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Abstract
A complete description of the near-field antenna measurement techniques is
provided in this chapter. After a discussion of the state of the art, the key steps
of the classical near-field–far-field (NF-FF) transformations with plane-
rectangular, cylindrical, and spherical scannings, in their probe-uncompensated
and probe-compensated versions, are summarized, by also providing some ana-
lytical details on the wave expansions commonly adopted to represent the antenna
radiated field. The nonredundant sampling representations of electromagnetic
field are then introduced and applied to drastically reduce the number of required
NF data and related measurement time with respect to the classical NF-FF
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transformations. At last, the NF-FF transformations with innovative spiral scan-
nings, allowing a further measurement time saving, are described.

Keywords
Antenna measurements • Near-field – far-field transformation techniques • Plane
wave expansion • Cylindrical wave expansion • Spherical wave expansion •
Probe compensation •Nonredundant sampling representations of electromagnetic
fields • Spiral scannings

Introduction

When dealing with electrically large antennas, far-field (FF) range size limitations,
transportation, and mounting problems make it absolutely impractical or impossible
to measure their radiation patterns on a conventional FF range. On the other hand,
the increasing use of high-performance antennas, as those employed in radar and
satellite systems, requires an accurate measure of their radiating characteristics. For
instance, satellite antennas are designed to transmit or receive over long distances,
and accordingly the requirements to beam pointing may be severe; thus a high
measurement accuracy is mandatory to verify that the antenna fulfills all the spec-
ifications. As a consequence, the problem of the determination of the antenna FF
pattern from near-field (NF) measurements has attracted considerable attention in the
last 50 years (Appel-Hansen et al. 1982; Yaghjian 1986; Gillespie 1988; Hald
et al. 1988; Gennarelli et al. 2004; Gregson et al. 2007; Francis and Wittmann
2008; Gennarelli et al. 2012; Francis 2012).

NF measurements may be performed in a controlled environment, as an indoor
shielded anechoic chamber, which allows one to overcome those drawbacks that,
due to weather conditions (rain, snow, etc.), electromagnetic (EM) interference, and
other, cannot be eliminated in FF measurements. In addition, NF scanning tech-
niques are the better choice when complete pattern and polarization measurements
are required. Moreover, they provide the necessary information to determine the field
at the surface of the antenna. Such an information can be properly employed for the
diagnostics of surface errors in a reflector antenna or of faulty elements in an array
(microwave holographic diagnostics (Yaccarino et al. 1994)).

Another advantage of NF measurements stems from the fact that the reflected
signal will be weaker than in a FF measurement facility because it is transmitted and
received through far-out sidelobes. Moreover, the absorbers will work more effi-
ciently than in a FF range, where they are employed close to the grazing incidence
condition.

It is the authors’ opinion that a comprehensive chapter on the NF-FF transfor-
mation techniques cannot begin without a preliminary discussion which highlights
the field behavior when the distance from the antenna increases. The free space
surrounding an antenna is usually subdivided into three regions: the reactive near-
field, the radiating near-field, and the far-field region (see Fig. 1). Although no abrupt
change in the field behavior can be observed when their boundaries are crossed, the
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field configuration is quite different in them. For an antenna focused at infinity, the
optical term Fraunhofer region can be used synonymously with far-field region. For
such an antenna, the optical term Fresnel region can be also employed to denote a
subregion of the radiating near-field zone. The reactive near-field region is the zone
immediately surrounding the antenna wherein the reactive field predominates. It
extends up to a distance of about λ/2π from the antenna surface, λ being the
wavelength. However, experience with NF measurements indicates that λ is a
more reasonable limiting distance for such a region. Outside this zone the reactive
field decays rapidly and can be neglected at a distance of a few wavelengths from the
antenna surface. The radiating near-field region is the intermediate zone between the
reactive near-field and the far-field regions. In such a region the radiation fields
predominate, but the angular distribution of the field is dependent on the distance
from the antenna, and the field does not exhibit the dependence e�jβr=r typical of the
antenna far field, β being the wavenumber. It is worthy to note that a time depen-
dence ejωt has been implicitly assumed. It will be assumed and suppressed through-
out the chapter. The Fresnel region is the radiating near-field subregion wherein a
quadratic phase approximation can be used in the vector potential integral. The
far-field region is the zone of the free space where the relative angular field
distribution is independent of the distance from the antenna and the electric and
magnetic fields vary according to the e�jβr=r dependence. Commonly, for electrically
large antennas, the inner boundaries of the Fraunhofer and Fresnel regions are set at

2D2/λ and 0:62
ffiffiffiffiffiffiffiffiffiffi
D3=λ

p
, respectively, where D is the maximum dimension of the

antenna. These boundaries are determined by assuming acceptable a maximum
phase error of π/8, when a linear or quadratic phase approximation is used in the
expression of the vector potential integral.

Fig. 1 Field regions of an electrically large antenna
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It has been recognized that distance requirements depend both on first sidelobe
level of the antenna and on the desired accuracy (Silver 1984; Hollis et al. 1972). The
widely used Rayleigh 2D2/λ distance criterion gives rise to negligible pattern errors
only for antennas with moderate sidelobe level (�25 dB). When measuring antennas
having low (�30 to �40 dB) and ultralow (below �40 dB) sidelobe levels, a
distance far larger than 2D2/λ is needed (Hansen 1984; Corona et al. 1989). As
shown in Fig. 2, particularly for antennas having low sidelobes, a significant increase
in the sidelobe level and a more considerable raising of the null between it and the
main lobe occur. As a conclusion, the distance requirements for measuring in a FF
range the near-in sidelobes, which are below�30 dB, are very severe (Hansen 1984;
Corona et al. 1989). For example, a distance of at least 6D2/λ is required to measure,
within a 1 dB accuracy, the first sidelobe of a Taylor antenna with sidelobe ratio
(SLR) = 50 dB.
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Fig. 2 Pattern behavior
referred to the normalized
distance γ = r/(2D2/λ): (a) for
a circular aperture with f (ρ) =
(1 � ρ2), (b) for a circular
Taylor aperture distribution
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Usually, the NF antenna characterization can exploit complex field data or
phaseless field data, the first choice being the most commonly used in practice.

In a NF facility processing complex field data, the probe, located near the antenna
under test (AUT), is moved through a surface (scanning surface) which can be
planar, cylindrical, or spherical (see Fig. 3). It collects complex voltage samples
which are stored together with their positions. From these amplitude and phase data,
measured for two different orientations of the probe (the probe is rotated by 90� around

Fig. 3 NF measurement system: cylindrical scanning
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its axis in the second set), and taking into account the probe effects, one can compute
the antenna FF pattern. It is worth noting that both the copolar and cross-polar
components of the antenna far field can be recovered. Moreover, during the NF data
acquisition, no information on the AUT polarization is needed. Nevertheless, such
an information can be accurately determined by properly processing the
reconstructed far field. The probe and its mounting structure should introduce
minimum disturbance into the field to be measured, and its characteristics must be
stable with time, environmental conditions, and orientations (Francis 2012). Com-
monly, the measured NF data are transformed into FF patterns by using an expansion
of the AUT field in terms of modes, namely, a complete set of solutions of the vector
wave equation in the region outside the antenna. Plane, cylindrical, or spherical
waves are generally used. The type of modal expansion employed for representing
the field determines the kind of the NF scanning surface, which accordingly will be a
plane, a cylinder, or a sphere. The orthogonality properties of the modes on such
surfaces are then exploited to obtain the modal expansion coefficients, which allow
the reconstruction of the AUT far field. The development and the spreading of NF-
FF transformation techniques employing planar, cylindrical, or spherical scanning
systems is justified from the fact that each approach has its own particular advan-
tages, depending on the AUT and the measurement requirements. The complexity of
the analytical transformation increases from the planar to the cylindrical and from the
cylindrical to the spherical surfaces.

The NF-FF transformations using a planar scanning are the most simple and
efficient ones from the analytical and computational viewpoint. Their main disad-
vantage is that the pattern can be reconstructed only in a cone with an apex angle less
than 180� without repeating the measurements. Accordingly, they are particularly
suitable for highly directive antennas which radiate pencil beam patterns. There are
quite different ways to realize a planar scanning: plane-rectangular (Kerns 1970,
1981; Joy and Paris 1972; Paris et al. 1978; Joy et al. 1978) (see Fig. 4), plane-polar
(Rahmat-Samii et al. 1980; Gatti and Rahmat-Samii 1988; Yaghjian and Woodworth
1996; Bucci et al. 1991a, 1998a, 2000; Fig. 5), and bipolar (Yaccarino et al. 1994;
Williams et al. 1994; D’Agostino et al. 2003; Fig. 6).

At the cost of a modest increase in the analytical and computational complication
with respect to the planar scannings, the NF-FF transformation with cylindrical
scanning (Joy et al. 1978; Leach and Paris 1973; Yaghjian 1977; Appel-Hansen
1980; Bucci et al. 1998b; D’Agostino et al. 2002, 2012a; Qureshi et al. 2013) (see
Fig. 7) allows one to reconstruct, from a single set of NF measurements, the AUT
complete radiation pattern save for the zones surrounding the spherical polar angles.
Such a scanning is particularly attractive when considering antennas that concentrate
the EM radiation in an angular region centered on the horizontal plane, as the
radiating systems for radio base stations.

The NF-FF transformation with spherical scanning (Hald et al. 1988; Qureshi
et al. 2013; Wacker 1975; Larsen 1980; Yaghjian and Wittmann 1985; Hansen 2011;
Bucci et al. 2001a; D’Agostino et al. 2011, 2013a) (see Fig. 8) allows one to
reconstruct, from a single set of NF measurements, the complete radiation pattern
of the AUT. However, the data processing to get the far field is considerably more
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complicated than that needed by planar and cylindrical facilities. The NF spherical
scanning is, obviously, particularly tailored to measure low-gain and omnidirectional
antennas.

In recent years, NF-FF transformations techniques based on the reconstruction of
a proper set of equivalent currents have been developed (Petre and Sarkar 1992;
Taaghol and Sarkar 1996; Sarkar and Taaghol 1999; Las-Heras and Sarkar 2002;
Las-Heras et al. 2006; Alvarez et al. 2008). These (unknown) equivalent currents,
lying on a selected surface enclosing the antenna, are evaluated by solving a set of
integral equations relating them to the NF data acquired on the scanning surface.
Once these equivalent currents have been determined, according to Love’s equiva-
lence theorem, it is possible to obtain the field at any point outside the equivalent
source domain and, then, to evaluate the FF pattern. Unlike the NF-FF transforma-
tions using the modal expansion approach, they do not require the use of canonical

Fig. 4 Plane-rectangular
scanning

Fig. 5 Plane-polar scanning
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scanning surfaces (plane, cylinder, sphere) but can be applied to an arbitrary
measurement surface. On the other hand, their main drawback is the remarkably
increased computational cost. As a matter of fact, the solution of a system equation
(eventually ill-conditioned) with several thousands of unknowns is usually required.
It is worthy to note that, for these NF-FF transformations too, it is possible to correct
the distortion due to the nonisotropic radiation pattern of the employed probe. The
probe correction is obtained by considering the antenna pattern of the probe as a

Fig. 7 Cylindrical scanning

δ

α

Fig. 6 Bipolar scanning
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weighting function in the integral equations relating the fields and the equivalent
sources (Alvarez et al. 2008).

As already stressed, near-field techniques usually require the measurement of
both the amplitude and phase of the antenna near field. Nevertheless, phaseless NF
measurements have recently attracted a considerable interest, due to the less expen-
sive measurement facilities required and to the increasing difficulty to perform
accurate phase measurements in the millimeter and submillimeter frequency range.
Over the years, several techniques have been proposed to determine the antenna far
field from only amplitude NF measurements. A first possibility is the use of
interferometric techniques (Bennett et al. 1976), which require an additional refer-
ence antenna whose transmitted signal, interfering with that transmitted by the AUT,
allows to recover the lacking phase information. Other approaches exploit the
functional relationship existing between two sets of only amplitude NF data col-
lected by a probe on two scanning surfaces (Bucci et al. 1990, 1999; Isernia
et al. 1996; Yaccarino and Rahmat-Samii 1999) or by two probes on the same
scanning surface (Pierri et al. 1999) to retrieve the phase. A basically interferometric
approach, avoiding the use of a reference antenna and using two identical probes and
a simple microstrip circuit, has been also proposed to retrieve the phase information
(Costanzo and Di Massa 2002; Costanzo et al. 2005).

Each member of the antenna measurement techniques community can profit
today by about 50 years of research activity on NF data acquisition and related
NF-FF transformations. Over these years, many solutions have been proposed to
meet the demands of the various applications. In this framework, significant
improvements in the performance of NF measurements have been recently achieved.
They are based on the spatial band limitation properties of radiated EM fields

ϑ ϕ

Fig. 8 Spherical scanning
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(Bucci and Franceschetti 1987, 1989), on their nonredundant sampling representa-
tions (Bucci et al. 1998c; Bucci and Gennarelli 2012), and on the optimal sampling
interpolation (OSI) expansions of central type (Bucci et al. 1991a, b; Gennarelli
et al. 1994). In particular, a significant reduction of the number of required NF data
(and, as a consequence, of the corresponding measurement time) has been obtained
for all the conventional scannings (see (Bucci et al. 1991a, 1998a, 2000) for the
plane-polar, (D’Agostino et al. 2003) for the bipolar, (Bucci et al. 1998b;
D’Agostino et al. 2002, 2012a) for the cylindrical, and (Bucci et al. 2001a;
D’Agostino et al. 2011, 2013a) for the spherical scanning). In fact, the NF data
needed by the corresponding traditional NF-FF transformation technique are accu-
rately recovered by interpolating a minimum set of measurements via OSI expan-
sions. A remarkable measurement time saving can be so obtained making these
nonredundant transformations more and more appealing, since nowadays such a
time is very much greater than the computational one. The mathematical justification
for these results relies on the abovementioned band limitation properties and
nonredundant sampling representations of EM fields. In fact, the EM fields radiated
by antennas, enclosed in a convex domain bounded by a rotational surface Σ and
observed on surface M with the same rotational symmetry, can be very well
approximated by spatially band-limited functions when a proper phase factor is
singled out from the field expression and proper parameterizations are used to
describe M (Bucci et al. 1998c). Since the voltage acquired by a nondirective
probe has the same effective spatial bandwidth of the AUT field, these representa-
tions can be, obviously, applied to the voltage too. The application of these
nonredundant sampling representations has allowed also the development of an
innovative and efficient planar NF-FF transformation using the planar wide-mesh
scanning (PWMS) (Ferrara et al. 2007; D’Agostino et al. 2014a). Such a
nonconventional plane-rectangular scanning technique is so named, since the sample
grid is characterized by meshes wider and wider when going away from the center of
the scanning region (see Fig. 9).

The use of the modulated scattering technique employing arrays of scattering
probes, which allows a very fast electronic scanning, has been also proposed in
(Bolomey et al. 1988) to reduce the time required for the acquisition of the NF data.
However, apart from measurement precision issues, antenna testing facilities based
on such a technique are not very flexible. Anyway, exploitation of the nonredundant
sampling representations could allow to reduce the number of needed probes.

A more viable way to reduce the time required for the NF data acquisition is the
employment of innovative spiral scanning techniques. They have been implemented,
as suggested in (Yaccarino et al. 1996), by means of continuous and synchronized
movements of the positioning systems of the probe and AUT. Accurate, stable, and
efficient NF-FF transformations with helicoidal (Bucci et al. 2001b; D’Agostino
et al. 2008a, 2009a, b, 2012b) (see Fig. 10), planar (Bucci et al. 2002; D’Agostino
et al. 2008b; Fig. 11), and spherical (Bucci et al. 2003; D’Agostino et al. 2009c,
2012c, 2013b, 2014b; Fig. 12) spiral scanning have been developed in the last years.
They rely on nonredundant sampling representations and reconstruct the NF data
needed by the classical NF-FF transformation corresponding to the adopted scanning
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Fig. 10 Helicoidal scanning

Fig. 9 Planar wide-mesh
scanning
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surface, by interpolating, via appropriate OSI formulas, the nonredundant samples
acquired by the measurement probe on the considered curve (helix or spiral). Other
NF-FF transformation techniques with spiral scannings have been also proposed
(Yaccarino et al. 1996; Costanzo and Di Massa 2004, 2007). However, since these
approaches do not exploit the nonredundant representations of EM fields, they need
a useless large amount of NF measurements.

The chapter is organized as follows. The classical NF-FF transformations with
plane-rectangular, cylindrical, and spherical scannings, in their probe-
uncompensated and probe-compensated versions, are summarized in section “Clas-
sical NF-FF Transformation Techniques.” The nonredundant sampling

Fig. 11 Planar spiral
scanning

Fig. 12 Spherical spiral
scanning
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representations of the electromagnetic fields are introduced in section
“Nonredundant NF-FF Transformation Techniques,” highlighting the role of the
optimal parameterization and phase factor. In the same section, the application of
these representations to the NF-FF transformations with conventional scannings,
allowing a drastic measurement time saving, is also described. The theoretical
foundations of the NF-FF transformations with spiral scanning for both
quasispherical antennas (D’Agostino et al. 2006, 2009d) and those having two
dimensions very different from the third one (D’Agostino et al. 2009e; Cicchetti
et al. 2014) are presented in the subsequent section “NF-FF Transformation Techniques
with Spiral Scannings” by providing an efficient sampling representation, which allows
the reconstruction of the EM field (probe voltage) on a quite arbitrary rotational surface
from a nonredundant number of its samples collected on a spiral wrapping it.

Classical NF-FF Transformation Techniques

NF-FF Transformation with Plane-Rectangular Scanning

The NF-FF transformation with plane-rectangular scanning (see Fig. 4) is without
doubt the most simple and efficient one from the analytical and computational
viewpoints. Its main drawback is that the antenna far field can be reconstructed
only in a cone with an apex angle less than 180�. Therefore, it can be conveniently
employed for highly directive antennas which radiate pencil beam patterns well
within the solid angle specified by the edges of the AUT and those of the scanning
area. In the plane-rectangular scanning, the probe is mounted on a x� y positioner so
that it can acquire the NF amplitude and phase data on the wanted plane-rectangular
grid. From these data, measured for two different orientations of the probe, one can
compute the FF pattern of the AUT (Kerns 1970, 1981; Joy and Paris 1972; Paris
et al. 1978; Joy et al. 1978).

In the first part of this subsection, the use of an ideal probe able to measure in its
two orientations the tangential components Ex, Ey of the AUT electric field on the
scanning plane is assumed and NF-FF transformation formulas derived. Then, such a
hypothesis is removed and probe-corrected formulas given.

The starting point is the plane wave spectrum representation of EM fields
(Clemmow 1966), summarized in the paragraph “Plane Wave Expansion” for
readers’ convenience. As shown in it, the tangential components Ex, Ey of the electric
field radiated by the AUT can be represented on the scan plane at z = d as a
superposition of elementary plane waves, i.e.,

Ex, y x, y, dð Þ ¼
ðþ1

�1

ðþ1

�1
Ex, y kx, ky

� �
e�j kzd

� �
e�j kxxþkyyð Þdkxdky (1)
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By Fourier inverse transforming, it results

Ex, y kx, ky
� � ¼ 1

4π2
ejkzd

ðþ1

�1

ðþ1

�1
Ex, y x, y, dð Þej kxxþkyyð Þdxdy (2)

Accordingly, by assuming that the tangential components of the electric field are
zero out of the measurement region on the scanning plane, it is possible to obtain the
x and y components of the plane wave spectrum by a two-dimensional fast Fourier
transform (FFT) algorithm. The other component of the spectrum can be determined
by means of Eq. 75.

As shown in (Joy and Paris 1972), the sample spacings of the NF data are

Δx � λ=2; Δy � λ=2 (3)

In fact, if the scanning plane is located in a region of space where the EM field does
not contain evanescent waves, then the plane wave spectrum is zero for kxj j > 2π=λ
and ky

�� �� > 2π=λ . As a consequence of the two-dimensional Nyquist sampling
theorem (Papoulis 1987), the EM field on the plane z = d can be reconstructed
from the knowledge of its samples at a rectangular lattice of points separated by grid
spacings satisfying Eq. 3.

Once the plane wave spectrum has been determined, the FF components of the
electric field in the spherical coordinate system (r, ϑ, φ) can be evaluated (see
paragraph “Plane Wave Expansion”) by using the relations

Eϑ r,ϑ,φð Þ ¼ j2πβ cos ϑEϑ βsin ϑ cosφ, β sinϑ sinφð Þ e
�jβr

r
(4)

Eφ r,ϑ,φð Þ ¼ j2πβ cos ϑEφ βsin ϑ cosφ, β sinϑ sinφð Þ e
�jβr

r
(5)

where Eϑ, Eφ are related to Ex and Ey by

Eφ ¼ �Ex sinφþ Ey cosφ (6)

Eϑ ¼ Ex cosφþ Ey sinφ
� �

= cos ϑ (7)

As a matter of fact,

Eϑ ¼ Ex cos ϑ cosφþ Ey cos ϑ sinφ� Ez sin ϑ

from which, by taking into account Eq. 75, Eq. 7 is easily obtained.
It is convenient to describe the employment of the FFT algorithm for computing

the two-dimensional Fourier transforms in Eq. 2 from the knowledge of the acquired
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NF data. It can be useful to remember (Brigham 1974) that the discrete Fourier
transform (DFT) is defined by

G
n

NT

� 	
¼
XN�1

i¼0

g iTð Þe�j2πni=N n ¼ 0, 1, . . . ,N � 1 (8)

whereas the inverse discrete Fourier transform (IDFT) is given by

g iTð Þ ¼ 1

N

XN�1

n¼0

G
n

NT

� 	
e j2πni=N i ¼ 0, 1, . . . ,N � 1 (9)

As well known, Eqs. 8 and 9 can be efficiently computed via the FFT algorithm.
Moreover, they require both the functions to be periodic, namely,

G
nþ pN

NT


 �
¼ G

n

NT

� 	
p ¼ 0, � 1, � 2, . . . (10)

g iþ pNð ÞT½ � ¼ g iTð Þ p ¼ 0, � 1, � 2, . . . (11)

The integration along x in Eq. 2 is now considered. By taking into account
explicitly the truncation due to the finite size 2Lx � 2Ly of the scanning plane and
applying a straightforward approximation, it results

G kxð Þ ¼
ðLx

�Lx

g xð Þejkxxdx � Δx
XNx�1

n¼0

g xnð Þejkx n�Nx=2ð ÞΔx (12)

where xn = (n � Nx/2)Δx, Nx = 2Lx/Δx is the number of the measurement points
along x (the overall number of measurement points is NxNy). When evaluating G(kx)
at kxi ¼ iΔkx ¼ 2πi= NxΔxð Þ, it results

G kxið Þ � 2Lx
Nx

e�jπi
XNx�1

n¼0

g xnð Þej2πni=Nx (13)

Accordingly, the integration over x in Eq. 2 can be efficiently performed via an
inverse FFT algorithm, provided that the so obtained results are multiplied by the
factor 2Lxe�jπi. The same considerations can be, obviously, applied to the integration
over y.

Summing up, for the evaluation of each of the Cartesian components Ex and Ey of
the spectrum are needed Ny one-dimensional FFTs of size Nx and Nx FFTs of size Ny.
This allows to obtain the FF components at the values of kx and ky given by kxi ¼ 2
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πi= NxΔxð Þ and kyp ¼ 2πp= NyΔy
� �

. Note that the kx and ky vales such that k2x þ k2y
> β2must not be considered since the corresponding plane waves (called evanescent
waves) do not contribute to the far field and represent NF reactive power storage.

To obtain the FF components with a greater resolution, it is sufficient “zero-
filling” the NF data. Namely, to increase the number of output kx values from Nx to
Nx

0, the NF data must be increased with a proper number of zeros corresponding to
fictitious N0

x � Nx

� �
=2 measurement points both before and after the effective ones.

Similarly, to increase the number of output ky values from Ny to Ny
0 , N0

y � Ny

� 	
=2

zeros must be added before and after the measured ones.
Since the measurement region is truncated in the plane-rectangular scanning, the

reconstructed far field is affected by an inevitable truncation error, whose amount
depends on the level of the neglected NF data external to the scanning area. In the
following, the effect of the truncation due to the finite extension of the scanning
plane along the x direction is analyzed. Quite analogous results hold also for that
relevant to the y direction. When considering a scanning plane at distance d from the
AUT, whose dimension along x is 2a (see Fig. 13), a convenient rule of thumb to
predict the angular region of validity of the recovered FF pattern is given (Newell
1988) by

�αcOϑOαc (14)

where

αc ¼ tan �1 Lx � a

d


 �
(15)

Such a validity angular region criterion was developed empirically from extensive
NF measurements involving a large number of antenna and probe combinations
(Yaghjian 1975) and derived using a theoretical analysis (Newell and Crawford
1974). Moreover, a ripple caused by the discontinuity of the near field at the edges
of the scanning plane can appear even in the region of validity (Newell 1988).

z

x

a a

Lx Lx

d

AUT

αc αc

Fig. 13 Relevant to the
evaluation of the validity
angle
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It can be easily recognized that the NF tangential components Ex, Ey cannot be
acquired when performing the measurement by means of a real, not ideal, probe. In
fact, the probe sees the AUT center under different directions when moving on the
scanning plane. Moreover, also at a fixed position, it sees each portion of the AUT
under a different direction. As a consequence, the antenna far field cannot be
accurately recovered from the measured NF data by employing the previously
described uncompensated NF-FF transformation.

The basic theory of probe-compensated NF measurements on a plane as proposed
in (Paris et al. 1978; Joy et al. 1978) is based on the application of the Lorentz
reciprocity theorem. The key relations in the here adopted reference system are

Eϑ ϑ,φð Þ ¼ IHE
0
φV

ϑ, � φð Þ � IVE
0
φH

ϑ, � φð Þ
� 	

=Δ (16)

Eφ ϑ,φð Þ ¼ IHE
0
ϑV

ϑ, � φð Þ � IVE
0
ϑH

ϑ, � φð Þ
� 	

=Δ (17)

where

Δ ¼ E0
ϑH ϑ, � φð ÞE0

φV
ϑ, � φð Þ � E0

ϑV
ϑ, � φð ÞE0

φH
ϑ, � φð Þ (18)

and

IV,H ¼ A cos ϑ ejβd cos ϑ
ðþ1

�1

ðþ1

�1
VV,H x, yð Þejβx sin ϑ cosφejβy sin ϑ sinφdx dy (19)

A being a proper constant. Namely, the antenna far field is related to (i) the
two-dimensional Fourier transforms of the output voltages VV and VH of the probe
for two independent sets of measurements (the probe is rotated by 90� in the second
set); (ii) the FF components E0

ϑV
, E0

φV
and E0

ϑH
, E0

φH
radiated by the probe and the

rotated probe when used as transmitting antennas.
In the following, a simple demonstration of the probe-compensated NF-FF

transformation with plane-rectangular scanning is given. It is valid in the hypothesis
that the mutual coupling effects be negligible and the AUT and probe be reciprocal.
By expressing the electric field radiated by the AUT and impinging on the probe as
superposition of elementary plane waves (see Eq. 80) and taking into account the
relations between the AUT and the probe coordinate systems (see Fig. 14), it can be
easily verified that the open circuit voltage at the probe terminals is given by

V rð Þ ¼
ðþ1

�1

ðþ1

�1
E kx, ky
� � 	 h kx, � ky

� �
e�jk	rdkxdky (20)

where h is the receiving effective length of the probe and the symbol (	) denotes the
inner product. By Fourier inverse transforming Eq. 20, it results
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E kx, ky
� � 	 h kx, � ky

� � ¼ 1

4π2
ejkzd

ðþ1

�1

ðþ1

�1
V x, yð Þej kxxþkyyð Þdxdy (21)

For a reciprocal antenna the receiving and transmitting effective lengths coincide,
and thus, by expressing the electric field E0 radiated by the probe in the FF region as
function of probe effective length (Franceschetti 1997)

E0 ¼ j
ζ

2λr
I0e

�jβrh (22)

where ζ is the free-space impedance and I0 is the antenna input current, it results

E kx, ky
� � 	 E0 kx, � ky

� � ¼ jζI0e�jβr

2λr

ejkzd

4π2

ðþ1

�1

ðþ1

�1
V x, yð Þej kxxþkyyð Þdxdy (23)

This last, by taking into account Eq. 81, becomes

E ϑ,φð Þ 	 E0 ϑ, � φð Þ ¼ � 2πβζI0e�j2βr

2λr2
ejβd cos ϑ

4π2
cos ϑ

ðþ1

�1

ðþ1

�1
V x, yð Þej kxxþkyyð Þdxdy

(24)

Fig. 14 Geometry relevant to
the probe compensation
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This last can be rewritten in a more convenient form by considering that the
following relations between the AUT and the probe reference systems (see Fig. 14)
hold:

ϑ0 ¼ ϑ; φ0 ¼ �φ; ϑ̂
0 ¼ �ϑ̂; φ̂0 ¼ φ̂ (25)

By properly taking into account these last, it is possible to rewrite Eq. 24 in terms
of the spherical components of the field quantities, thus getting

Eϑ ϑ,φð ÞE0
ϑ ϑ, � φð Þ � Eφ ϑ,φð ÞE0

φ ϑ, � φð Þ

¼ A cos ϑ ejβd cosϑ
ðþ1

�1

ðþ1

�1
V x, yð Þ ejβx sin ϑ cosφejβy sin ϑ sinφdxdy

(26)

where

A ¼ 1

4π2
2πβζI0e�j2βr

2λr2

From Eq. 26, by assuming to perform two independent sets of measurements (the
probe is rotated by 90� around its axis z0 in the second set), the following linear
system is obtained:

Eϑ ϑ,φð ÞE0
ϑV

ϑ, � φð Þ � Eφ ϑ,φð ÞE0
φV

ϑ, � φð Þ ¼ IV (27)

Eϑ ϑ,φð ÞE0
ϑH

ϑ, � φð Þ � Eφ ϑ,φð ÞE0
φH

ϑ, � φð Þ ¼ IH (28)

By solving such a system, Eqs. 16 and 17 are finally got.

NF-FF Transformation with Cylindrical Scanning

The NF-FF transformation with cylindrical scanning (see Fig. 7) allows one to
reconstruct, from a single set of NF measurements, the antenna complete radiation
pattern save for the zones surrounding the spherical polar angles and, accordingly, is
particularly tailored for antennas that radiate mainly in an angular region centered on
the horizontal plane. This, however, is obtained at the cost of a moderate increase in
the analytical and computational complication with respect to that using the plane-
rectangular scanning. In a cylindrical scanning facility, the AUT is mounted on a
rotating table, whereas the probe moves along a line parallel to the rotation axis of
the table. By properly matching these movements, the probe can acquire the NF
amplitude and phase data on the wanted cylindrical grid. From these data, measured
for two different orientations of the probe and accounting for the probe effects, the
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FF pattern can be evaluated (Joy et al. 1978; Leach and Paris 1973; Yaghjian 1977).
As done in the plane-rectangular case, probe-uncorrected NF-FF transformation
formulas, valid in the ideal probe assumption, are initially derived. Then, such an
assumption is removed and probe-compensated formulas given.

As well known, in the cylindrical coordinate system (ρ, φ, z), the tangential
components of the electric field radiated by the AUT can be represented (Leach and
Paris 1973) on the scanning cylinder as a superposition of elementary cylindrical
waves (see paragraph “Cylindrical Wave Expansion”), namely,

Ez φ, zð Þ ¼
X1
ν¼�1

ð1
�1

bν ηð ÞΛ
2

β
H 2ð Þ

ν Λdð Þejνφe�jηzdη (29)

Eφ φ, zð Þ ¼
X1
ν¼�1

ð1
�1

bν ηð Þ νη
βd

H 2ð Þ
ν Λdð Þ � aν ηð Þ @

@ρ
H 2ð Þ

ν Λρð Þ
����
ρ¼d

" #
ejνφe�jηzdη

(30)

where d is the cylinder radius, av and bv are the modal expansion coefficients,H 2ð Þ
v 	ð Þ

is the Hankel function of second kind of order ν, and Λ = (β2�η2)1/2.
The modal coefficients are determined by Fourier inverse transforming Eqs. 29

and 30, thus obtaining

bν ηð ÞΛ
2

β
H 2ð Þ

ν Λdð Þ ¼ 1

4π2

ð1
�1

ðπ
�π

Ez φ, zð Þe�jνφejηzdφ dz (31)

bν ηð Þ νη
βd

H 2ð Þ
ν Λdð Þ � aν ηð Þ @

@ρ
H 2ð Þ

ν Λρð Þ
����
ρ¼d

¼ 1

4π2

ð1
�1

ðπ
�π

Eφ φ, zð Þe�jνφejηzdφdz

(32)

In the classical approach (Leach and Paris 1973), the FFT is employed to evaluate
the modal coefficients in an efficient way, and the sample spacings of the NF data are

ΔzOλ=2; ΔφOπ= βa0ð Þ ¼ λ= 2a0ð Þ (33)

where a0 is the radius of the smallest cylinder enclosing the AUT. In fact, if the
scanning cylinder is located in a region of space where the EM field does not contain
evanescent waves, then the cylindrical wave coefficients are zero for |η|> β and |v|>
βa0. As a consequence of the two-dimensional Nyquist sampling theorem (Papoulis
1987), the EM field on the cylinder at ρ = d can be reconstructed from the
knowledge of its samples at a regular lattice of points separated by grid spacings
satisfying Eq. 33.
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Once the modal coefficients are determined, the FF components of the electric
field in the spherical coordinate system (r, ϑ, φ) can be evaluated (see paragraph
“Cylindrical Wave Expansion”) by

Eϑ r, ϑ,φð Þ ¼ �j2β
e�jβr

r
sinϑ

X1
ν¼�1

jνbν βcos ϑð Þejνφ (34)

Eφ r,ϑ,φð Þ ¼ �2β
e�jβr

r
sin ϑ

X1
ν¼�1

jνaν βcos ϑð Þejνφ (35)

It is worth noting that the summations in the above equations can be efficiently
performed via the FFT.

The use of the FFT for the efficient evaluation of the two-dimensional Fourier
transforms in Eqs. 31 and 32 is now briefly described. As regards the integration with
respect to φ, by a straightforward approximation, it results

Fν ¼
ð2π
0

f φð Þe�jνφdφ � 2π

N

XN�1

m¼0

f
2πm

N


 �
e�j2πνm=N (36)

where N = 2M1, M1 = π/Δφ is the highest order v of the angular harmonics.
Accordingly, save for the factor 2π/N, such an integration can be efficiently
performed via a direct FFT algorithm. The integration over z can be tackled in the
same way as that along x or y of the plane-rectangular case. Accordingly, by taking into
account the truncation due to the finite height 2h of the measurement cylinder, it results

G ηið Þ ¼ G
2πi

N1Δz


 �
� 2h

N1

e�jπi
XN1�1

n¼0

g znð Þej2πni=N1 (37)

where N1 = 2h/Δz is the number of the measurement rings. Thus, the integration
over z can be efficiently performed via an inverse FFTalgorithm, provided that the so
obtained results are multiplied by the factor 2he�jπi.

By summing up, the two-dimensional Fourier transforms of the tangential com-
ponents of the electric field can be efficiently computed through the following steps:
(i) on each measurement ring, the NF data are directly transformed via FFT and then
multiplied by the factor 2π/N; (ii) for each index v, the so obtained data are inversely
transformed via FFT and then multiplied by 2he�jπi.

Note that the evaluation of the Fourier transform integrals in Eqs. 31 and 32 via
the FFT allows one to get the modal expansion coefficients av and bv and, as a
consequence, the FF components, at the values of ϑ given by

ϑi ¼ cos �1 ηi=βð Þ ¼ cos �1 iλ= N1Δzð Þð Þ (38)
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To obtain the FF components with a greater resolution in ϑ, it is sufficient “zero-
filling” the NF data. Namely, to get the FF components at the values ϑi = cos�1 (iλ/
(N2Δz)), the NF data must be increased with a proper number of zeros corresponding
to fictitious (N2 � N1)/2 rings at both the ends of the scanning cylinder. In a similar
way, to obtain the FF components at 2M2 values of φ, the positive and negative
angular harmonics must be both augmented with M2 � M1 zeros before performing
the summations in Eqs. 34 and 35 via the FFT.

Since the height of the scanning cylinder is obviously finite, an inevitable
truncation error occurs, whose amount depends on the level of the neglected NF
data. The angular region wherein the recovered FF pattern is accurate can be
determined as in the plane-rectangular case. The truncation error arising when the
scanning along φ does not cover a whole 2π range can be handled (Francis 2012) as
that occurring in a truncated spherical scan (Hald et al. 1988).

It can be easily recognized that the NF tangential components Ez and Eφ cannot
be acquired when performing the measurement by means of a real probe. In fact, it
sees the AUT center under different directions when moving on the cylinder.
Moreover, also at a fixed position, the probe sees each portion of the AUT under
a different direction. As a consequence, the antenna far field cannot be accurately
recovered from the measured NF data by employing the uncompensated NF-FF
transformation.

The basic theory of probe-compensated NF measurements over a cylinder
was developed by Leach and Paris (1973) and is based on an application of the
Lorentz reciprocity theorem. They demonstrated rigorously that the modal coef-
ficients av and bv of the cylindrical wave expansion of the field radiated by the
AUT are related to (i) the two-dimensional Fourier transform of the probe voltage
for two independent sets of measurements (the probe is rotated 90� about its
longitudinal axis in the second set); (ii) the coefficients of the cylindrical wave
expansion of the field radiated by the probe and the rotated probe, when used
as transmitting antennas. The key relations to obtain the modal expansion coef-
ficients are

aν ηð Þ ¼ β2

Λ2Δν ηð Þ Iν ηð Þ
X1

m¼�1
d0m �ηð ÞH 2ð Þ

νþm Λdð Þ � I0ν ηð Þ
X1

m¼�1
dm �ηð ÞH 2ð Þ

νþm Λdð Þ
" #

(39)

bν ηð Þ ¼ β2

Λ2Δν ηð Þ I0ν ηð Þ
X1

m¼�1
cm �ηð ÞH 2ð Þ

νþm Λdð Þ � Iν ηð Þ
X1

m¼�1
c0m �ηð ÞH 2ð Þ

νþm Λdð Þ
" #

(40)

Iν ηð Þ ¼
ð1

�1

ðπ
�π

V φ, zð Þ e�jνφejηzdφdz; I0ν ηð Þ ¼
ð1

�1

ðπ
�π

V0 φ, zð Þ e�jνφejηzdφdz (41)
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Δν ηð Þ ¼
X1

m¼�1
cm �ηð ÞH 2ð Þ

νþm Λdð Þ
X1

m¼�1
d0m �ηð ÞH 2ð Þ

νþm Λdð Þþ

�
X1

m¼�1
c0m �ηð ÞH 2ð Þ

νþm Λdð Þ
X1

m¼�1
dm �ηð ÞH 2ð Þ

νþm Λdð Þ
(42)

where V and V0 are the voltages measured by the probe and the rotated probe at the
point (d, φ, z). Quite analogous results have been obtained (Yaghjian 1977) by using
the source scattering matrix formulation. In fact, as shown in (Appel-Hansen 1980),
this last formulation leads, except for a normalization constant, to the same
expressions.

The integrals Iv and Iv0 are again efficiently evaluated via FFT and the NF data are
spaced according to Eq. 33. The modal coefficients of the probe (cm, dm) and the
rotated probe (cm0 , dm0 ) can be evaluated from the measured amplitude and phase of
the FF components radiated by them (Leach and Paris 1973). Once av and bv have
been determined, the FF components of the electric field in the spherical coordinate
system (r, ϑ, φ) can be evaluated by means of Eqs. 34 and 35.

NF-FF Transformation with Spherical Scanning

The NF-FF transformation with spherical scanning (see Fig. 8) gives the full antenna
pattern coverage, even though the data processing is considerably more complicated
than that required by planar and cylindrical NF facilities. A tangible amount of work
has been done in the past years for formulating and solving the problem of the FF
reconstruction from the NF data acquired on a spherical scanning surface (Hald
et al. 1988; Wacker 1975; Larsen 1980; Yaghjian and Wittmann 1985). In this
framework, a comprehensive book (Hald et al. 1988), which deals with the theoret-
ical as well as the practical aspects of the spherical NF scanning, was published by
J.E. Hansen.

There are several ways to perform the scanning in a spherical NF facility (Hald
et al. 1988). The most commonly adopted one is the roll-over-azimuth configuration
(see Figs. 15 and 16). In such a configuration, the probe stays fixed, whereas the
AUT is mounted on a roll positioner (φ axis), which is anchored by means of an
L-shaped bracket to an azimuth rotating table (ϑ axis). In the elevation-over-azimuth
configuration, the probe stays fixed and the AUT is mounted on an elevation
positioner (φ axis), which is mounted on an azimuth rotating table (ϑ axis). On the
contrary, in the azimuth-over-elevation setup, the AUT is anchored to an azimuth
rotator (φ axis), mounted on an elevation positioner (ϑ axis). Another possibility is to
mount the AUT on an azimuth rotating table for selecting the scanning meridian and
to move the probe along an arc to perform the scanning along it.

Whatever the configuration has been chosen, the probe can acquire the NF
amplitude and phase data on the wanted spherical grid. From these data, measured
for two different orientations of the probe and accounting for the probe effects, the
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FF pattern can be evaluated (Hald et al. 1988). As done in the plane-rectangular and
cylindrical scanning cases, probe-uncorrected NF-FF transformation formulas, valid
in the ideal probe assumption, are initially derived. Then, such an assumption is
removed and probe-compensated formulas given.

As well known, in the spherical coordinate system (r, ϑ, φ), the transverse electric
field radiated by an AUTcan be expressed on a sphere of radius r= d containing it as
a superposition of elementary spherical waves (see paragraph “Spherical Wave
Expansion”), namely,

Et d,ϑ,φð Þ ¼ β
XNmax

n¼1

Xn
m¼�n

a1nmg1n βdð ÞF1nm ϑ,φð Þ þ a2nmg2n βdð ÞF2nm ϑ,φð Þ½ � (43)

where a1nm, a2nm are the spherical wave expansion coefficients,

F1nm ϑ,φð Þ ¼ f
1nm

ϑð Þejmφ; F2nm ϑ,φð Þ ¼ f
2nm

ϑð Þejmφ (44)

f
1nm

ϑð Þ ¼ �m

mj j

 �m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn nþ 1ð Þp jm

sin ϑ
P

mj j
n cos ϑð Þϑ̂� d

dϑ
P

mj j
n cos ϑð Þφ̂

� 

(45)

AUT

Probe

Grid Points

ϑ

ϕ

Fig. 15 Roll-over-azimuth
NF spherical facility
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f
2nm

ϑð Þ ¼ �m

mj j

 �m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn nþ 1ð Þp d

dϑ
P

mj j
n cos ϑð Þϑ̂þ jm

sin ϑ
P

mj j
n cos ϑð Þφ̂

� 

(46)

g1n βdð Þ ¼ h 2ð Þ
n βdð Þ; g2n βdð Þ ¼ 1

βd

d

d βrð Þ βrh 2ð Þ
n βrð Þ

� 	���
r¼d

(47)

hn
(2)(x) being the spherical Hankel function of second kind and order n.
In the classical approach (Hald et al. 1988), the choice of the highest spherical

wave is usually determined according to the following rule of thumb:

Nmax ¼ Int βað Þ þ 10 (48)

where a is the radius of the smallest sphere enclosing the AUT. In the approach
(Bucci et al. 2001a), it is rigorously fixed by the spatial band limitation properties of
the radiated EM fields (Bucci and Franceschetti 1987) and it results

Nmax ¼ Int χ0βað Þ þ 1 (49)

Fig. 16 Photo of the versatile
NF system at the UNISA
antenna characterization
LAB: roll-over-azimuth
spherical setup
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where χ0 is an enlargement bandwidth factor slightly larger than unity for electrically
large antennas (Bucci and Franceschetti 1987).

In Eqs. 45 and 46, P
mj j
n xð Þ (see Eq. 107) is the normalized associated Legendre

function as defined by Belousov (1962).
The expansion coefficients a1nm, a2nm can be evaluated from the knowledge of the

tangential electric field on the scanning sphere by taking into account that the
spherical vector wave functions F1, 2nm ϑ,φð Þ are orthonormal. As a matter of fact,
from Eq. 43 it results

Et,F1, 2nm
� � ¼ ð2π

0

ðπ
0

Et d,ϑ,φð Þ 	 F

1, 2nm ϑ,φð Þsin ϑdϑdφ ¼ βa1, 2nm g1, 2n βdð Þ (50)

where the asterisk (*) indicates the complex conjugation, and therefore

a1, 2nm ¼ 1

βg1, 2n βdð Þ
ð2π
0

ðπ
0

Et d,ϑ,φð Þ 	 f 

1, 2nm ϑð Þe�jmφ sin ϑdϑdφ (51)

Once the spherical wave expansion coefficients have been determined, the trans-
verse electric field radiated by the AUT in the FF region can be evaluated (see
paragraph “Spherical Wave Expansion”) by the FF spherical wave expansion:

Et r,ϑ,φð Þ ¼ e�jβr

r

XNmax

n¼1

Xn
m¼�n

jnþ1a1nm f
1nm

ϑð Þ þ jna2nm f
2nm

ϑð Þ
h i

ejmφ (52)

As will be shown in the following, the FFT is used to evaluate the modal
coefficients in an efficient way, and the sample spacings of the NF data in the
classical approach (Hald et al. 1988) are

ΔϑO2π= 2Nmax þ 1ð Þ; Δφ ¼ Δϑ (53)

The number of NF data along φ can be reduced if the radius a0 of the smallest
cylinder enclosing the AUT and having its axis coincident with the z one is smaller
than the radius a of the minimum sphere. In such a case, it results (Hald et al. 1988)

ΔφO2π= 2M þ 1ð Þ (54)

where M = Int (βa0) + 10.
In the approach (Bucci et al. 2001a), the sample spacings are rigorously fixed by

the spatial band limitation properties of the radiated EM fields (Bucci and
Franceschetti 1987) and, accordingly, Nmax is now given by Eq. 49, whereas Δφ is
given by Eq. 54, where M decreases when moving from the sampling parallels near
the equator to those near the poles according to the law
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M ¼ Int χ
βa sin ϑð Þ þ 1 (55)

In this last relation,

χ
 ¼ χ
 ϑð Þ ¼ 1þ χ0 � 1ð Þ sin ϑ½ ��2=3
(56)

is the azimuthal enlargement bandwidth factor.
The efficient evaluation of Eq. 51 is now briefly described. By expanding the

tangential electric field components on the measurement sphere in Fourier series
with respect to φ, namely,

Et d,ϑ,φð Þ ¼
XM
k¼�M

Gk ϑð Þejkφ (57)

the coefficients can be rewritten as follows:

a1, 2nm ¼ 2π

βg1, 2n βdð Þ
ðπ
0

Gm ϑð Þ 	 f 

1, 2nm ϑð Þsin ϑdϑ (58)

The integration over ϑ in Eq. 58 can be efficiently carried out by expanding in Fourier
series the components of Gm ϑð Þ and f

1, 2nm ϑð Þ via FFT. Accordingly, it results

a1, 2nm ¼ 2π

βg1, 2n βdð Þ
XNmax

‘¼�Nmax

XNmax

i¼�Nmax

Gm‘ 	 f 
1, 2nmi
ðπ
0

ej ‘�ið Þϑ sin ϑ dϑ (59)

The integral in Eq. 58 is so transformed in a double summation, of indexes ‘ and i,
involving the Fourier series coefficients (in ϑ) of the components ofGm ϑð Þ and f

1, 2nm
ϑð Þ, and the integrals ðπ

0

ej ‘�ið Þϑ sin ϑdϑ

Note that, in order to evaluate the Fourier series coefficients of the components of
Gm ϑð Þ and f

1, 2nm ϑð Þ, it is necessary to extend the components ofGm ϑð Þ and f
1, 2nm ϑð Þ,

from [0, π] on the range [0, 2π]. This can be easily done by taking into account that
(i) the components of f

1, 2nm ϑð Þ are even about ϑ = π when m is odd, and vice versa;

(ii) the components of Gm ϑð Þ have the same parity as those of f
1, 2nm ϑð Þ.

To take advantage of the numerical efficiency of the standard FFT algorithm, the
number of NF parallels to be considered in the NF-FF transformation and the number
of samples on them must be the first power of two greater or equal to Nmax and 2M,
respectively.
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Moreover, by inverting the summation order in Eq. 52, it can be rewritten in the form

Et r,ϑ,φð Þ ¼ e�jβr

r

XM
m¼�M

XNmax

n¼ mj j
n6¼0ð Þ

jnþ1a1nmf 1nm ϑð Þ þ jna2nmf 2nm ϑð Þ
h i

ejmφ (60)

which allows an efficient evaluation of the antenna far field at the considered
elevation angle ϑ by performing the summation via FFT.

It can be easily recognized that the NF tangential components Eϑ and Eφ cannot
be acquired when performing the measurement with a real probe. In fact, it sees each
portion of the AUT under a different direction. As a consequence, the antenna far
field cannot be accurately recovered from the measured NF data by using the
uncompensated NF-FF transformation.

The probe-compensated NF-FF transformation with spherical scanning has been
developed by using the source scattering matrix formulation. As shown in (Hald
et al. 1988), when using a probe with a first-order azimuthal dependence FF pattern
(e.g., an open-ended circular waveguide), the modal expansion coefficients can be
determined from the knowledge of the voltages V and V0 measured by the probe and
rotated probe, respectively, and are given by

a1nm ¼ 2nþ 1

16π

ðπ
0

ð2π
0

I1 ϑð ÞV � j I2 ϑð ÞV0½ �e�jmφ sin ϑ dφ dϑ

Xvmax

v¼1

a01v1A
n
v1 βdð Þ � a02v1B

n
v1 βdð Þ� � (61)

a2nm ¼ 2nþ 1

16π

ðπ
0

ð2π
0

I2 ϑð ÞV � j I1 ϑð ÞV 0½ �e�jmφ sin ϑ dφ dϑ

Xvmax

v¼1

a01v1B
n
v1 βdð Þ � a02v1A

n
v1 βdð Þ� � (62)

where vmax is the highest spherical wave of the probe, a1,2v10 are its expansion
coefficients,

I1 ϑð Þ ¼ dn1m ϑð Þ � dn�1m ϑð Þ� �
; I2 ϑð Þ ¼ dn1m ϑð Þ þ dn�1m ϑð Þ� �

(63)

and

dnμm ϑð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ μð Þ! n� μð Þ!
nþ mð Þ! n� mð Þ!

s X
σ

nþ m
n� μ� σ


 �
n� m
σ


 �
�1ð Þn�μ�σ

	 cos ϑ
2

� �2σþμþm
sin ϑ

2

� �2n�2σ�μ�m

(64)
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are the rotation coefficients (Hald et al. 1988; Edmonds 1974), the summation over σ
involving all terms in which the binomial coefficients do not lead to negative
arguments for the factorials. Moreover,

An
vμ βdð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ 2vþ 1ð Þ
n nþ 1ð Þv vþ 1ð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþ μð Þ! n� μð Þ!
v� μð Þ! nþ μð Þ!

s
�1ð Þμ 1

2
jn�v:

	
Xnþv

p¼ n�vj j
j�p n nþ 1ð Þ þ v vþ 1ð Þ � p pþ 1ð Þ½ �τ μ, n, � μ, v, pð Þh 2ð Þ

p βdð Þ
n o

(65)

Bn
vμ βdð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ 2vþ 1ð Þ
n nþ 1ð Þv vþ 1ð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþ μð Þ! n� μð Þ!
v� μð Þ! nþ μð Þ!

s
�1ð Þμ 1

2
jn�v:

	
Xnþv

p¼ n�vj j
j�p 2jμβdð Þ τ μ, n, � μ, v, pð Þ h 2ð Þ

p βdð Þ
h i (66)

are the translation coefficients (Hald et al. 1988; Larsen 1980; Bruning and Lo
1971), wherein τ(μ, n, �μ, v, p) are the linearization coefficients defined by the
expansion of the product of two unnormalized associated Legendre functions

Pμ
n xð ÞP�μ

v xð Þ ¼
Xnþv

p¼ n�vj j
τ μ, n, � μ, v, pð ÞPp xð Þ (67)

The probe expansion coefficients a1,2v10 in Eqs. 61, 62 can be evaluated from the
knowledge of its tangential electric field E0

t on a scanning sphere when it is used as
transmitting antenna

a01, 2v1 ¼
1

βg1, 2v βdð Þ
ð2π
0

ðπ
0

E0
t d,ϑ,φð Þ 	 f 


1, 2v1 ϑð Þe�jφ sin ϑ dϑ dφ (68)

Classical Wave Expansions of the Field Radiated by an Antenna

Some analytical details on the wave expansions commonly employed to represent
the antenna field in the region external to it are collected in this paragraph. In any case,
its reading is not strictly necessary for the comprehension of the chapter and its aim is
to enable the interested reader to achieve a more in-depth knowledge of the topic.

Plane Wave Expansion
As well known, in a linear, homogeneous, and isotropic medium, an EM field

E ¼ Ee�jk	r ; H ¼ He�jk	r (69)

Near-Field Antenna Measurement Techniques 2135



represents a time-harmonic plane wave whose direction of propagation is specified
by the vector k ¼ kxxþ kyyþ kzz:

Since the operator ∇ transforms into�jk for such a field, Maxwell’s equations in a
region free of sources become

k� E ¼ ωμH (70)

k�H ¼ �ωeE (71)

k 	 E ¼ 0 (72)

k 	H ¼ 0 (73)

From Eqs. 70 and 71, it results that E andH cannot be chosen independently, for
instance, H is related to E by

H ¼ 1

ωμ
k� E (74)

From Eq. 72, it results that, for any kx, ky, and kz, only two components ofE kð Þ are
independent. Let these be Ex and Ey, then

Ez ¼ � Exkx þ Eyky
� �

=kz (75)

From Eq. 70, it results that

k� k� Eð Þ ¼ ωμk�H (76)

Such a relation, taking into account Eqs. 71, 72 and the vector identity a�
b� cð Þ ¼ b a 	 cð Þ � c a 	 bð Þ, becomes

E k 	 kð Þ � ω2eμ
� � ¼ 0 (77)

In order that such an equation have a solution different from the trivial oneE ¼ 0,
it is necessary that

k 	 k ¼ k2x þ k2y þ k2z ¼ ω2eμ ¼ β2 (78)

Thus, at a fixed frequency, only two of the components of k can be independently
specified. Let these be kx and ky, then the third component is related to them via the
relation

kz ¼
β2 � k2x � k2y

� 	1=2
, if k2x þ k2yOβ2

�j k2x þ k2y � β2
� 	1=2

, if k2x þ k2y > β2

8><>: (79)
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The negative sign in the second of Eq. 79 is chosen in order to ensure that the
plane wave Eq. 69 is bounded at infinity.

Since the medium is linear as well as the field equations, the general solution for
E and H can be constructed as linear combination over all kx and ky:

E rð Þ ¼
ðþ1

�1

ðþ1

�1
E kð Þe�jk	r dkxdky; H rð Þ ¼

ðþ1

�1

ðþ1

�1

1

ωμ
k � E kð Þe�jk	r dkxdky (80)

Namely, any arbitrary monochromatic wave can be represented as a superposition
of plane waves with different amplitudes and propagating in different directions. The
amplitude functionE kð Þ is called the plane wave spectrum of the field. It is worthy to
note that the dimensions of E in Eqs. 69 and 80 are different although the same
notation has been used.

In general, the evaluation of the double integral in Eq. 80 is difficult. However, it
can be shown (Franceschetti 1997; Balanis 1997), by applying the stationary phase
method, that in the far-field region such an integral can be represented by the
asymptotic expansion

E r, ϑ,φð Þ ¼ j2πkzE kx, ky
� � e�jβr

r
(81)

where

kx ¼ β sin ϑ cosφ; ky ¼ β sin ϑ sinφ; kz ¼ β cos ϑ (82)

Cylindrical Wave Expansion
In the cylindrical wave expansion (CWE), the field is represented as superposition of
transverse electric (TE) and transverse magnetic (TM) cylindrical modes (Stratton
1941), which are elementary solutions of the homogeneous wave equation in the
cylindrical coordinates (ρ, φ, z). In fact, an arbitrary field in a homogeneous source-
free region can be always expressed as the sum of a TE field and a TM field
(Harrington 1961). The expression for these modes can be easily derived by using
the auxiliary vector potentials A and F, which, in such a hypothesis, are solutions of
the homogeneous vector Helmoltz equations:

∇2A þ β2A ¼ 0; ∇2Fþ β2F ¼ 0 (83)

As well known, the fields E and H are related to them by

E ¼ �jωAþ ∇∇ 	 A
jωeμ

� 1

e
∇� F; H ¼ �jωFþ ∇∇ 	 F

jωeμ
þ 1

μ
∇� A (84)

From Eq. 84, it can be easily recognized that, to derive the field expressions that
are TE to z, it is sufficient to assume (Balanis 1989)
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A ¼ 0; F ¼ zF ρ,φ, zð Þ (85)

whereas

A ¼ zA ρ,φ, zð Þ; F ¼ 0 (86)

for the TM to z modes (Balanis 1989). In both the cases, the vector Helmoltz
equations reduce to the scalar ones. Their elementary solution is obtainable
by using the separation of variables method (Balanis 1989) and, in the considered
case of observation region external to smallest cylinder enclosing the AUT, is given

byH 2ð Þ
v Λρð Þejvφe�jηz, where v is an integer, η is a real number,Λ ¼ β2 � η2

� �1=2
, and

Hv
(2)(Λρ) is the Hankel function of second kind and order v.
By substituting such an elementary solution in Eq. 84, it results

E ¼ �1=eð ÞMνη (87)

for the TE case and

E ¼ β=jωeμð ÞNνη (88)

for the TM one, wherein

Mνη ρ,φ, zð Þ ¼ jν

ρ
H 2ð Þ

ν Λρð Þρ̂� @

@ρ
H 2ð Þ

ν Λρð Þφ̂

 �

ejνφe�jηz (89)

Nνη ρ,φ, zð Þ ¼ � jη

β

@

@ρ
H 2ð Þ

ν Λρð Þρ̂þ νη

βρ
H 2ð Þ

ν Λρð Þφ̂þ Λ2

β
H 2ð Þ

ν Λρð Þẑ

 �

ejνφe�jηz

(90)

Accordingly, the electric field radiated by the AUT at a point external to the
smallest cylinder enclosing it can be represented (Stratton 1941) as a linear combi-
nation of the elementary fields Eqs. 87 and 88 involving an integral over all η values,
and a sum over all v:

E ρ,φ, zð Þ ¼
X1
ν¼�1

ð1
�1

aν ηð ÞMνη ρ,φ, zð Þ þ bη ηð ÞNνη ρ,φ, zð Þ
h i

dη (91)

therefore

Eρ ρ,φ, zð Þ ¼
X1
ν¼�1

ð1
�1

aν ηð Þ jν
ρ
H 2ð Þ

ν Λρð Þ � jη

β
bν ηð Þ @

@ρ
H 2ð Þ

ν Λρð Þ
� 


ejνφe�jηzdη

(92)
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Eφ ρ,φ, zð Þ ¼
X1
ν¼�1

ð1
�1

bν ηð Þ νη
βρ

H 2ð Þ
ν Λρð Þ � aν ηð Þ @

@ρ
H 2ð Þ

ν Λρð Þ
� 


ejνφe�jηzdη (93)

Ez ρ,φ, zð Þ ¼
X1
ν¼�1

ð1
�1

bν ηð ÞΛ
2

β
H 2ð Þ

ν Λρð Þejνφe�jηzdη (94)

The evaluations of the FF components of the electric field in the spherical
coordinate system (r, ϑ, φ) from the above expressions involve the following
steps. The first step is to replace in the CWE the Hankel function and its first
derivative by their asymptotic expansions

H 2ð Þ
ν xð Þ �

x!1

ffiffiffiffiffi
2j

πx

r
jνe�jx;

d

dx
H 2ð Þ

ν αxð Þ �
x!1

ffiffiffiffiffiffiffi
2jα

πx

r
jν�1e�jαx (95)

The obtained expressions are then rewritten in terms of the spherical coordinates
r, ϑ, φ. The next step is the asymptotic evaluation of the integrals over η by means of
the method of the stationary phase (James 1980). At last, the FF components of the
electric field in the cylindrical coordinate system are transformed in the spherical
ones, thus obtaining Eqs. 34 and 35.

Spherical Wave Expansion
In the spherical wave expansion (SWE), the field is represented as superposition of
transverse electric (to the radial direction) spherical modes (TEr) and transverse
magnetic ones (TMr) (Stratton 1941), which are elementary solutions of the homo-
geneous wave equation in the spherical coordinates (r, ϑ, φ). In fact, an arbitrary field
in a homogeneous source-free region can be expressed as the sum of a TE field and a
TM field (Harrington 1961). The expression for these modes can be determined by
using the auxiliary vector potentials A and F . In particular, to derive the field
expressions that are TE to r, it is sufficient to assume (Balanis 1989)

A ¼ 0; F ¼ rF r,ϑ,φð Þ (96)

whereas

A ¼ rA r, ϑ,φð Þ; F ¼ 0 (97)

for the TM to r modes (Balanis 1989).
It must be stressed that, unlike the cylindrical scanning case, it is not convenient

now to determine the auxiliary potentials by means of the vector Helmholtz equa-
tions (Eq. 83), valid in a source-free region when assuming that the vector potentials
A, F and the scalar ones Φ, Ψ satisfy the Lorentz conditions:

∇ 	 A þ jωeμΦ ¼ 0; ∇ 	 Fþ jωeμΨ ¼ 0 (98)
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In fact, since ∇2 rGð Þ 6¼ r∇2G, the vector Helmholtz equations (Eq. 83) do not
reduce any longer to the corresponding scalar ones. Obviously, in such a case, also
the expressions (Eq. 84), relating the fields to the auxiliary potentials, are no longer
valid. Different relations for the fields and potentials that are not based on Lorentz
conditions are now derived.

The TEr case A ¼ 0,F ¼ rF r,ϑ,φð Þð Þ is first considered. It can be easily
recognized that

E ¼ � 1

e
∇� F; H ¼ 1

jωeμ
∇�∇� F (99)

By substituting the former of Eq. 99 in the second of Maxwell’s equations, it
results

∇� Hþ jωFð Þ ¼ 0 (100)

and, accordingly,

H ¼ �jωF�∇Ψ (101)

By substituting Eq. 101 into the latter of Eq. 99, it is obtained

∇� ∇� F� β2F ¼ �jωeμ∇Ψ (102)

By expanding Eq. 102 in spherical coordinates and imposing that Ψ = (�1/jωeμ)
@F/@r, it can be shown (Balanis 1989) that F can be determined by solving the scalar
Helmholtz equation

∇2ψ þ β2ψ ¼ 0 (103)

where

ψ r, ϑ,φð Þ ¼ F r,ϑ,φð Þ=r (104)

The elementary solution to Eq. 103 can be obtained by using the separation of
variables method (Balanis 1989) and, in the considered case of an observation region
external to the smallest sphere enclosing the AUT, it is given by

ψ r, ϑ,φð Þ ¼ h 2ð Þ
n βrð ÞP mj j

n cos ϑð Þejmφ (105)

where n and m are integers, P
m
n xð Þ is the normalized associated Legendre function as

defined by Belousov (1962), and hn
(2)(x) is the spherical Hankel function of second

kind and order n, which is related to the ordinary Hankel function of second kind by

h 2ð Þ
n xð Þ ¼

ffiffiffiffiffi
π

2x

r
H

2ð Þ
nþ1=2 xð Þ (106)
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The normalized associated Legendre function P
m
n xð Þ is related to the associated

Legendre function Pn
m(x) (solution of the associated Legendre differential equation

(Balanis 1989)) by

P
m
n xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2

n� mð Þ!
nþ mð Þ!

s
Pm
n xð Þ (107)

A similar procedure can be applied in the TMr case A ¼ rA r,ϑ,φð Þ,F ¼ 0ð Þ ,
thus obtaining

H ¼ 1

μ
∇� A; E ¼ 1

jωeμ
∇� ∇� A (108)

and

∇� ∇� A� β2A ¼ �jωeμ∇Φ (109)

By expanding Eq. 109 in spherical coordinates and imposing that Φ = (�1/jωeμ)
@A/@r, it can be shown (Balanis 1989) that A can be determined by solving the scalar
Helmholtz equation (Eq. 103), wherein now

ψ r, ϑ,φð Þ ¼ A r,ϑ,φð Þ=r (110)

The transverse electric fieldEt related to an elementary spherical TEr wave can be
easily found from the former of Eq. 99, by expanding∇� F in spherical coordinates
and taking into account Eqs. 104 and 105, thus obtaining

Et ¼ � 1

e
g1n βrð ÞeF1nm ϑ,φð Þ ¼ � 1

e
g1n βrð Þef

1nm
ϑð Þejmφ (111)

where

g1n βrð Þ ¼ h 2ð Þ
n βrð Þ; ef

1nm
ϑð Þ ¼ jm

sin ϑ
P

mj j
n cos ϑð Þϑ� d

dϑ
P

mj j
n cos ϑð Þφ (112)

In a similar way, the transverse electric field related to an elementary spherical
TMr wave can be determined from the latter of Eq. 108, by expanding∇� ∇� A in
spherical coordinates and taking into account relations Eqs. 105 and 110, thus
getting

Et ¼
β

jωeμ
g2n βrð ÞeF2nm ϑ,φð Þ ¼ β

jωeμ
g2n βrð Þef

2nm
ϑð Þejmφ (113)

where

g2n βrð Þ ¼ 1

βr

d

d βrð Þ βrh 2ð Þ
n βrð Þ

� 	
; ef

2nm
ϑð Þ ¼ d

dϑ
P

mj j
n cosϑð Þϑþ jm

sinϑ
P

mj j
n cosϑð Þφ

(114)
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By expressing the transverse electric field radiated by the AUTon a sphere of radius
r containing it as a superposition of elementary TEr and TMr spherical waves, it results

Et ¼
XNmax

n¼1

Xn
m¼�n

~a1nmg1n βrð ÞeF1nm ϑ,φð Þ þ ~a2nmg2n βrð ÞeF2nm ϑ,φð Þ
h i

(115)

where Nmax is the index of the highest spherical wave to be considered. It is worth

noting that the summation onm extends from� n to n, sinceP
mj j
n cos ϑð Þvanishes for

|m| > n, whereas that on n starts from 1, since eF100 and eF200 are both null (Hald
et al. 1988).

It can be shown (Hald et al. 1988) that

eF1nm, eF2nm

D E
¼
ð2π
0

ðπ
0

eF1nm ϑ,φð Þ	 eF

2nm ϑ,φð Þ sin ϑdϑdφ ¼ 0 (116)

According to Eq. 116, the spherical wave functions eF1nm and eF2nm are always
orthogonal on the sphere even when n ¼ n and m ¼ m. Moreover, it can be shown
(Hald et al. 1988) that

eF1nm, eF1nm

D E
¼ eF2nm, eF2nm

D E
¼ 2πn nþ 1ð Þδmmδnn (117)

where

δmm ¼ 1 for m ¼ m
0 for m 6¼ m

�
(118)

is the Kronecker delta.
In order to have orthonormal spherical wave functions and power-normalized

spherical waves, it is convenient to introduce the new functions

F1nm ϑ,φð Þ ¼ �m

mj j

 �m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn nþ 1ð Þp eF1nm ϑ,φð Þ (119)

F2nm ϑ,φð Þ ¼ �m

mj j

 �m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πn nþ 1ð Þp eF2nm ϑ,φð Þ (120)

The factor (�m/|m|)m ensures that the phase of the modes follows the phase of the
spherical harmonics as defined by Edmonds (1974).

The transverse electric field radiated by the AUT on a sphere of radius r can be
then rewritten in the form

Et ¼ β
XNmax

n¼1

Xn
m¼�n

a1nm g1n βrð ÞF1nm ϑ,φð Þ þ a2nm g2n βrð ÞF2nm ϑ,φð Þ½ � (121)
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The expression of the transverse electric field radiated by the AUT in its far-field
region can be easily obtained from Eq. 121 by taking into account that

h 2ð Þ
n βrð Þ �

βr!1
jnþ1 e

�jβr

βr
;

1

βr

d

d βrð Þ βrh 2ð Þ
n βrð Þ

� 	
�

βr!1
jn
e�jβr

βr
(122)

thus obtaining Eq. 52.
It is worth noting that, according to the Sommerfeld radiation conditions, in the

far-field region the longitudinal electric field component Er must vanish. Indeed, this
is the case. As a matter of fact, each elementary TEr spherical wave has no
longitudinal component, whereas that relevant to a TMr one decreases asymptoti-
cally as 1/r2 (Hald et al. 1988).

Nonredundant NF-FF Transformation Techniques

Nonredundant Sampling Representations of EM Fields

The main theoretical results concerning the nonredundant sampling representations
of EM fields (Bucci et al. 1998c; Bucci and Gennarelli 2012) are summarized in this
section. To this end, the field radiated by an arbitrary finite-size source enclosed in a
convex domainD, bounded by a surface Σwith rotational symmetry and observed on
a regular surfaceM external toD and having the same symmetry, is considered. Due
to its rotational symmetry, the surface M can be described by meridian curves and
azimuthal circumferences, so that the field representation over a regular curve C
described by a proper analytical parameterization r ¼ r ξð Þ is considered in the
following. Moreover, according to (Bucci et al. 1998c), it is convenient to define
the reduced electric field

F ξð Þ ¼ E ξð Þ ejγ ξð Þ (123)

where γ(ξ) is a proper analytical phase function to be determined. As shown in
(Bucci and Franceschetti 1987; Bucci et al. 1998c), the “band limitation” error,
occurring when the reduced field F ξð Þ is approximated by a spatially band-limited
function, becomes negligible as the bandwidth exceeds the critical value

Wξ ¼ max
ξ

w ξð Þ½ � ¼ max
ξ

max
r0

dγ ξð Þ
dξ

� β
@R ξ, r0ð Þ

@ξ

���� ����� 

(124)

where r0 denotes the source point and R ¼ r ξð Þ � r0
�� ��. As a matter of fact, for large

sources and observation domains not too near them, such an error exhibits a step-like
behavior, decreasing more than exponentially as the bandwidth exceeds Wξ (Bucci
and Franceschetti 1987; Bucci et al. 1998c). As a consequence, it can be effectively
controlled by choosing the bandwidth of the approximating function equal to χ0Wξ,
where χ0 is an enlargement bandwidth factor (slightly greater than unity for electri-
cally large antennas).
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In order to obtain a nonredundant representation, namely, a representation requir-
ing a minimum number of samples, first of all, the “local” bandwidth w(ξ) must be
minimized for each ξ. This is accomplished by choosing γ such that its derivative is
given by

dγ
dξ

¼ β

2
max
r0

@R

@s
þmin

r0

@R

@s

� 

ds

dξ
¼ β

2
max
r0

R 	 tþmin
r0

R 	 t
� 


ds

dξ
(125)

namely, dγ/dξ is the average between the maximum and minimum value of β@R/@ξ,
when r0 varies in the source domainD. In Eq. 125, s is the curvilinear abscissa on C, t
is the unit vector tangent to C at the observation point P, and R is the unit vector
pointing from the source point to P. Accordingly, the optimal phase factor to be used
is given by

γ ξð Þ ¼ β

2

ðs ξð Þ

0

max
r0

@R

@s
þmin

r0

@R

@s

� 

ds ¼ β

2

ðs
0

max
r0

R 	 tþmin
r0

R 	 t
� 


ds (126)

It can be easily verified that, by choosing dγ/dξ according to Eq. 125, it results

w ξð Þ ¼ β

2
max
r0

@R

@s
�min

r0

@R

@s

� 

ds

dξ
¼ β

2
max
r0

R 	 t�min
r0

R 	 t
� 


ds

dξ
(127)

With reference to the parameter ξ, for avoiding redundancy, it must be determined
by requiring that the local bandwidth is constant. In fact, if w(ξ) is variable with ξ, the
sample spacing, which is dictated by the bandwidthWξ, becomes unnecessarily small
in the zones wherein w(ξ) is smaller than its maximum value, giving rise to
redundancy in the sampling representation. Accordingly, by imposing that w(ξ) is
constant and equal to Wξ, it results

ξ ¼ β

2Wξ

ðs
0

max
r0

@R

@s
�min

r0

@R

@s
�ds ¼ β

2Wξ

ðs
0

max
r0

R 	 t�min
r0

R 	 t
� 


ds

24 (128)

When C is a meridian curve (Fig. 17) and t is external to the cone of vertex P,
tangent to Σ, the extreme values of R 	 t occur at the two tangency points P1,2 on C0
(intersection curve between the meridian plane and Σ). By taking into account that in
such a case (Bucci et al. 1998c)

@R

@s

����
s0
1, 2

¼ dR1, 2

ds
� ds01, 2

ds
(129)
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where s1,20 are the arclength coordinates of P1,2 and R1,2 the distances from P to P1,2

(Fig. 17) and choosing Wξ ¼ β‘0=2π (‘0 being the length of C0), it results

γ ¼ β

2
R1 þ R2 þ s01 � s02
� �

(130)

ξ ¼ π

‘0
R1 � R2 þ s01 þ s02
� �

(131)

Note that the angular-like parameter ξ covers a 2π range when P encircles the
source once and the number of samples at Nyquist spacing (Δξ = π/Wξ) on a closed
meridian curve C (also unbounded) is always finite and equal toNξ ¼ 2π=Δξ ¼ 2‘0=λ.

It can be shown (Bucci et al. 1998c) that in any meridian plane the curves γ =
const and ξ = const are orthogonal.

When C is an azimuthal circumference of radius ρ, the extreme values ofR 	 t are
opposite and constant along it. It follows from Eqs. 126 and 128 that γ is constant
and any parameter proportional to the arclength is optimal. As a consequence, it is
convenient to use the azimuthal angle φ as parameter and to choose for γ the value

Fig. 17 Relevant to a
meridian curve
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relevant to any meridian curve passing through the observation point on C . The
corresponding bandwidth is (Bucci et al. 1998c)

Wφ ¼ β

2
max
z0

Rþ � R�ð Þ

¼ β

2
max
z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� z0ð Þ2 þ ρþ ρ0 z0ð Þð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� z0ð Þ2 þ ρ� ρ0 z0ð Þð Þ2

q
 �
(132)

where R+ and R� are the maximum and minimum distance, respectively, from each
circumference describing the surface Σ to the observation point P and ρ0(z0) is the
equation of Σ in cylindrical coordinates. As shown in (Bucci et al. 1998c), the
maximum is attained on that zone of the surface Σ lying on the same side of the
observation circumference with respect to the maximum transverse circle of Σ.
When the radius of the observation circle goes to infinity, it results R+ = R� +
2ρ0sinϑ and, accordingly,

Wφ ¼ βρ0max sin ϑ (133)

ϑ being the polar angle of the circle points and ρmax
0 the maximum transverse radius

of Σ.
It can be shown (Bucci et al. 1998c) that the number of samples Ns at Nyquist

spacing on any closed observation surface (also unbounded) surrounding the source
is

Ns ffi area of Σð Þ= λ=2ð Þ2 (134)

Any finite-size source can be always considered as enclosed in a spherical
surface. Accordingly, by choosing Σ coincident with a sphere of radius a, for any
meridian curve, it results

R1 ¼ R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p
(135)

s01 ¼ ϑ� αð Þa; s02 ¼ ϑþ αð Þa; α ¼ cos �1 a=rð Þ (136)

Accordingly, since ‘0 = 2πa, it results Wξ = βa and

γ ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p
� βa cos �1 a=rð Þ; ξ ¼ ϑ (137)

When considering an azimuthal circumference, by putting z0 = a cos ϑ0 and ρ0 =
a sin ϑ0, it can be shown (Bucci et al. 1998c) that the maximum in Eq. 132 is attained
at ϑ0 = cos�1 (a cos ϑ/r) and, accordingly,

Wφ ¼ βa sin ϑ (138)
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Eq. 134 highlights the role that the source modeling plays in minimizing the
overall number of samples: the surface Σ must fit very well the antenna geometry,
moreover it must be analytically regular and such that the corresponding phase factor
and parameterization are simple to be determined. To this end, ellipsoidal geometries
(oblate and prolate) are considered in the following.

An effective modeling for elongated antennas is obtained by choosing the surface
Σ coincident with a rotational prolate ellipsoid, having major and minor semiaxes
equal to a and b (Fig. 18), whereas a rotational oblate ellipsoid is an appropriate
modeling for quasiplanar sources. In both the cases, it can be shown (Bucci
et al. 1998c) that in any meridian plane the curves γ = const and ξ = const are
respectively ellipses and hyperbolas confocal to C0. This implies that ξ and γ are
functions of the elliptic coordinates u = (r1 � r2)/2f and v = (r1 + r2)/2a, respec-
tively, where r1,2 are the distances from the observation point P on the meridian
plane to the foci of C0 and 2f is the focal distance. By taking into account that the
length of the ellipse C0 is ‘0 ¼ 4aE π=2ð je2Þ, the bandwidth Wξ becomes

Wξ ¼ 4a=λð ÞE π=2ð je2Þ (139)

where E(	|	) denotes the elliptic integral of second kind and ε= f/a is the eccentricity
of C0.

The evaluation of γ at P can be simplified by considering the intersection point
between the confocal ellipse through P and the symmetry axis, instead of P itself,
since the same value of γ corresponds to all points lying on a confocal ellipse. By
straightforward but lengthy computations, from Eq. 130, it results (Bucci
et al. 1998c)

γ ¼ βa v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1

v2 � e2

r
� E cos �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

v2 � e2

r
je2

 !" #
(140)

With reference to ξ, since the same value corresponds to all points on the confocal
hyperbola branch passing through P, it can be convenient to consider, instead of
P itself, the intersection point P0 between the considered hyperbola branch and C0.
Accordingly from Eq. 131, it results ξ ¼ 2πs00=‘

0, s00 being the curvilinear abscissa of
P0. By straightforward computations, the following expression is finally obtained
(Bucci et al. 1998c):

ξ ¼ π

2

E sin�1uje2ð Þ=E π=2je2ð Þ þ 1 prolate ellipsoid

E sin�1uje2ð Þ=E π=2je2ð Þ oblate ellipsoid

�
(141)

Such a relation is valid when the angle ϑ corresponding to P belongs to the range
[0, π/2]. The case in which ϑ belongs to [π/2, π] can be easily handled by determin-
ing the value ξ0 corresponding to the point specified by the angle π � ϑ and then
putting ξ = π � ξ0.
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Since all transverse circles belonging to the hyperboloid of rotation fixed by a
value of ξ are characterized by the same value of Wφ (Bucci et al. 1998c), the
bandwidth value corresponding to an azimuthal circumference can be evaluated by
moving such a circle to infinity along the hyperbola ξ = const. Accordingly, by
taking Eq. 133 into account, it results

Wφ ξð Þ ¼ βb sin ϑ1 ξð Þ prolate ellipsoid

βa sin ϑ1 ξð Þ oblate ellipsoid

�
(142)

where

ϑ1 ¼ sin �1uþ π=2 prolate ellipsoid

sin �1u oblate ellipsoid

�
(143)

is the polar angle of the asymptote to the hyperbola through P (see Fig. 18).
It can be easily shown (Bucci et al. 1998c) that the spherical modeling can be

obtained from the prolate or oblate ellipsoidal one by considering an ellipsoid with
eccentricity e = 0.

Another effective source modeling for long antennas is obtained by choosing the
surface Σ coincident with a rounded cylinder (Fig. 19), namely, a cylinder of height
h0 ended in two half-spheres of radius a0 (Bucci et al. 1998b; D’Agostino et al. 2011).
Such a modeling is quite general and contains the spherical one as particular case.
When considering quasiplanar antennas, a convenient alternative to the oblate
ellipsoidal modeling is the two-bowls one (Fig. 20), wherein Σ is a surface formed

Fig. 18 Ellipsoidal source
modeling: prolate case
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by two circular bowls with the same aperture diameter, but with bending radii c and
c0 of the upper and lower arcs eventually different to fit better the actual AUT
geometry (Bucci et al. 1998a; D’Agostino et al. 2011). It can be easily recognized
that the surface Σ coincides with a sphere if c = c0 = a, it becomes a half-sphere if
c = 0 and c0 = a, and it reduces to a circular dish for c = c0 = 0.

The real part of the electric field and reduced electric field y-component radiated
by an antenna along a line is reported in Fig. 21 to show the effect of multiplying the
field by the factor ejγ(ξ). The considered antenna is a uniform planar circular array
with radius equal to 20λ, lying in the plane z= 0, and has been modeled by an oblate
ellipsoid with 2a = 40λ and 2b = 5λ. The array elements, radially and azimuthally
spaced of 0.8λ, are elementary Huygens sources linearly polarized along the y axis.
The considered straight line is the x-directed line at y= 0, lying in a plane at distance
d = 12λ from the AUT center. As can be seen, the spatial variations of the reduced
field component are slower than the electric field ones, since the local bandwidth has
been minimized. Quite analogous results are obtained for the imaginary part.

In order to highlight the role of the optimal parameter for a convenient represen-
tation of the reduced field on the observation curve, the real part of the reduced
electric field y-component along the same straight line is plotted as function of ξ in
Fig. 22.

Fig. 19 Rounded cylinder
modeling
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As can be seen, when using the optimal parameter, the regions wherein the
reduced field exhibits fast changes are represented in an enlarged scale, whereas
those characterized by slow variations are shown in a reduced scale. As a conse-
quence, a uniform sampling in ξ gives rise to a denser sample distribution where the
local bandwidth w is greater and to a sparser one in the zones characterized by
smaller values of w (see Fig. 23).

Fig. 20 Two-bowls
modeling
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Fig. 21 Real part of the NF y-component on the given line. Solid line: electric field. Dashed line:
reduced field
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Application of the Nonredundant Sampling Representations
to the NF-FF Transformations

Let an antenna be considered as enclosed in a convex domain bounded by a
rotational surface Σ, and the surface scanned by a nondirective probe be obtained
by rotating a meridian curve always external to the cone of vertex at the observation
point P and tangent to Σ. Since the voltage V measured by such a kind of probe has
practically the same effective spatial bandwidth of the AUT field (Bucci
et al. 1998d), the above described nonredundant sampling representations of EM
fields can be applied to it and, accordingly, it is convenient to introduce the reduced
voltage ~V ξð Þ ¼ V ξð Þejγ ξð Þ.

Therefore, the use of cardinal series (CS) expansions (Whittaker 1915) springs
out naturally as an appropriate tool to conveniently represent it. However, the use of
the CS representation, while completely satisfactory from the accuracy point of view,
has the drawback that all samples (or, at least, all the relevant ones) must be
considered in evaluating the voltage at each output point, otherwise a relatively
large truncation error is introduced, due to the slow decay of the sampling functions.
As a consequence, its use would lead to unacceptably large computational times.
Such a slow decay leads to a further, subtler difficulty, if it is taken into account that,
in any practical instance, the measured data are inaccurate. Provided that their values
are well above the noise level, the measured results are usually affected by an
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Fig. 22 Real part of the reduced electric field y-component on the given line as function of the
optimal parameter ξ
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(approximately) constant relative, not absolute, error, so that the absolute error
corresponding to the highest voltage values can be relatively large. This error is
spread out by the sampling functions without a severe attenuation, and this gives rise
to a remarkable relative error in the zones where the voltage level is low (Bucci
et al. 1991b). These difficulties have been overcome by resorting to an OSI expan-
sion (Bucci et al. 1991a, b), in which only relatively few samples in the neighbor-
hood of the output point are used in the reconstruction. These algorithms minimize
the truncation error for a given number of retained samples and are more stable than
the CS expansions with respect to random errors affecting the data.

In the light of the above discussion, the voltage at P (ξ(ϑ), φ) on the meridian
curve fixed by φ can be efficiently evaluated via the OSI expansion (Bucci
et al. 1998c; Bucci and Gennarelli 2012):

V ξ ϑð Þ,φð Þ ¼ e�jγ ξð Þ ~V ξ,φð Þ ¼ e�jγ ξð Þ Xm0þq

m¼m0�qþ1

~V ξm,φð ÞΩM ξ� ξm, ξ
� �

DM00 ξ� ξmð Þ

(144)

where m0 = Int(ξ/Δξ) is the index of sample nearest (on the left) to P, 2q is the
number of the retained intermediate samples Ṽ(ξm, φ), namely, the reduced voltages
at the intersection points between the sampling azimuthal circumferences and the
meridian curve, ξ ¼ qΔξ, M = M00 � M0, and

ξm ¼ mΔξ ¼ 2πm= 2M00 þ 1ð Þ; M00 ¼ Int χM0ð Þ þ 1; M0 ¼ Int χ0Wξð Þ þ 1

(145)
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Fig. 23 Samples distribution on the given line
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χ being an oversampling factor required to control the truncation error (Bucci
et al. 1991a, 1998c), and Int(x) denoting the integer part of x. Moreover,

DM00 ξð Þ ¼ sin 2M00 þ 1ð Þξ=2½ �
2M00 þ 1ð Þ sin ξ=2ð Þ ; ΩM ξ,ξ

� � ¼ TM 2cos 2 ξ=2ð Þ=cos 2 ξ=2
� �� 1

� �
TM 2=cos 2 ξ=2

� �� 1
� �

(146)

are the Dirichlet and Tschebyscheff sampling functions, respectively, TM(	) being the
Tschebyscheff polynomial of degree M.

It is worth noting that the weight function ΩM(	,	) has been obtained in (Bucci
et al. 1991a, b) by paralleling the properties of the so-called sampling window
function introduced by Knab (1983), which (in the square norm) represents the
practically optimal weight function for the case of an indefinite observation domain,
where the kernel of the CS expansion is the sin(x)/x function instead of the
Dirichlet one.

The intermediate samples Ṽ(ξm, φ) can be determined by means of the OSI
formula:

~V ξm,φð Þ ¼
Xn0þp

n¼n0�pþ1

~V ξm,φn,m
� �

ΩNm
φ� φn,m,φ
� �

DN00
m
φ� φn,m
� �

(147)

where n0 ¼ Int φ=Δφmð Þ , Ṽ(ξm, φn,m) are the reduced samples on the azimuthal
circumference fixed by ξm, 2p is the retained samples number, and

φn,m ¼ nΔφm ¼ 2πn= 2N00
mþ 1

� �
; N00

m ¼ Int χN0
m

� �þ 1; N0
m ¼ Int χ 
Wφ ξmð Þ� �þ 1

(148)

φ ¼ pΔφm; Nm ¼ N00
m � N0

m; χ
 ¼ 1þ χ0 � 1ð Þ sinϑ ξmð Þ½ ��2=3 (149)

The variation of the azimuthal enlargement bandwidth factor χ* with ξ is required
to ensure a band limitation error constant with respect to ξ (Bucci and Franceschetti
1987).

By properly matching Eqs. 144 and 147, the two-dimensional OSI expansion is
obtained:

V ξ ϑð Þ,φð Þ ¼ e�jγ ξð Þ Xm0þq

m¼m0�qþ1

ΩM ξ� ξm, ξ
� �

DM00 ξ� ξmð Þ
(

	
Xn0þp

n¼n0�pþ1

~V ξm,φn,m
� �

ΩNm
φ� φn,m,φ
� �

DN00
m
φ� φn,m
� �)

(150)

which makes possible to reconstruct efficiently and accurately the NF data needed to
carry out the traditional NF-FF transformation corresponding to the considered
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scanning geometry from a nonredundant, i.e., minimum, number of NF
measurements.

Efficient and accurate NF-FF transformation techniques with plane-polar (Bucci
et al. 1998a, 2000), bipolar (D’Agostino et al. 2003), cylindrical (Bucci et al. 1998b;
D’Agostino et al. 2002), and spherical (Bucci et al. 2001a; D’Agostino et al. 2011,
2013a) scannings have been so developed. In all the cases, a remarkable reduction of
the number of the required NF data and of the related measurement time has been
achieved.

The effectiveness of the OSI algorithms depends on the choice of the following
parameters: the enlargement bandwidth factor, the oversampling factor, and the
retained samples number. The enlargement bandwidth factor χ0 allows to control
the aliasing error and values slightly greater than unity are enough to ensure small
errors in the case of electrically large antennas (Bucci and Franceschetti 1987, 1989).
A numerical procedure to properly select the χ0 value is described in (Gennarelli
et al. 1994). As regards the choice of the parameters controlling the truncation error,
namely, the oversampling factor χ, and the numbers p, q of the retained nearest
samples, it can be numerically made as in (Bucci et al. 1998c). Note that such an
error can be decreased on increasing p, q, and/or χ. An increase of p, q implies a
growth of the interpolation time, whereas an increase of χ reflects in a growth of the
required NF data and, as a consequence, of the measurement time. In practice, the
choice of the above parameters is done in such a way that the error related to the
interpolation (aliasing plus truncation) must be smaller than the measurement one
(background noise plus measurement uncertainties). It must stressed that, due to the
filtering properties of the interpolation functions, it is possible also to cut away the
spatial harmonics relevant to the noise sources outside the AUT spatial bandwidth.

NF-FF Transformation Techniques with Spiral Scannings

The scanning of a nondirective probe along a proper spiral wrapping an arbitrary
rotational surface M, obtained by rotating a meridian curve always external to the
cone having the vertex at P and tangent to the rotational surface Σ enclosing the
AUT, is considered in the following. The Cartesian coordinates of a generic point on
such a spiral are

x ¼ r θð Þ sin θ cosϕ
y ¼ r θð Þ sin θ sinϕ
z ¼ r θð Þ cos θ

8<: (151)

where r(θ) is specified by the meridian curve generating the surface M, ϕ is the
angular parameter describing the spiral, and the angle θ is a monotonic increasing
function of ϕ. It can be easily verified that r(θ)= d/cosθ in the case of a planar spiral
lying on a plane at distance d, r(θ) = d/sinθ for a helix wrapping a cylinder of radius
d, whereas r(θ) = d when a spherical spiral is considered. It is worth noting that the
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angle θ, unlike the zenithal angle ϑ, can assume negative values. As a matter of fact,
when the spiral describes a complete round on the surfaceM, moving from the south
pole to the north pole and then returning to the south one, θ varies in the range [�π, π].
Moreover, ϕ is always continuous, whereas, according to Eq. 151, the azimuthal angle
φ displays a discontinuity jump of π when the spiral crosses the poles.

In order to obtain a nonredundant sampling representation of the probe voltage on
the surface M from its samples collected along the spiral, it is necessary
(D’Agostino et al. 2009e; Cicchetti et al. 2014):

(a) to choose the spiral in such a way that its pitch, specified by two consecutive
intersections (at ϕ and ϕ + 2π) with a meridian curve, be equal to the sample
spacing needed for the interpolation along this curve;

(b) to develop a nonredundant sampling representation along the spiral.

According to condition (a), the optimal parameter ξ relevant to the meridian curve
and the angular one ϕ describing the spiral are related by

ξ ¼ kϕ (152)

where kmust be such that the interval Δξ= 2πk, corresponding to the spiral pitch, is
equal to the required sample spacingΔξ= 2π/(2M00 + 1) (see Eq. 145). Accordingly,
k = 1/(2 M00 + 1). The scanning spiral can be so viewed as the projection on the
surfaceM, via the curves at ξ= const, of the corresponding spiral wrapping with the
same pitch the modeling surface Σ.

The development of a nonredundant sampling representation of the voltage along
the spiral is a more complex task, which has been heuristically solved in
(D’Agostino et al. 2009e) by paralleling the rigorous procedure (D’Agostino
et al. 2006) valid when the antenna is modeled by a spherical surface. Therefore,
the main results of the unified theory of spiral scannings for antennas enclosed in a
spherical surface (D’Agostino et al. 2006) are reviewed in the following.

In such a case, the optimal parameter to describe a meridian curve is the angle θ
(which coincides in the range [0, π] with the zenithal one ϑ) and the related
bandwidth is βa. Moreover, the optimal phase factor ψ and parameter η to obtain a
nonredundant representation along the spiral can be obtained from Eqs. 126 and 128
by observing that the extreme values of R 	 t occur (D’Agostino et al. 2006) at the
two tangency points P1,2 (Fig. 24) between the sphere modeling the AUT and the
straight lines passing through the point Q on the spiral and belonging to the plane
specified by the unit vectors t (tangent to the spiral at Q) and r (pointing from the
origin to Q). Denoting by R1, 2 the related unit vectors and by δ the angle between r
and t (see Fig. 24), it results (D’Agostino et al. 2006)

R1 þ R2ð Þ=2 ¼ r sin α ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=r2

p
(153)

R1 � R2ð Þ=2 ¼ n cos α (154)
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where n is the unit vector parallel to the plane r, t and orthogonal to r. Accordingly

R1 � R2ð Þ 	 t=2 ¼ n 	 tð Þ a=rð Þ ¼ a=rð Þ sin δ (155)

By substituting Eq. 153 in Eq. 126 and taking into account that dr ¼ r 	 t ds, it
results

ψ ¼ β

ðr
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=r2

p
dr ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p
� βa cos �1 a=rð Þ (156)

Namely, the phase function ψ relevant to the sampling representation along the
spiral coincides with that γ related to the representation on a meridian curve.

By differentiating Eq. 151, it can be easily verified that

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 sin2θ þ k2r2 þ k2 _r2

p
dϕ (157)

where _r ¼ dr=dθ. Moreover,

r 	 t ¼ dr

ds
¼ dr

dϕ

dϕ

ds
¼ dr

dθ

dθ

dϕ

� 

dϕ

ds
¼ k _r

dϕ

ds
¼ k _rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 sin2θ þ k2r2 þ k2 _r2
p (158)

and, accordingly,

sin δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r 	 tð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 sin2θ þ k2r2

r2 sin2θ þ k2r2 þ k2 _r2

s
(159)

By substituting Eqs. 155 and 157 in Eq. 128 and taking into account Eq. 159, it
results

R1

R2

t
r

Fig. 24 Geometry of the
problem in the plane t, r
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η ¼ βa

Wη

ðϕ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ sin2kϕ

q
dϕ (160)

that is, the optimal parameter η for describing the spiral is β/Wη times the arclength of
the projecting point that lies on the spiral wrapping the sphere Σ. Since such a spiral
is a closed curve, it is convenient to choose the bandwidthWη in such a way that the
angular-like parameter η covers a 2π range when the entire projecting spiral is
described. Therefore,

Wη ¼ βa

π

ð2M00þ1ð Þπ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ sin2kϕ

q
dϕ (161)

namely, the bandwidthWη is β/π times the length of the spiral which wraps from pole
to pole the sphere Σ.

The more general case wherein the AUT is no longer modeled as enclosed in a
sphere is now considered. The parameterization η for describing the scanning spiral,
the related phase factor ψ, and bandwidth Wη can be heuristically obtained
(D’Agostino et al. 2009e) by generalizing the corresponding ones for the spherical
modeling case (see Eqs. 160, 156, and 161). In particular, η is β/Wη times the
arclength of the projecting point that lies on the spiral wrapping the surface Σ (the
projection is obtained by the curves at ξ = const that, in such a case, take the role of
the radial lines of the spherical modeling), ψ coincides with the phase function γ for a
meridian curve, and the bandwidth Wη is β/π times the length of the spiral wrapping
Σ from pole to pole. In other words, the spiral, ψ , and η coincide with those relevant
to the spherical modeling when the surface Σ approaches a sphere.

In the light of the above results, the reduced voltage at any point Q of the spiral
can be reconstructed by the following OSI expansion (D’Agostino et al. 2006,
2009e; Cicchetti et al. 2014):

~V ηð Þ ¼
Xn0þp

n¼n0�pþ1

~V ηnð ÞΩN η� ηn, ηð ÞDN00 η� ηnð Þ (162)

where 2p is the number of retained samples Ṽ(ηn), n0 = Int(η/Δη) is the index of the
sample nearest (on the left) to the point Q, η ¼ pΔη, N = N00 � N0, and

ηn ¼ nΔη ¼ 2πn= 2N00 þ 1ð Þ; N00 ¼ Int χN0ð Þ þ 1; N0 ¼ Int χ0Wη

� �þ 1 (163)

It must be stressed that small variations of η correspond to very large changes of ϕ
in the neighborhood of the poles (ϑ = 0 and ϑ = π), so that, when interpolating the
voltage in these zones, the enlargement bandwidth factor χ0 must be properly
increased to avoid a significant growth of the band limitation error.

Near-Field Antenna Measurement Techniques 2157



The expansion (Eq. 162) can be used to determine the “intermediate samples,”
namely, the reduced voltage values at the intersection points between the meridian
curve passing through the observation point P and the spiral. Once they have been
determined, the voltage at the point P can be recovered by means of the following
OSI expansion:

V ξ ϑð Þ,φð Þ ¼ e�jγ ξð Þ Xm0þq

m¼m0�qþ1

~V ξmð ÞΩM ξ� ξm, ξ
� �

DM00 ξ� ξmð Þ (164)

where 2q is the number of retained intermediate samples Ṽ(ξm), m0 = Int [(ξ � ξ0)/
Δξ] is the index of the sample nearest (on the left) to the point P, M = M00 � M0,
ξ ¼ qΔξ, and

ξm ¼ ξm φð Þ ¼ kφþ mΔξ ¼ ξ0 þ mΔξ (165)

Summary

The aim of this chapter is to provide a complete description of the NF antenna
measurement techniques to students, junior engineers, researchers, and physicists
that wish to tackle such a topic. To this end, a wide introduction resumes the state of
the art by supplying also a rich and updated bibliography. Then, the classical NF-FF
transformations with plane-rectangular, cylindrical, and spherical scannings, in their
probe-uncompensated and probe-compensated versions, are summarized by
pointing out their advantages and drawbacks. Moreover, some analytical details on
the wave expansions commonly employed to represent the antenna field in the
region external to it are reported in order to enable the interested reader to achieve
a more in-depth knowledge of the topic. The nonredundant sampling representations
of the electromagnetic fields are then introduced, highlighting how their application
to the NF-FF transformations with conventional scannings allows a drastic measure-
ment time reduction with respect to the classical ones, without any loss in accuracy
of the FF reconstruction. At last, the NF-FF transformations using innovative spiral
scannings, which allow a further measurement time saving by exploiting continuous
and synchronized movements of the positioning systems, are described. They
employ efficient sampling representations to accurately reconstruct the probe voltage
on a quite arbitrary rotational surface from a nonredundant number of its samples
collected on a proper spiral wrapping it.
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