
Chapter 3
Phenomenology and Scaling Theories

Abstract The statistics of the velocity and temperature differences, between mea-
surements taken at two points separated by a distance l, can reveal the structure of
turbulence. These structure functions often exhibit power laws or scaling laws in l.
We introduce the important concept of energy cascade in turbulent flows and the
different theories for the scaling behavior of the velocity and temperature fluctu-
ations. We start with the scaling theory for non-buoyant turbulent flows and then
discuss how the presence of buoyancy would affect and modify the scaling behavior.
A crossover between the two types of scaling behavior is expected to occur at a length
scale, the Bolgiano length, above which buoyancy is significant. Furthermore, there
are corrections to these scaling theories due to the intermittent nature of turbulent
fluctuations, and we discuss the idea of refined similarity hypothesis used to account
for these corrections.

Keywords Energy cascade · Kolmogorov scaling · Four-fifth law · Obukhov–
Corrsin scaling · Bolgiano–Obukhov scaling · Bolgiano length

3.1 Richardson’s Energy Cascade

One important concept of fluid turbulence is the energy cascade introduced by
Richardson [1]. Turbulent flows are dissipative thus energy input by external forces
is required to maintain a turbulent fluid flow. The characteristic scale of this energy
input is typically of the size of the system, known as the integral scale, denoted by l0.
On the other hand, the characteristic scale of energy dissipation by viscous effects,
known as the dissipative scale and, denoted by ld , is much smaller than the integral
scale. As a result, there must be a transfer of energy from large to small scales. A
transfer of energy between scales indicates an interaction between the Fourier modes
of velocity of different wave numbers or scales. This is possible because of the non-
linear advection term �U · �∇ �U in the Navier–Stokes equation. Richardson pictured this
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energy transfer as a cascade process. Large eddies of the integral scale are produced
by the external forces. They are unstable due to the nonlinearity of the dynamics and
break up into eddies of smaller scale. These smaller eddies are themselves unstable
and break up into eddies of even smaller scale. This process continues until dis-
sipative effects due to viscosity are significant, and the turbulent kinetic energy is
then dissipated into heat. This picture of energy cascade is succinctly summarized
in Richardson’s famous rhyme [1]:

Big whorls have little whorls
Which feed on their velocity
And little whorls have lesser whorls
And so on to viscosity
(in the molecular sense)

An inherent feature of the cascade picture is that the energy transfer among scales
is local, that is, the effective energy exchange between modes of different wave
numbers decreases as the ratio of the wave numbers increases. It is expected that
the statistics at the integral scale are determined by the mechanism of energy input
and would vary from flow to flow. Because of the locality of the energy transfer, the
statistics at small scales, scales further down the cascade and far from the integral
scale, are not directly influenced by the mechanism of energy input. Thus this locality
feature of the energy cascade allows for the possibility of universal characteristics
for the statistics of small scales.

3.2 The Kolmogorov 1941 Theory

Based on Richardson’s energy cascade, Kolmorogov developed in 1941 a phenom-
enological theory (K41) [2] for the statistics of velocity difference,

δ �U (�r , �l) ≡ �U (�r + �l, t) − �U (�r , t) (3.1)

measured at the same time and at two positions separated by a displacement vector �l.
There are several hypotheses in the K41 theory. We shall focus on two of them. The
first one is an assumption of statistical homogeneity and isotropy of the small-scale
turbulent motion when, the Reynolds number (Re) is sufficiently high and far from
the boundaries. For statistically homogeneous fluctuations, δU (�r , �l) = δu(�r , �l) as
〈 �U (�r , t)〉 = 〈 �U (�r + �l, t)〉. Thus under this hypothesis, the statistics of δ�u(�r , �l) do
not depend on �r nor the direction of �l but depend only on l = |�l| for l � l0. The
second assumption is that under the same conditions stated in the first assumption,
there exists a range of intermediate length scales in which the statistics of δ�u(l) are
uniquely and universally determined by the mean energy transfer rate and l. This
range of intermediate length scales, ld � l � l0, is known as the inertial range. The
locality of energy cascade makes it possible that the statistics in the inertial range to
be universal. The mean energy transfer rate is equal to the mean energy dissipation
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rate as well as to the mean energy input rate. The mean energy dissipation rate is
given by 〈ε〉, where ε(�r , t) is defined by Eq. (1.29), and the ensemble average, can
be taken as the spatial average in statistically homogeneous turbulent flows.

Using these two hypotheses and dimensional analysis, one therefore obtains

〈δ�u(l) · δ�u(l)〉 = C〈ε〉2/3l2/3 (3.2)

where C is a universal constant. Since

〈δ�u(l) · δ�u(l)〉 = 2[〈�u · �u〉 − 〈�u(�r + �l, t) · �u(�r , t)〉] (3.3)

we obtain

〈δ�u(l) · δ�u(l)〉 = 4

∞∫

0

E(k)

[
1 −

(
sin kl

kl

)]
dk (3.4)

using Eq. (2.55). As a result, Eq. (3.2) is equivalent to the result that the spatial
energy spectrum E(k) follows a k−5/3 law over a suitable range of wave number k.
There is good experimental support for the −5/3 power-law in the energy frequency
spectrum E( f ) (see [5] for details). Similar arguments can be applied to give higher-
order statistics of δ�u(l). The longitudinal velocity difference along the direction of
the separation, denoted by δu‖(l), is given by

δu‖(l) ≡ δ�u(l) · �l
l

(3.5)

Then we have
Sp(l) ≡ 〈[δu‖(l)]p〉 = C p〈ε〉p/3l p/3 (3.6)

for arbitrary p > 0. Here, Sp(l) is known as the longitudinal velocity structure
function of order p. A power-law dependence of Sp(l) on l indicates that the inertial-
range turbulent statistics are scale-invariant and Eq. (3.6) is a statement of the K41
scaling. For p = 3, an exact result can be derived from the Navier–Stokes equation
for statistically homogeneous and isotropic flows:

S3(l) = −4

5
〈ε〉l (3.7)

This exact result is known as the four-fifth law and was derived by Kolmogorov also
in 1941 [3]. It is one of the very few exact results for turbulent flows, and will be
discussed in details in the next section.

In the above discussion, the K41 scaling is obtained by dimensional analysis based
on the requirement that in the inertial range Sp(l) depends only on 〈ε〉 and the scale
l. Thus we have the same scaling behavior for the velocity structure function using
δu(l) = |δ�u(l)|:

http://dx.doi.org/10.1007/978-981-4560-23-8_1
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Su
p(l) ≡ 〈[δu(l)]p〉 ∼ 〈ε〉p/3l p/3 (3.8)

The K41 scaling can also be obtained by the requirement that the rate of energy
transfer (per unit mass) is scale-independent in the inertial range. To see this, think
of δu(l) as the velocity of a turbulent eddy of scale l. The energy transfer rate (per
unit mass) at scale l can be estimated as [δu(l)]2/tl . Here, tl , known as the eddy
turnover time, is the typical time for the eddy of size l to deform or change in energy,
and can be estimated as tl = l/δu(l). Requiring the rate of energy transfer to be
independent of scale l implies [δu(l)]3/ l ∼ const but the mean energy transfer rate
has to be equal to the mean energy dissipation rate thus const = 〈ε〉, hence

[δu(l)]3

l
∼ 〈ε〉 (3.9)

This gives
δu(l) ∼ 〈ε〉1/3l1/3 (3.10)

which further implies Eq. (3.8).
The dissipative scale ld can be estimated as the scale at which the rate of dissipation

due to viscosity is comparable to 〈ε〉:

ν

[
δu(ld)

ld

]2

∼ 〈ε〉 (3.11)

Then take ld to be at the edge of the inertial range such that Eq. (3.10) holds at
l = ld . Eliminating δu(ld) from Eqs. (3.10) and (3.11) gives ld ∼ (ν3/〈ε〉)1/4. The
Kolmogorov dissipative scale ηK is defined as:

ηK ≡
(

ν3

〈ε〉
)1/4

(3.12)

and typically ld is of the order of 10ηK .
Denote the normalized velocity difference by Yl :

Yl ≡ δu(l)

〈[δu(l)]2〉1/2 (3.13)

An important consequence of Eq. (3.8) is that all the moments of Yl are independent
of l. This l-independence follows directly from the proportionality of the scaling
exponents p/3 of Su

p(l) to p, and further implies that the PDF of Yl is indepen-
dent of l. Thus the K41 theory predicts that the statistics of inertial-range turbu-
lent velocity fluctuations are scale-independent and thus self-similar. Experiments
confirmed the power-law dependence or scaling of Su

p(l) but show that the scaling

exponents, defined by Su
p(l) ∼ lζ(p), depend on p in a nonlinear fashion. This devia-
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tion of the scaling behavior from the K41 prediction is known as anomalous scaling.
Furthermore, the discrepancy between the observed scaling exponents ζ(p) and the
predicted values of p/3 is known as intermittency corrections as the origin of the
correction is believed to be due to the intermittent nature of turbulent fluctuations.
The problem of anomalous scaling is a longstanding problem of turbulence and is
remained to be solved. We shall discuss one particular idea, the refined similarity
hypothesis, proposed by Kolmogorov and Obukhov in Sect. 3.7.

3.3 The Four-Fifth Law

We show in detail the derivation of the exact four-fifth law. We shall follow the
treatment in [4] and [5]. In this subsection, we denote ∂/∂t and ∂/∂ri by ∂t and ∂i ,
and adopt the Einstein notation of summation over repeated indices. We write the
Navier–Stokes equation Eq. (1.1) with an external force in component form:

∂tUi + Uk∂kUi = −1

ρ
∂i p + ν∂2

k Ui + fi (3.14)

Here, ρ �f is the external force per unit volume. Denote quantities evaluated at �r ′ =
�r + �l by the same notations with a prime, e.g., U ′

i ≡ Ui (�r ′, t), and ∂/∂r ′
i by ∂′

i .
Then taking the ensemble average of the product of U ′

j with Eq. (3.14) and Ui with
Eq. (3.14) for U ′

j , we have

∂t 〈UiU
′
j 〉 = −∂k〈UkUiU

′
j 〉 − ∂′

k〈U ′
kU ′

jUi 〉 − 1

ρ
∂i 〈U ′

j p〉 − 1

ρ
∂′

j 〈Ui p′〉
+ ν(∂2

k + ∂′2
k )〈UiU

′
j 〉 + 〈U ′

j fi 〉 + 〈Ui f ′
j 〉 (3.15)

Here, we have used the interchangeability of taking derivative and ensemble average,
incompressibility, and the derivative of primed quantities with respect to unprimed
coordinates vanishes.

Consider turbulent flows that are statistically homogeneous and isotropic. Because
of homogeneity and isotropy, the averages of the product of primed and unprimed
quantities depend only on l = |�r ′ − �r |. Therefore,

∂i 〈·〉 = −∂′
i 〈·〉 = −∂li 〈·〉 (3.16)

Thus
〈U ′

j p〉 = g(l)n j (3.17)

for some function g(l) and n j ≡ l j/ l. Incompressibility implies 0 = ∂′
j 〈U ′

j p〉 =
∂l j 〈U ′

j p〉, and using

http://dx.doi.org/10.1007/978-981-4560-23-8_1
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∂li = ∂l

∂li
∂l = ni∂l , ∂li = ∂nk

∂li
∂nk = 1

l
(δik − ni nk)∂nk (3.18)

we get
dg(l)

dl
+ 2

l
g(l) = 0 ⇒ g(l) = const

l2 (3.19)

But g(l) has to be finite at l = 0 thus const = 0 giving g(l) = 0 or 〈U ′
j p〉 = 0.

Similarly, 〈Ui p′〉 = 0. Define the velocity correlation and structure functions as
follows.

bi, j = 〈UiU
′
j 〉 (3.20)

Bi j = 〈(U ′
i − Ui )(U

′
j − U j )〉 (3.21)

bi j,m = 〈UiU jU
′
m〉 (3.22)

Bi jm = 〈(U ′
i − Ui )(U

′
j − U j )(U

′
m − Um)〉 (3.23)

Statistical homogeneity and isotropy imply that these functions depend only on l.
Moreover, 〈Ui (�r , t)U j (�r + �l, t)〉 = 〈Ui (�r − �l, t)U j (�r , t)〉 = 〈Ui (�r + �l, t)U j (�r , t)〉,
thus bi, j = b j,i is symmetric in the indices i and j . Therefore, the most general
forms for bi, j and bi j,m are:

bi, j = A(l)δi j + B(l)ni n j (3.24)

bi j,m = C(l)δi j nm + D(l)
(
δimn j + δ jmni

) + F(l)ni n j nm (3.25)

The form in Eq. (3.25) takes into account the symmetry in the indices i and j .
Homogeneity implies 〈U ′

jU
′
kUi 〉 = 〈U j (�r , t)Uk(�r , t)Ui (�r − �l, t), which is equal

to −b jk,i using Eq. (3.25). We write Eq. (3.15) for statistically homogeneous and
isotropic turbulent flows:

∂t bi, j = −∂k(bki, j + bkj,i ) + 2ν∂2
k bi, j + 〈U ′

j fi 〉 + 〈Ui f ′
j 〉 (3.26)

Using Eq. (3.26), a relation between the second- and third-order longitudinal velocity
structure functions can be derived and from this relation the four-fifth law follows.

As we are interested in the longitudinal structure functions, we let the x-axis be
along the direction of �l. Then we take i = j = 1 in Eq. (3.26) and obtain

∂t b‖,‖ = −2∂kbk‖,‖ + 2ν∂2
k b‖,‖ + 2

3
〈 �f · �U 〉 − 〈δ f‖δu‖〉 (3.27)

where δ fi = f ′
i − fi . The subscript ‖ denotes the component along the longitudinal

direction along �l and there is no summation over this direction. Next, we relate ∂2
k b‖,‖

to S2(l). Now S2(l) can be written as
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S2(l) = 〈δu2‖〉 = Bi j ni n j = 2

3
〈 �U · �U 〉 − 2b‖,‖ = 2

3
〈 �U · �U 〉 − 2(A + B) (3.28)

where we have used

〈U ′
i U

′
j 〉 = 〈UiU j 〉 = 1

3
〈 �U · �U 〉δi j (3.29)

Using Eqs. (3.16) and (3.18), we get

∂2
k bi, j =

(
d2 A

dl2 + 2

l

d A

dl
+ 2

l2 B

)
δi j +

(
d2 B

dl2 + 2

l

d B

dl
− 6

l2 B

)
ni n j (3.30)

The incompressibility condition gives 0 = ∂′
j bi, j , which implies

l

2

d

dl
(A + B) + B = 0 (3.31)

Thus
d S2

dl
= −2

d

dl
(A + B) = 4

l
B(l) (3.32)

and

∂2
k bi, j = −

(
d2 B

dl2 + 4

l

d B

dl

)
δi j +

(
d2 B

dl2 + 2

l

d B

dl
− 6

l2 B

)
ni n j

⇒ ∂2
k b‖,‖ = − 2

l4

d(l3 B)

dl
= − 1

2l4

d

dl

[
l4 d S2

dl

]
(3.33)

Then we relate ∂kbk‖,‖ to S3(l). The incompressibility condition gives 0 =
∂′

mbi j,m . Using again Eqs. (3.16) and (3.18), we get

[
dC

dl
+ 2

l
(C + D)

]
δi j +

[
2

d D

dl
+ d F

dl
+ 2

l
(F − D)

]
ni n j = 0 (3.34)

Thus

dC

dl
+ 2

l
(C + D) = 0 (3.35)

d(3C + 2D + F)

dl
+ 2

l
(3C + 2D + F) = 0 (3.36)

Equation (3.36) is obtained by taking the trace of Eq. (3.34). The functions C , D,
and F have to be finite at l = 0, thus

3C + 2D + F = 0 (3.37)
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We can then express D and F in terms of C and dC/dl:

D = −C − l

2

dC

dl
(3.38)

F = l
dC

dl
− C (3.39)

and obtain

bi j,m = Cδi j nm −
(

C + l

2

dC

dl

)
(δimn j + δ jmni ) +

(
l
dC

dl
− C

)
ni n j nm

(3.40)
Thus

S3(l) = 〈δu3‖〉 = Bi jmni n j nm (3.41)

= 2(bi j,m + bim, j + b jm,i )ni n j nm = −12C(l) (3.42)

where we have used 〈U ′
i U

′
jU

′
m〉 = 〈UiU jUm〉. Moreover,

− ∂kbki, j =
(

−2

l
C + 2

dC

dl
+ l

2

d2C

dl2

)
ni n j −

(
2

l
C + 3

dC

dl
+ l

2

d2C

dl2

)
δi j

⇒ −∂kbk‖,‖ = − 1

l4

d

dl
(l4C) = − 1

12l4

d

dl
(l4S3) (3.43)

Putting all the results together, we finally obtain

1

6l4

d

dl
(l4S3) − ν

l4

d

dl

(
l4 d S2

dl

)
= −2

3
〈ε〉 − 1

2
∂t S2 + 〈δ f‖δu‖〉 (3.44)

Here, we have used
1

2
∂t 〈 �U · �U 〉 − 〈 �f · �U 〉 = −〈ε〉 (3.45)

which follows from Eq. (3.14). For decaying turbulence, �f = 0 and ∂t S2 ≈ 0 for
l � l0. For stationary turbulence forced by �f that acts only at the largest scales,
∂t S2 = 0 and 〈δ f‖δu‖〉 ≈ 0 for l � l0. Thus for both cases, we have

1

6l4

d

dl
(l4S3) − ν

l4

d

dl

(
l4 d S2

dl

)
= −2

3
〈ε〉 (3.46)

for l � l0. In the limit of ν → 0, the viscous term is negligible. On the other
hand, it is assumed that 〈ε〉 remains finite in this limit. This implies that the velocity
gradients ∂ui/∂r j become unlimited as ν → 0 or as Re → ∞, which further
implies that vorticity is generated in turbulent flows and increases with Re. The
result that the dissipation remains finite as Re → ∞ is generally referred to as the
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“dissipative anomaly”, and is well supported by experimental and numerical results.
Thus in the limit of ν → 0, integrating Eq. (3.46) gives the four-fifth law Eq. (3.7).
We note that for stationary homogeneous and isotropic turbulence with �f acting over
all scales, we have the more general result [6]

S3(l) = −4

5
〈ε〉l + 6

l4

l∫

0

l ′4〈δ f‖(l ′)δu‖(l ′)〉dl ′ (3.47)

for l � l0.

3.4 The Obukhov–Corrsin Theory for Passive Scalar

Obukhov [7] and Corrsin [8] extended Kolmogorov’s 1941 theory to study tempera-
ture fluctuations in weakly-heated incompressible turbulent flows. The heating is so
weak that the resulted temperature variations have no dynamical effect on the turbu-
lent flow itself. As a result, the velocity field is still governed by the Navier–Stokes
equation. In this case, the temperature is known as a passive scalar. The equations of
motion are thus Eqs. (1.1) and (1.8). The Obukhov–Corrsin theory gives the statistics
of the temperature difference, defined by

δT (�r , �l) ≡ T (�r + �l, t) − T (�r , t) (3.48)

which is taken to be statistically homogeneous and isotropic. Besides the cascade
of turbulent energy, there is also a cascade of temperature variance from large to
small scales. The mean temperature dissipation rate is given by 〈χ〉, where χ(�r , t) is
defined in Eq. (1.30). In analogy to the K41 theory, the temperature variance transfer
rate, estimated by [δT (l)]2/tl , is scale-independent and thus equals to 〈χ〉 in the
intermediate inertial-convective range, the range of scales within the inertial range
where buoyancy is insignificant. That is,

[δT (l)]2δu(l)

l
∼ 〈χ〉 (3.49)

Together with Eq. (3.10) for δu(l), we obtain

δT (l) ∼ 〈ε〉−1/6〈χ〉1/2l1/3 (3.50)

and the Obukhov–Corrsin (OC) scaling for passive temperature fluctuations:

Sθ
p(l) ≡ 〈[δT (l)]p〉 ∼ 〈ε〉−p/6〈χ〉p/2l p/3 (3.51)

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
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Here, Sθ
p is known as the pth order temperature structure functions. Experiments

again confirm the power-law dependence but show that there are intermittency cor-
rections to the OC scaling such that Sθ

p(l) ∼ lξ(p) and ξ(p) deviates from p/3 [9].

3.5 The Bolgiano–Obukhov Scaling

In turbulent convection, temperature variations result in a buoyancy force that drives
the fluid motion, and temperature is now an active scalar. The presence of buoyancy
could affect and modify the scaling behavior. In several theoretical studies [6, 10–13],
arguments were given that buoyancy would give rise to a different scaling behavior:

Su
p(l)〉 ∼ (αg)2p/5〈χ〉p/5l3p/5 (3.52)

Sθ
p(l) ∼ (αg)−p/5〈χ〉2p/5l p/5 (3.53)

This type of scaling behavior, which is known as the Bolgaino–Obukhov (BO) scal-
ing, was originally proposed by Bolgiano [14] and Obukhov [15] for stably stratified
flows (see also discussions in [16]) based on dimensional analysis and the argument
that the velocity and temperature structure functions would depend only on αg, 〈χ〉
and l. Here, αg is the additional parameter that describes the strength of buoyant cou-
pling when buoyancy is significant. In turbulent Rayleigh–Bénard convection, the
BO scaling can be obtained based on a cascade of temperature variance (Eq. (3.49))
or a cascade of entropy flux [12] (for θ � T0,

∫
θ2d3x describes the entropy increase

per unit mass and volume due to the temperature fluctuations [13]) together with the
argument that the buoyant term dominates the dynamics and balances the nonlinear
advection term:

αgδT (l) ∼ [δu(l)]2

l
(3.54)

Equations (3.49) and (3.54) imply

δu(l) ∼ (αg)2/5〈χ〉1/5l3/5 (3.55)

δT (l) ∼ (αg)−1/5〈χ〉2/5l1/5 (3.56)

Then Eqs. (3.52) and (3.53) follow directly.

3.6 Crossover in Scaling

The BO scaling would hold only when buoyancy is significant. When buoyancy is
negligible, temperature behaves as a passive scalar and K41 and OC scaling would
hold. The buoyant term, estimated by αgδT (l)δu(l), increases with l. Thus one
expects a crossover from the K41-OC scaling to the BO scaling to occur at the
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crossover scale lc when
〈δu(lc)

BO〉 = 〈δu(lc)
K 41〉 (3.57)

Using Eqs. (3.10) and (3.55), we get

lc = 〈ε〉5/4

(αg)3/2〈χ〉3/4 ≡ L B (3.58)

Thus the crossover scale is given by L B , which is known as the Bolgiano length and
is the length scale above which buoyancy is important. The Bolgiano length was first
defined in terms of αg, 〈ε〉, and 〈χ〉 using dimensional analysis [16], Furthermore,
we have

αg〈δu(l)δT (l)〉 ≥ 〈ε〉 for l ≥ L B (3.59)

therefore L B is also the scale at which the power injected into the flow due to
buoyancy is equal to the mean energy dissipation rate [17]. Using the exact relations
Eqs. (1.41) and (1.42), L B can be related to Nu and Ra:

L B = Nu1/2

(PrRa)1/4 H (3.60)

Hence, the picture emerging from these scaling theories is that the BO scaling
is expected to hold in the buoyancy subrange, l0 � l > L B , while the K41-OC
scaling is expected to hold in the inertial-convective subrange, ld � l < L B . If L B

is of the order of l0 ≈ H or even larger, then only K41-OC scaling will be observed.
On the other hand, if L B is of the order of ld or even smaller, then only the BO
scaling would be observed [13]. However, there are two complications. The first
complication is that turbulent Rayleigh–Bénard convection is inhomogeneous. Thus
it is more appropriate to define a local crossover or Bolgiano length using the energy
and thermal dissipation rates averaged over the local region of interest. As a result, it
is possible that different scaling behavior is observed in different regions of the cell.
This will be discussed in Chap. 4 when we examine the scaling behavior observed in
experiments and numerical calculations. The second complication is the existence
of intermittency corrections to the scaling behavior. In the next Section, we shall
discuss one particular idea, the refined similarity hypothesis, which was proposed to
account for the intermittency corrections.

3.7 Refined Similarity Hypothesis

To account for the intermittency corrections of velocity fluctuations, Kolmogorov
proposed in 1962 [18] to refine his second hypothesis by replacing the mean energy
dissipation rate 〈ε〉 with a locally-averaged energy dissipation rate over a scale l,
defined as

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_4
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εl(�r , t) ≡ 3

4πl3

∫

|�y|≤l

ε(�x + �y, t)d �y (3.61)

Similar ideas were also proposed independently by Obukhov [19]. As a result of this
refinement, which is known as the refined similarity hypothesis (RSH), Eq. (3.10) is
modified to

δu(l)K 41 ∼ ε
1/3
l l1/3 (3.62)

⇒ Su
p(l) ∼ 〈εp/3

l 〉l p/3 (3.63)

Corrections to the K41 scaling can thus be resulted from the l-dependence of the
moments of εl . In particular, let

〈εq
l 〉 ∼ lτ (q) (3.64)

then
ζ(p) = τ

( p

3

)
+ p

3
(3.65)

Different intermittency models have been proposed which give different results for
τ (q).

A direct implication of Eq. (3.62) is

〈[δu(l)]p
∣∣ εl = x〉 ∼ x p/3l p/3 (3.66)

where 〈[δu(l)]p
∣∣ εl = x〉 is the conditional velocity structure function of order p

when the value of εl is fixed at a small range about x . Thus 〈[δu(l)]p
∣∣ εl = x〉 ∼ l p/3

exhibits the K41 scaling. Support for Eq. (3.66) has been found in both experi-
ments [20] as well as in direct numerical simulations and large-eddy simulations [21].

The refined similarity hypothesis has been extended to temperature fluctuations
by replacing also χ by the locally averaged χl(�r , t), which is similarly defined:

χl(�r , t) = 3

4πl3

∫

|�y|≤l

χ(�x + �y, t)d3 y (3.67)

For passive temperature fluctuations, Eq. (3.50) becomes [22, 23]:

δT (l)OC ∼ ε
−1/6
l χ

1/2
l l1/3 (3.68)

and for the BO scaling, Eqs. (3.55) and (3.56) become [24]:

δu(l)BO ∼ (αg)2/5χ
1/5
l l3/5 (3.69)

δT (l)BO ∼ (αg)−1/5χ
2/5
l l1/5 (3.70)
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3.8 Conditional Structure Functions

We note the interesting observation that the dependence on χl is different for the
two scaling behaviors, K41-OC and BO, as shown in Eqs. (3.62), (3.68), (3.69) and
(3.70). This difference can be clearly spelled out by studying the conditional velocity
and temperature structure functions evaluated at fixed values of χl :

S̃u
p(l, x) ≡ 〈[δu(l)]p

∣∣ χl = x〉 (3.71)

S̃θ
p(l, x) ≡ 〈[δT (l)]p

∣∣ χl = x〉 (3.72)

We have used these conditional structure functions [24] and similar conditional struc-
ture functions evaluated at given values of local temperature variance transfer rate
[25] to examine the validity of refined similarity hypothesis in turbulent Rayleigh–
Bénard convection.

To evaluate S̃u
p(l, x) and S̃θ

p(l, x) from Eqs. (3.62) and (3.68) in the case of the
K41-OC scaling, we need to evaluate the conditional average 〈εq

l

∣∣ χl = x〉 for
various values of q. In this case, temperature is a passive scalar so we make use of
the measured approximate statistical independence of εl and χl for passive scalar
fluctuations [26] to approximate:

〈εq
l

∣∣ χl = x〉 ≈ 〈εq
l 〉 K41 − OC (3.73)

As a result, we obtain

S̃u
p(l, x) ∼

{
〈εp/3

l 〉l p/3 K41

(αg)2p/5x p/5l3p/5 BO
(3.74)

S̃θ
p(l, x) ∼

{
〈ε−p/6

l 〉x p/2l p/3 OC

(αg)−p/5x2p/5l p/5 BO
(3.75)

From Eqs. (3.74) and (3.75), we see the different x-dependence of S̃u
p and S̃θ

p for the

two different scaling behaviors: S̃u
p is independent of x for the K41 scaling but has

a power-law dependence of x p/5 for the BO scaling. Similarly, S̃θ
p has the power-

law dependence of x p/2 for the OC scaling but a different dependence of x2p/5 for
the BO scaling. Hence it is possible to reveal the two different scaling behaviors
by studying the x-dependence of S̃u

p(l, x) and S̃θ
p(l, x). This method is particularly

useful because the unknown intermittency corrections might hinder direct revelation
of the scaling behavior. Details about this method will be discussed in Chap. 4.

http://dx.doi.org/10.1007/978-981-4560-23-8_4
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