameter range is same as used for two bit XOR problem, for the 3-10-1 the network it

has forty connection weights and eleven biases. For the simple Bat-BP, and modified

Algorithms Simple BAT-BP Modified Bat-BP

CPUTIME 2.39 0.44

EPOCHS 23.25 7.9

MSE 0 0

Accuracy (%) 100 100

Eqwpvgtkpi"vjg"Rtqdngo"qh"Queknncvkqpu"kp"Dcv/DR 329

Bat-BP, Table 2 shows the CPU time, number of epochs and the MSE for the 2 bit XOR

test problem.

Table 2. CPU Time, Epochs and MSE for 3-bit XOR dataset with 2-10-1 ANN Architecture

Fig. 3. (From Left to Right) Simple Bat-BP and modified Bat-BP convergence performance on

3-bit XOR with 2-10-1 ANN Architecture

In Table 2, modified BAT-BP algorithm can be seen converging with superior 1.68

CPU cycles. While 1 percent improvement in average accuracy is recorded but no im-

provement in MSE is detected in modified Bat-BP, as seen in the Table 2. In Figure 3,

we can see the simulation results ‘MSE vs. Epochs’ convergence performance for 3-bit

XOR dataset on simple and modified Bat-BP algorithms. Oscillations in modified Bat-

BP can be seen controlled in the Figure 3.

4.3 4-Bit OR Dataset

The third dataset is based on the logical operator OR which indicates whether either

operand is true. If one of the operand has a nonzero value, the result has the value 1.

Otherwise, the result has the value 0. The network architecture used here is 4-10-1 in

which the network has fifty connection weights and eleven biases. Table 3, illustrates

the CPU time, epochs, and MSE performance of the simple Bat-BP, and modified Bat-

BP, algorithms respectively. Figure 4, shows the ‘MSE performance vs. Epochs’ for

the 4-10-1 network architecture of the proposed Bat-BP algorithm. In Figure 4, we can

see that modified Bat-BP is converging within 9 epochs which is much better than the

22 epochs offered by simple Bat-BP. Also, it can be noted from the Table 3 that Bat-

Algorithms Simple BAT-BP Modified Bat-BP

CPUTIME 4.05 1.68

EPOCHS 23 25

MSE 0.0625 0.05

Accuracy (%) 93.69 94.99

32: Pc|tk"Oqjf0"Pcyk"gv"cn

BP comes with less CPU overheads and converges within 0.48 CPU cycles. Accuracy

and the MSE was same for both algorithms, as shown in the Table 3.

Table 3. CPU Time, Epochs and MSE for 4-bit OR dataset with 2-10-1 ANN Architecture

Fig. 4. (From Left to Right) Simple Bat-BP and modified Bat-BP convergence performance on

4-bit OR with 2-10-1 ANN Architecture

ACKNOWLEDGEMENTS

The Authors would like to Thank Office of Research, Innovation, Commercialization

and Consultancy Office (ORICC), Universiti Tun Hussein Onn Malaysia (UTHM) and

Ministry of Higher Education (MOHE) Malaysia for financially supporting this Re-

search under Fundamental Research Grant Scheme (FRGS) vote no. 1236.

5 Conclusions

BPNN algorithm is one of the most widely used procedure to train Artificial Neural

Networks (ANN). But BPNN algorithm has some drawbacks, such as getting stuck in

local minima and slow speed of convergence. Nature inspired meta-heuristic algorithms

provide derivative-free solution to optimize complex problems. Previously, a meta-heu-

ristic search algorithm, called Bat was proposed to train BPNN to achieve fast conver-

gence rate in the neural network. Although, Bat-BP [13] algorithm achieved fast con-

vergence but it had a problem of oscillations in the gradient path, which can lead to

Algorithms BAT-BP Modified Bat-BP

CPUTIME 2.88 0.48

EPOCHS 46.8 10.25

MSE 0 0

Accuracy (%) 100 100

Eqwpvgtkpi"vjg"Rtqdngo"qh"Queknncvkqpu"kp"Dcv/DR 32;

sub-optimal solutions. In-order to remove oscillations in the BAT-BP algorithm [13]

this paper, proposed the addition of momentum coefficient to the weights update in the

Bat-BP algorithm. The performance of the modified Bat-BP is compared with the sim-

ple Bat-BP [13] algorithm by means of simulations on 2-bit, 3-bit XOR and 4-bit OR

datasets. The simulation results show that the modified Bat-BP algorithm converges to

the global minimum successfully showing a 0 MSE, less CPU cycles and 100 percent

accuracy with almost no oscillations in the gradient descent path.

References

1. Deng, W. J., Chen, W. C., and Pei, W.: Back-propagation neural network based importance-

performance analysis for determining critical service attributes, J. Expert Systems with Ap-

plications, vol. 34 (2). 2008

2. Kosko, B.: Neural Network and Fuzzy Systems, 1st Edition, Prentice Hall, India. (1992)

3. Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning Internal Representations by

error Propagation, J. Parallel Distributed Processing: Explorations in the Microstructure of

Cognition. (1986)

4. Rehman, M.Z., Nawi, N. M., and Ghazali, R.: Studying the effect of adaptive momentum in

improving the accuracy of gradient descent back propagation algorithm on classification

problems, J. International Journal of Modern Physics (IJMPCS), vol.1 (1). (2012)

5. Nawi, N. M., Ransing, M. R., and Ransing, R. S.: An improved Conjugate Gradient based

learning algorithm for back propagation neural networks, J. Computational Intelligence, vol.

4. (2007)

6. Nawi, N. M., Rehman, M. Z., and Ghazali, M. I.: Noise-Induced Hearing Loss Prediction in

Malaysian Industrial Workers using Gradient Descent with Adaptive Momentum Algorithm,

J.International Review on Computers and Software (IRECOS), vol. 6 (5). (2011)

7. Lee, K., Booth, D., and Alam, P. A.: Comparison of Supervised and Unsupervised Neural

Networks in Predicting Bankruptcy of Korean Firms, J. Expert Systems with Applications,

vol. 29. (2005)

8. Mendes, R., Cortez, P., Rocha, M., and Neves, J.: Particle swarm for feed forward neural

network training. In: Proceedings of the International Joint Conference on Neural Networks,

vol. 2, pp. 1895--1899. (2002)

9. Nandy, S., Sarkar, P. P., and Das, A.: Training a Feed-forward Neural Network with Artifi-

cial Bee Colony Based Backpropagation Method, J. International Journal of Computer Sci-

ence & Information Technology (IJCSIT), vol. 4 (4), pp. 33--46. (2012)

10. Karaboga, D., Akay, B., and Ozturk, C.: Artificial Bee Colony (ABC) Optimization Algo-

rithm for Training Feed-Forward Neural Networks, In: 4th International Conference on

Modeling Decisions for Artificial Intelligence (MDAI 2007), Kitakyushu, Japan, August 16-

18. (2007)

11. Yao, X.: Evolutionary artificial neural networks, J. International Journal of Neural Systems,

vol. 4(3), pp. 203--222. (1993)

12. Montana, D. J., & Davis, L.: Training feedforward neural networks using genetic algorithms,

In: Proceedings of the eleventh international joint conference on artificial Intelligence, vol.

1, pp. 762--767. (1989)

13. Nawi, N. M., Rehman, M. Z., and Khan, A.: A New Bat-Based Back-propagation (BAT-

BP) Algorithm, In: ICSS 2013, Wrocław, Poland, September 10-12. (2013)

14. Yang, X. S.: A new metaheuristic bat-inspired algorithm, In: Nature Inspired Cooperative

Strategies for Optimization (NICSO 2010), pp. 65--74. (2010)

332 Pc|tk"Oqjf0"Pcyk"gv"cn

	Countering the problem of oscillations in Bat-BP gradient trajectory by using momentum
	1 Introduction
	2 The Bat Algorithm
	3 The Proposed BAT-BP Algorithm
	4 Results and Discussions
	4.1 2-Bit XOR Dataset
	4.2 3-Bit XOR Dataset
	4.3 4-Bit OR Dataset

	ACKNOWLEDGEMENTS
	5 Conclusions
	References

