Collision Detection Using Axis Aligned
Bounding Boxes

Panpan Cai, Chandrasekaran Indhumathi, Yiyu Cai, Jianmin Zheng,
Yi Gong, Teng Sam Lim and Peng Wong

Abstract Collision detection plays a critical role in real-time applications such as
game, simulation, and virtual reality. Collision avoidance is important in robotics
path planning. Industrial safety, especially in construction and building, has a close
linkage with the concept of contact avoidance. This chapter is interested in the
investigation of collision detection problem using hardware graphics acceleration.
Axis aligned bounding boxes (AABB) technique will be applied also for fast
collision detection.

Keywords Axis aligned bounding boxes - Collision detection - Simulation

1 Introduction

Collision detection plays a critical role in real-time applications such as game,
simulation, and virtual reality. Collision avoidance is important in robotics path
planning. Industrial safety, especially in construction and building, is closely
related to contact avoidance. High-accuracy and real-time collision detection for
physically based simulations is often computationally expensive (Fauer et al.
2008). Apart from making the simulation more intelligent and realistic, the col-
lision detection engine is also the basis of many applications such as collision
response and haptic feedback.

Usually, collision detection algorithms are divided into two phases: the broad
phase and the narrow phase (Govindaraju et al. 2003). The broad phase aims at

P. Cai - C. Indhumathi - Y. Cai (X)) - J. Zheng
Nanyang Technological University, Singapore, Singapore
e-mail: myycai @ntu.edu.sg

Y. Gong - T. S. Lim - P. Wong
PEC Limited, Jurong, Singapore

Y. Cai and S. L. Goei (eds.), Simulations, Serious Games and Their Applications, 1
Gaming Media and Social Effects, DOI: 10.1007/978-981-4560-32-0_1,
© Springer Science+Business Media Singapore 2014

2 P. Cai et al.

culling possible colliding pairs or groups. An acceleration data structure called
bounding volume hierarchies (BVH) is frequently used to perform the culling
(Gottschalk et al. 1996; Tang et al. 2010, 2011). Spatial hierarchical structures
such as Octrees (Hunter 1978; Jung and Gupta 1996; Zhou et al. 2010) are also one
of those famous acceleration tools. The narrow phase often contains primary
interference checks (Govindaraju et al. 2003; Tang et al. 2010, 2011; Ericson
2005) using direct primary tests, separating axes tests, separating plane tests, or
proximity tests. As the set of candidate triangles can be very large, traditional
narrow phase algorithms are often computationally intensive and time-consuming.

To speed up the algorithms, attempts in developing parallelized collision
detection algorithms have been made using multi-core CPUs (Tang et al. 2010)
and distributed computers. But none of these platforms could have a stronger
parallelization power as modern GPUs do. Researchers such as Fauer and Gov-
indaraju have investigated the potential of relying on GPU platforms to speed up
collision detection and have achieved impressive results (Fauer et al. 2008;
Govindaraju et al. 2003; Heidelberger et al. 2003). GPUs have a nature parallel-
styled design with tremendous computational horsepower and high memory
bandwidth to support graphic applications such as shading and rendering (NVIDIA
2010). In order to meet the requirement of more complex general processing and
computing, GPUs evolves into General Purpose GPUs (GPGPUs). GPGPUs pro-
vide a functional complete set of operations which works on data of arbitrary
length. With parallel computing language libraries like CUDA C provided by
NVIDIA, programmers are able to allocate GPU memories and run parallel
functions called “kernels” in a C/C++ like environment (NVIDIA 2010; Sanders
and Kandrot 2011). These new hardware and software designs have brought
enormous prosperousness to GPU-enabled computing and processing including
collision detection.

Most of the hardware-assisted image-space collision detection methods make
use of OpenGL buffers such as depth buffer, stencil buffer, and color buffer (Baciu
et al. 1999, Vassilev et al. 2001). But these methods require data read-back, which
is often time-consuming due to the asymmetric accelerated graphics port buses in
common graphic cards. Moreover, these methods can only be applied in convex
objects. Cai et al. (2006) proposed an image-space method using multiple pro-
jections to handle convex objects. But the algorithm relies highly on the shape of
objects. To achieve correct collision results for complex shapes, the number of
projection screens required could be very large.

The collision detection algorithm that will be used in this research addresses the
following points:

(1) Correctly and efficiently handling arbitrary shapes;

(2) Avoid data read-back in the collision detection process;

(3) Use a single rasterization process to perform collision detection for each
component; and

(4) Obtain collision position information during the collision detection process.

Collision Detection Using Axis Aligned Bounding Boxes 3

7 System Architecture

N
R

Microsoft Visual C++

Interactive Devices |

| |
| Central Processing Unit | | Sl bt ol) |
| Microsoft Fundation Classes |
CUDA Enabled GPU | I e I
— 4
(Engines) Supporiing Methodologies
| Engines

_ | Object Modeling |
Modeling

| Bounding Box and Bounding Box Hierachies |

Visualization

| Shading and Rendering Application |

Interaction

GPU Accelerated Collision Detection |

Ll

Optimization |

User Interface Design

Fig. 1 Simulation system architecture

2 Collision Detection Supported Simulation System Design

Figure 1 illustrates the overall system structure for simulation application which
consists of three components: hardware, software, and methodology.

2.1 Hardware Component

The fundamental computer hardware used for the system development is a work-
station equipped with 1. 86 GHz Intel Core 2 Duo processor E6300 and 4 GB system
memory based on windows operating system. The basic simulation operations
include modeling, visualization and interactions using central processing unit
(CPU). The most challenging aspect to develop a simulator is the efficient real-time
collision detection. The use of GPU in collision detection can significantly improve
the performance of the simulator. In our system design, CUDA enabled GPU

4 P. Cai et al.

accelerated computing is achieved by using NVIDIA GeForce GTX 560Ti graphic
card with 1 GB graphic memory. With 8 multiprocessors and 384 CUDA cores,
GeForce GTX 560Ti card provides exceptional performance in real-time scientific
rendering and processing. Users are able to launch at most 1,024 threads in a block
with a maximum of 65,535 blocks per dimension in a grid.

2.2 Software Component

We develop real-time simulator using Visual C++ compatible on both Windows
XP and Windows seven platforms. Open Graphic Library (OpenGL) is used as the
Graphic Library for the purposes of model transformation, rasterization and dis-
play. Microsoft Foundation Class (MFC) is used for designing the Graphical User
Interface (GUI). CUDA is a parallel programming platform supported by NVIDIA
graphic cards which enable dramatic increases in computing performance by
harnessing the power of the GPU. GPU-based collision test algorithms are
developed using CUDA C\C++ in order to optimize the real-time performance.

2.3 Engines and Supporting Methodologies

We have four engines developed taking care of modeling, visualization, interac-
tion, and optimization.

2.3.1 Modeling Engine

Any simulation model is constructed using the standard geometric modeling tech-
niques. To optimize the collision detection, rendering, and visualization processes, a
hierarchical scene graph is built for the virtual object model from which parameters
for users’ interaction may be deduced. A scene graph is a tree structure that represents
objects or nodes in an order defined by the tree layout. A hierarchical tree structure
makes modeling easier because it allows one to construct scene elements based on a
hierarchy of objects. By inheriting a coordinate system from their parents, the chil-
dren automatically follow their parent when the parent is moved. Figure 2 shows a
two-party simulation system with the hierarchical tree structure representing each
party of object models. Objects are organized into two groups: Party-1 and Party-2.
Each of the groups has several components of objects either static or dynamic.

2.3.2 Visualization Engine

3D objects are represented in triangular (polygonal) meshes. The entire vertex
coordinates and the vertex indices of triangular faces are extracted from input files

Collision Detection Using Axis Aligned Bounding Boxes 5

- Geometry

@ Transform
]

Fig. 2 Illustration of hierarchical tree structure of the two parties

and organized into triangular form to define the geometry of each object. Our system
uses the OpenGL to render the 3D object models represented by triangular meshes.

2.3.3 Interaction Engine

Interaction relies on both software and hardware devices. Virtually all interactive
devices can be used in the simulation. Selected interactive devices are identified due
to the functions required for the simulation purpose. On top of that an interactive
GUI is designed using MFC which provides a friendly and convenient manner for
users to perform control or manipulation. Typical graphical interactions will include

6 P. Cai et al.

(1) Translation

(2) Rotation

(3) Scaling

(4) Viewpoint changes (Iso view, front view, side view, etc.)
(5) Undo and redo

(6) Navigation or steering

Along with mouse and keyboard, joystick is also used as input device for our
simulation. Generally, joystick device is more suitable for manipulation and
transformation providing an interactive experience closer to reality.

2.3.4 Optimization Engine

Parallel features of GPU are explored to speed up the simulator, especially the
collision detection engine. The whole collision detection algorithm is implemented
in GPU exploiting its capability in rasterization, image compaction, and parallel
sorting. Although parallel feature of GPUs is very powerful, performance of the
algorithm is still restricted by issues such as huge GPU memory usage caused by
high rasterization resolution. To solve this problem, bounding boxes and bounding
box hierarchies are introduced to reduce the number of candidate triangles and
diminish the raster image size before the rasterization stage. Axis Aligned
Bounding Boxes (AABBs) (Ericson 2005) are built for all objects and a bounding
volume hierarchy (BVH) is constructed for some object models if needed. As the
BVH (Ericson 2005) for the objects contains both AABBs and Oriented Bounding
Boxes (OBBs), we name it as a “hybrid BVH.”

3 GPU-Enabled Collision Detection

The main idea of the collision detection algorithm is to cast vertical sample rays
from a chosen plane and investigate object intersections along the rays to estimate
the situation of the scene (Ericson 2005). The process is implemented by raster-
ization application and the “Sort_Search_Pair” algorithm described in Sect. 3.4.

3.1 Algorithm Overview

The work flow of the GPU collision detection algorithm is as follows:

(1) Update transformation matrices, AABBs and the Party-2 distance array;

(2) Filter Party-2 objects according to the distance map;

(3) Do collision checks between filtered Party-2 objects and the hybrid BVH of
the Party-1 objects.

Collision Detection Using Axis Aligned Bounding Boxes

The process of the third step is stated in the following diagram:

Algorithm 1 : Fseudo-code of step 3 in the algorithm overview

for (each layer of the hybrid BVH)
{

Launch Kernell, thd, work on Object,in O, (set of Party-2 objects) and 44BB, in A, (set of Par-

ty-2 AABBs)
if (44BB, not intersect with the Party-1 component AABB in the current node)
{
Remove Object, from O, ;
Remove AABB, from 4, ;
}
}
if (O, is empty)
{
Report "No Collision";
break for;
}
else
{

Launch Kernel2, thd, works on Object, in O,and AABB,in A,

if (44BB, not intersect with the Party-1 component OBB linked to the

node)

{
Remove Object, from O ;
Remove AABB, from 4 ;

}

if (O, is empty)
continue for;

else

{
Store triangles of objects in O, into 7 ;
Launch Kernel3, thd, works on Triangle,in T,

{
if (Triangle, does not intersect with the Party-1 component OBB linked to
current node)
Remove Triangle, from T, ; Compact 7 ;
}

}

if (7. is empty)
continue for;

else

{

current

the

Combine 7, and triangles from Party-1 component mesh data linked with the current

node into 7, (set of candidate triangles);
Pre-rasterize triangles in 7'; (see Section 2.3.4)
Rasterize triangles in 7.;
Launch the "Sort_Search_Pair" algorithm (see Section 2.3.4);
if (collision detected)
Report ObjectID and TrianglelD;
else
continue for;

8

P. Cai et al.

3.2 Collision Detection Data Sets

With a big collection of stream processors, the Single Instruction Multiple Data
(SIMD) model of GPU (NVIDIA 2010) has significant advantages in processing
uniformly represented data. Thus, in this collision detection algorithm, geometric
mesh data, bounding boxes, and transformation matrices are stored as GPU styled
linear data sets (Fig. 3).

ey

2

3

“

®)

Fig.
collision detection engine

Linear data sets included in the algorithm are:

Party-1 Vertex Set: The coordinates of vertices in the Party-1 object mesh
data.

This set is static as the transformations are represented in the matrix streams
defined later.

Party 1 AABB Set and Party-1 OBB Set: The corresponding information about
AABBs and OBBs maintained for components of the Party-1 objects.

The OBBs will not change once built but the AABBs need to be updated at
each rendering time step;

Party-1 Matrix Set: The transformation matrices for Party-1 components
dynamically modified from user manipulation.

Vertices in the Party-1 vertex set and OBB information in the Party-1Matrix
Set are multiplied by corresponding matrices before use.

Party-2 Vertex Set: The coordinates of vertices in Party-2 object mesh data.
These vertices will also not be changed during the whole lifespan of the
simulation.

Party-2 AABB Set and Party-2 Distance Set: AABB representations and
Distance value from the center of AABB to the center of Party-1 objects.
These two sets serve as initial sifters for candidate triangles for rasterization.

3 Linear data sets in the [\
Data Sets

Party-1 Triangle Party-2Triangle Set
Set

Party-1 AABB Set Party-2 AABB Set

Party-2 Distance
Set

Party-1. OBB Set

Party-1 Matrix Set Party-2 Mafrix Set

Rasterized Image

Collision Detection Using Axis Aligned Bounding Boxes 9

(6) Party-2 Matrix Set: The transformation matrices for Party-2 objects.
The function of this set is similar to the Party-1 Matrix Stream.

(7) Candidate Triangle Set: Vertex references, ID of the objects that the triangles
belong to, ID of the triangles in the related objects.

(8) Rasterized Image Set: The image data prepared for rasterization result.
The size of the image may change for different Party-1 components.

3.3 Updating the Hybrid BVH

As stated in the algorithm overview, the hybrid BVH is used to cull Party-2 objects
and triangles in Party-2 object meshes. The overall structure of the hybrid BVH is
a tree with one AABB node and one OBB node at each layer as child nodes of the
AABB node in the previous layer. Geometric primitives of Party-1 components are
linked to their OBB nodes. The sequence of OBBs in each layer is pre-defined
regarding the properties of these Party-1 components. AABBs in layers are built
for the set of Party-1 components down from the current layer. The structure of the
hybrid BVH is shown in Fig. 4.

AABB2 Party-1 Dynamic Objectm

Party-1 Dynamic Object...
_""‘--..
Party-1 Dynamic Object5

OBB Party-1 Dynamic Objectd

OBB —— Party-1 Dynamic Object3

— Party-1 Dynamic Object2

Party-1 Dynamic Object1

Fig. 4 The hybrid BVH of the crane. Red blocks stand for the AABB of the set of all Party-1
components (from object 1 to object m) in lower layers. Blue blocks stand for the OBB of the
Party-1 component linked to the blue boxes

10 P. Cai et al.

In the BVH updating process, OBBs are first transformed by transformation
matrices recording its current direction and location. Then, the system will start the
tree traversal to update AABBs via querying for maximum and minimum values of
OBB vertices. This can be done in a single query as if we start the search from the
bottom in the scene graph shown in Fig. 2.

3.4 Rasterization and the “Sort_Search_Pair” Algorithm

The specially designed rasterization process is the core of the GPU collision
detection algorithm. The work flow of it is shown in Fig. 5. Data sets related here
are the candidate triangle set and the pixel image set.

First, all the candidate triangles are transformed into the rasterization plane
aligned coordinate system. Then a projection matrix is applied on triangle vertices
to get their position on the rasterization plane. Depth information is also corre-
spondingly computed.

Collision Detection Work Flow for Filtered Triangles

=

N (A
/AN A\
;;-" \\\3 G/_,-"\:\IS
e N asterizatiol
Filtered \ (\
Party-2
! Party-2 I
Triangles Rasterization
Candidate Daje Sty
Triangles
TID1|OID1 |DEPTH1
TID2|0ID2|DEPTH2
Party-1
Component 2
Triangles i
TIDn|OIDn |DEPTHN

!’ﬁng_Search_g
Rasterized Image
Report Detection Result (/

Fig. 5 The rasterization-based collision detection process for filtered Party-2 triangles

Collision Detection Using Axis Aligned Bounding Boxes 11

In the second step, edge equations of candidate triangles are computed. Func-
tionality of edge equations is to decide the relationships between pixel center
points and triangles. Then, for each triangle, a block-shaped GPU parallel kernel is
launched for the planar AABB of projected triangle vertices. The algorithm will
decide whether pixels in the AABB region are in the overlapped zone of the
considered triangle. If the center of a pixel is inside the triangle, the triangle ID,
object ID information, and interpolation depth are stored in the corresponding
positions in the rasterized image. This stage is referred to as the pixel rasterization
stage.

As the numbers of triangles intersecting pixels are not uniform, deciding the
size of required memory for the rasterizaed image is a problem. Our solution is to
introduce a pre-rasterized process conducted before the pixel rasterization stage to
count the amount of triangles overlapping each pixel. Memory needed for ras-
terization can then be allocated according to the counted result.

The last step is the “Sort_Search_Pair” algorithm which is denoted in Algo-
rithm 2 below:

Algorithm 2: Pseudo-code of the "Sort_Search_Pair" Algorithm
Launch Kernel, thd,, works on pixel,; in image I (defined in Algorithm 1.1)

{

Sort the data array d,, linked to pixel,; by descending depth value;
index €1;
flag < 1;
while (index is no larger than the length of d,)
{
if (d” [index).ObjectID (see in Algorithm 1.1) belongs to Party-1)
Slag €—flag ;
else
{
if (flag equals -1)
It
18
Output d, [index].ObjectID ;
Output d, [index).TrianglelD ;
break for;

}

index € index+1,

}

Report “no collision in pixel, ”;

-

4 Results

The collision detection part in the interaction engine is not fully implemented yet.
Shown in Fig. 6 are some simple collision detection results using the described
image-space algorithms for rasterization and collision detection. The blue boxes
are Party-1 component and the gray ones denote Party-2 objects. The blue image at
the bottom-right corner indicates the rasterized image with the red portion

12 P. Cai et al.

(a) (b)

Fig. 6 Simple image rasterization and collision detection results. The blue box is one of the
Party-1 components and the gray box denotes a Party-2 object. The blue image in the bottom-

right corner indicates the rasterized image with the red portion referring to collision regions:
a and (b) Collisions detected between the Parties; ¢ and (d) Situations with no collision

referring to collision regions. Figures 6a, 6b show the cases where the Party-1
component collides with the Party-2 object, while Fig. 6¢, 6d shows situations
with no collision involved. The blue line in the red region is the overlapping of
adjacent triangles in the blue box.

Collision Detection Using Axis Aligned Bounding Boxes 13

5 Conclusion

In this chapter we investigate the collision detection problem focusing on the use
of AABBs technique and the GPU acceleration. Basic issues of simulation mod-
eling, visualization, interaction and user interface are discussed as well. The
modeling and hierarchical structure described here enables real-time computing
benefiting from the latest GPU hardware acceleration. In particular, image-based
algorithm with a hybrid BVH and distance set implemented in GPU is introduced
to accelerate collision detection.

There are many applications for collision detection. Robotic path planning is an
issue of collision avoidance. Real-time collision detection plays a central role in
game, simulation, animation, and computer graphics.

In the future, we will optimize the data structure and the rasterization process to
improve the efficiency and numerical accuracy. Implementation of the collision
detection engine will be further modified for different industrial needs. Other
minor issues such as rasterization plane choosing strategy might be altered to
achieve better performance.

References

Baciu G, Wong W, Sun H (1999) RECODE: an image-based collision detection algorithm. J Vis
Comput Anim 10(4):181-192

Cai Y, Fan Z, Wan H, Gao S, Lu B, Lim K (2006) Hardware-accelerated collision detection for
3D virtual reality games. Simul Gaming 37(4):476-490

Ericson C (2005) Real-time collision detection. Published in, Elsevier

Fauer F, Sebastien B, Jeremie A, Florent F (2008) Image-based collision detection and response
between arbitrary volume objects. Eurographics 2008:155-162

Govindaraju N, Redon S, Lin M, Manocha D (2003) CULLIDE: Interactive collision detection
between complex models in large environments using graphics hardware. Graph Hardware
2003:25-32

Gottschalk S, Lin M, Manocha D (1996) OBBTree: A hierarchical structure for rapid interference
detection. In Proc. of ACM SIGGRAH’96, pp 171-180

Heidelberger B, Teschner M, Gross M (2003) Real-time volumetric intersections of deformable
objects. In Proc Vision Model Vis 2003:461-468

Hunter G (1978) Efficient computation and data structure for graphics. Department of Electrical
Engineering and Computer Science, Princeton University, Princeton, NJ Ph.D. dissertation,
usS

Jung D, Gupta K (1996) Octree-based hierarchical distance maps for collision detection. Int Proc
Robot Autom 1996:454-459

NVIDIA (2010) NVIDIA CUDA C Programming Guide. NVIDIA CUDA™

Sanders J, Kandrot E (2011) Cuda by example: an introduction to general-purpose GPU
programming. NVIDIA Corporation

Tang M, Manocha D, Tong R (2010) Multi-core collision detection between deformable models
using front-based decomposition. Graph Models 72(2):7-23

Tang M, Manocha D, Lin J Tong R (2011) collision streams: fast GPU-based collision detection
for deformable models. Symposium on interactive 3D graphics and games, pp 63-70

14 P. Cai et al.

Vassilev T, Spanlang B, Chrysanthou Y (2001) Fast cloth animation on walking avatars. Comput
Graph Forum 20(3):260-267

Zhou M, Gong M, Huang X, Guo B (2010) Data-parallel octrees for surface reconstruction. IEEE
Trans Visual and Comput Graphics voi no. pp 669-681

	1 Collision Detection Using Axis Aligned Bounding Boxes
	Abstract
	1…Introduction
	2…Collision Detection Supported Simulation System Design
	2.1 Hardware Component
	2.2 Software Component
	2.3 Engines and Supporting Methodologies
	2.3.1 Modeling Engine
	2.3.2 Visualization Engine
	2.3.3 Interaction Engine
	2.3.4 Optimization Engine

	3…GPU-Enabled Collision Detection
	3.1 Algorithm Overview
	3.2 Collision Detection Data Sets
	3.3 Updating the Hybrid BVH
	3.4 Rasterization and the ‘‘Sort_Search_Pair’’ Algorithm

	4…Results
	5…Conclusion
	References

