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Preface

When a fluid is heated, its density decreases due to expansion. Hotter fluid,
therefore, has a tendency to rise and cooler fluid to fall. The onset of thermal
convective motion occurs when the driving force due to the temperature difference
is large enough to overcome the dampening effects of fluid viscosity and thermal
diffusivity. Above the onset of convection, the velocity of the fluid increases with
the temperature difference, and the convective fluid motion becomes turbulent
when the velocity is sufficiently fast. Thermal convection is a major mechanism of
heat transfer and is often used to provide cooling for equipment in engineering or
industrial processes. Thermal convection is also ubiquitous in nature. It plays a
role in the structure and dynamics of the Earth’s atmosphere and in the earth’s
mantle, it is an important cause for motion of the tectonic plates. Most thermal
convective flows in nature and technological applications are turbulent.

Experimental studies of thermal convection have often been carried out in the
setting of Rayleigh-Bénard convection. The Rayleigh-Bénard convection system
consists of a closed cell of fluid heated from below and cooled from above.
Rayleigh-Bénard convection is a classical problem in fluid mechanics with many
issues of interest. It is important for understanding stability of fluid flows and is a
good paradigm for studying pattern formation near the onset of convection. In the
turbulent regime, both velocity and temperature display complex fluctuations in
time. The precise details of the fluctuations vary from flow to flow but the sta-
tistical characteristics of the fluctuations are reproducible. A key issue of interest
is, therefore, to characterize and make sense of the statistics of the fluctuations.
The statistics of the velocity and temperature differences, between measurements
taken at two points separated by a distance l, can reveal the structure of turbulence.
These structure functions often exhibit a power-law dependence on l, indicating
scale invariance. Another issue of interest is to understand this scaling behavior.
Amid the fluctuations, flow visualization reveals recurring flow structures that are
persistent even after long-time averaging. Prominent examples include a large-
scale mean circulating flow that spans the whole cell and thermal plumes, which
are the flow structures generated by buoyancy near the top and bottom plates of the
convective cell. The third issue of interest is to extract these flow structures from
measurements and understand their dynamics and structure. Finally, it is of interest
to understand how the heat transfer, which is greatly enhanced by the turbulent
fluctuations, depends on the state of fluid flow.
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In this monograph, we focus our discussion on the statistical properties and
scaling behavior of the velocity and temperature fluctuations in three-dimensional
turbulent Rayleigh-Bénard convection. In Chap. 1, the problem of Rayleigh-
Bénard convection, under the Oberbeck-Boussinesq approximation, is formulated.
The derivation of two exact relations from the equations of motion is presented. In
the turbulent regime, the velocity and the temperature fields display irregular
fluctuations. In Chap. 2, we introduce the basic statistical tools, including proba-
bility density functions (PDF) and conditional statistics, for studying fluctuations
in general. As the equations of fluid motion are nonlinear, it is generally not
feasible to directly calculate statistical quantities of interest from the equations of
motion. This is known as the closure problem in turbulence. Because of this, exact
implicit relations between different statistical quantities are useful. We derive two
implicit formulae that relate the PDF of fluctuations to two conditional means, and
discuss how these formulae have been applied to study the temperature fluctua-
tions in turbulent Rayleigh-Bénard convection. In Chap. 3, we introduce the
important concept of energy cascade in turbulent flows and the different theories
for the scaling behavior of the velocity and temperature fluctuations. We start with
the scaling theory for non-buoyant turbulent flows and then discuss how the
presence of buoyancy would affect and modify the scaling behavior. A crossover
between the two types of scaling behavior is expected to occur at the length scale
above which buoyancy is important. We present and discuss the experimental
observations of the scaling behavior and examine the validity of these theoretical
expectations in Chap. 4. We end this monograph with a summary and outlook in
Chap. 5.

I would like to thank Leo Kadanoff and Albert Libchaber for introducing me to
the subject, and acknowledge the fruitful collaborations and discussions with
Roberto Benzi, Robert Kraichnan, Stephen B. Pope, Itamar Procaccia, Penger
Tong, and Ke-Qing Xia.
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Chapter 1
The Rayleigh-Bénard Convection System

Abstract The Rayleigh-Bénard convection system consists of a closed cell of fluid
heated from below and cooled from above. We formulate the problem in this chapter.
We first introduce the Oberbeck-Boussinesq approximation and derive the equations
of motion under this approximation. The boundary conditions are then specified. The
dimensionless parameters describing the state of fluid motion are defined. Further-
more, using the equations of motion, we derive two exact relations relating the heat
transfer and the mean energy and thermal dissipation rates.

Keywords Rayleigh-Bénard convection · Oberbeck-Boussinesq approximation ·
Rayleigh number · Nusselt number · Mean energy and Thermal dissipation rates

1.1 The Oberbeck-Boussinesq Equations

We start with the Navier-Stokes equations for an incompressible flow [1]:

ρ
D �U
Dt

≡ ρ

(
∂ �U
∂t

+ �U · �∇ �U
)

= − �∇ p + η∇2 �U (1.1)

Here, �U (�r , t) is the velocity field, which is a function of the position �r and time t ,
p(�r , t) is the pressure field, ρ and η are the density and the coefficient of viscosity
of the fluid. Equation (1.1) is obtained by applying Newton’s second law on a small
fluid element. D �U/Dt is the acceleration of the fluid element:

D �U
Dt

= lim
�t→0

�U (�r + ��r , t + �t) − �U (�r , t)

�t
= ∂ �U

∂t
+ �U · �∇ �U (1.2)

It is inherently nonlinear because of the fluid motion. The two terms on the RHS of
Eq. (1.2) are the forces per unit volume acting on the fluid element: − �∇ p is due to

E. S. C. Ching, Statistics and Scaling in Turbulent Rayleigh-Bénard Convection, 1
SpringerBriefs in Applied Sciences and Technology, DOI: 10.1007/978-981-4560-23-8_1,
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2 1 The Rayleigh-Bénard Convection System

the pressure gradient while η ∇2 �u is due to viscosity. Conservation of mass leads to
the continuity equation

∂ρ

∂t
+ �∇ · (ρ �U ) = 0 (1.3)

which reduces to
�∇ · �U = 0 (1.4)

for an incompressible fluid with constant ρ. When there are variations in the tem-
perature field T (�r , t), the density of the fluid changes, thus we need to include the
force due to gravity in Eq. (1.1):

ρ

(
∂ �U
∂t

+ �U · �∇ �U
)

= −�∇ p + η∇2 �U − ρgẑ (1.5)

where g is the acceleration due to gravity, and ẑ is the unit vector along the vertical
direction. When the temperature difference is small,

ρ = ρ0 + δρ ≈ ρ0[1 − α(T − T0)] (1.6)

where α is the coefficient of volume expansion of the fluid, T0 = 〈T (�r , t)〉V,t is the
mean temperature of the system, and ρ0 is the density at T0. We use 〈· · · 〉V to denote
an average over the whole cell, and 〈· · · 〉t to denote an average over time.

In the Oberbeck-Boussinesq approximation, the change in density due to tem-
perature variation, δρ, is taken to be small such that it is neglected in the continuity
equation Eq. (1.3) and everywhere in Eq. (1.5) except in the term ρgẑ in the vertical
direction. Therefore, in this approximation, all changes in the fluid properties due to
temperature variations are neglected except for the change in density that gives rise
to a buoyancy force. In particular, Eq. (1.4) remains valid whereas Eq. (1.5) becomes:

ρ0

(
∂ �U
∂t

+ �U · �∇ �U
)

= −�∇ p + η∇2 �U − ρ0[1 − α(T − T0)]gẑ

⇒ ∂ �U
∂t

+ �U · �∇ �U = − 1

ρ0

�∇ p∗ + ν∇2 �U + αgθ ẑ (1.7)

where p∗ = p + ρ0gz, ν = η/ρ0 is the kinematic viscosity and θ(�r , t) = T (�r , t) −
T0 is the temperature deviation from the mean. The equation of motion for the
temperature fluctuation is given by

∂θ

∂t
+ �U · �∇θ = κ∇2θ (1.8)

where κ is the thermal diffusivity of the fluid. Equations (1.4, 1.7 and 1.8) are the basic
equations for Rayleigh-Bénard convection in the Oberbeck-Boussinesq approxima-
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tion [1]. They are a set of coupled partial differential equations for the velocity and
temperature fields.

1.2 Boundary Conditions

To complete the description of the system, we need to specify the boundary conditions
for �U and θ . For definiteness, we consider a cylindrical cell of height H and radius
R and use cylindrical coordinates (r, φ, z). The velocity field satisfies the no-slip
boundary condition:

�U (r, φ, z = 0, t) = 0 ; �U (r, φ, z = H, t) = 0 ; �U (r = R, φ, z, t) = 0
(1.9)

For thermally insulating lateral sidewalls, the temperature gradient vanishes at the
sidewalls, thus we have

∂θ

∂r
(r = R, φ, z, t) = 0 (1.10)

The boundary conditions for the temperature field at the top and bottom plates depend
on how the thermal driving is enforced. One possible way is to keep the bottom plate
at a temperature Tbot = T0 + �/2 and the top plate at Ttop = T0 − �/2, such that
there is a fixed temperature difference applied across the cell. In this case, we have

θ(r, φ, z = 0, t) = �/2 (1.11)

θ(r, φ, z = H, t) = −�/2 (1.12)

These boundary conditions are often adopted in theoretical and numerical studies.
In experiments, it is, however, more common to put the bottom plate in contact with
one or a few heaters that supply a constant heat flux and to connect the top plate to
a thermostatic bath circulated by cold water. For such experimental setups, the top
plate is approximately fixed at temperature Ttop so Eq. (1.12) holds but the bottom
plate is better approximated as a surface with a constant heat flux. Thus instead of
Eq. (1.11), we have: 〈

∂θ

∂z
(r, φ, z = 0)

〉
t
= − Q

k
(1.13)

where Q > 0 is the constant heat flux supplied to the system and k is the thermal
conductivity of the fluid. In this case, the temperature of the bottom plate fluctuates
in time and space. We denote the mean temperature of the bottom plate, 〈T (r, φ, z =
0, t)〉z = 0,t , also by Tbot such that

〈θ(r, φ, z = 0, t)〉z = 0,t = �/2 (1.14)
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and the mean temperature difference across the top and bottom plates is �. Here 〈·〉z

denotes an average over the horizontal plane at height z of the convection cell.

1.3 Two Dimensionless Parameters: Rayleigh and Prandtl
Numbers

Using H as a characteristic length scale, � as a characteristic temperature scale, we
can construct a characteristic velocity scale:

√
αg�H and a characteristic time scale√

H/(αg�). With these characteristic scales, we can rewrite the basic equations in
a dimensionless form:

�∇ · �U = 0 (1.15)

∂ �U
∂t

+ �U · �∇ �U = −�∇ p∗ +
√

Pr

Ra
∇2 �U + θ ẑ (1.16)

∂θ

∂t
+ �U · �∇θ = 1√

PrRa
∇2θ (1.17)

We use the same symbols for the dimensionless quantities to simplify the notations.
There are two dimensionless parameters: the Rayleigh (Ra) and the Prandtl (Pr)
numbers, which are defined as

Ra = αg�H3

νκ
, Pr = ν

κ
(1.18)

The parameter Ra measures the relative size of the driving effect due to buoyancy to
the dampening effects due to viscosity and thermal diffusivity whereas Pr is a ratio
of the diffusivity of momentum due to viscosity to thermal diffusivity. For gases, e.g.
air, Pr is of order 1 and does not depend much on temperature. For water, Pr is about
6 at 20 ◦C and decreases with temperature. For liquid metals like mercury, Pr is of
the order of 10−2 whereas for Earth’s mantle, Pr is around 1025. The aspect ratio
� is defined as the ratio of the horizontal dimension to the height of the cell. For
cylindrical convection cells, � = 2R/H . The state of fluid motion is determined
by Ra, Pr and �. For a given fluid in a given cell, � is fixed and Pr is fixed when
the mean temperature of the system is maintained at a fixed value. In this case, the
state of fluid motion depends on Ra only. When Ra is small, the fluid does not move
and heat is transported by conduction. The onset of convective fluid motion occurs
at a certain critical value Rac. For an infinite layer of fluid, Rac is about 1708. When
Ra is slightly larger than Rac, steady-state convection occurs and temperature at a
fixed position is independent of time. As Ra is increased, temperature fluctuations
first becomes chaotic in time with measurements at nearby points remain correlated,
then the spatial coherence is lost, and turbulence occurs. The transition to turbulent
Rayleigh-Bénard convection occurs at different Ra depending on Pr and also on
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� [2]. Typical values of Ra in the ocean and in the outer part of the Sun are of the
order of 1020 and 1023 respectively, which are well in the turbulent regime.

1.4 Exact Relations

Using the equations of motion and the boundary conditions, two exact relations can
be derived [3]. We show explicitly that the same two relations hold for the constant
temperature as well as the constant heat flux boundary conditions at the bottom plate.
Take the scalar product of Eq. (1.7) with �U and the product of Eq. (1.8) with θ , then
average over the whole convective cell and time, we get:

1

2

d

dt
〈( �U · �U )〉V,t + 1

2
〈 �U · �∇( �U · �U )〉V,t

= − 1

ρ0
〈 �U · �∇ p∗〉V,t + ν〈 �U · ∇2 �U 〉V,t + αg〈Uzθ〉V,t (1.19)

1

2

d〈θ2〉V,t

dt
+ 1

2
〈 �U · �∇(θ2)〉V,t

=κ〈θ∇2θ〉V,t = κ〈 �∇ · (θ �∇θ)〉V,t − κ〈| �∇θ |2〉V,t (1.20)

When the flow is in the stationary state, d〈·〉V,t/dt vanishes. Using the incompress-
ibility condition Eq. (1.4) and the no-slip boundary condition Eq. (1.9), we get

〈 �U · �∇( �U · �U )〉V = 〈 �∇ · [ �U ( �U · �U )]〉V = 0 (1.21)

〈 �U · �∇ p∗〉V = 〈 �∇ · ( �U p∗)〉V = 0 (1.22)

〈 �U · �∇(θ2)〉V = 〈 �∇ · ( �Uθ2)〉V = 0 (1.23)

〈 �U · ∇2 �U 〉V = 1

2

〈 �∇ · �∇( �U · �U )
〉
V

−
∑
i, j

〈(
∂U j

∂ri

)2
〉

V

= −
∑
i, j

〈(
∂U j

∂ri

)2
〉

V

= −1

2

∑
i, j

〈(
∂Ui

∂r j
+ ∂U j

∂ri

)2
〉

V

(1.24)

Thus, Eqs. (1.19, 1.20) become:

ν

2

∑
i, j

〈(
∂Ui

∂r j
+ ∂U j

∂ri

)2
〉

V,t

= αg〈Uzθ〉V,t (1.25)

κ〈| �∇θ |2〉V,t = κ〈 �∇ · (θ �∇θ)〉V,t (1.26)
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The two terms on the left hand side of Eqs. (1.25, 1.26) are respectively the mean
energy and thermal dissipation rates. To see this, we consider the case of decaying
turbulence when there is no coupling between velocity and temperature and there is
no external forcing, i.e., � = 0. In this case, d〈·〉V,t/dt 
= 0. Instead,

1

2

d

dt
〈( �U · �U )〉V,t = −ν

2

∑
i, j

〈(
∂Ui

∂r j
+ ∂U j

∂ri

)2
〉

V,t

(1.27)

1

2

d

dt
〈θ2〉V,t = −κ〈| �∇θ |2〉V,t (1.28)

Define

ε(�r , t) = ν

2

∑
i, j

(
∂Ui

∂r j
+ ∂U j

∂ri

)2

(1.29)

χ(�r , t) = κ| �∇θ |2 (1.30)

Thus 〈ε〉V,t and 〈χ〉V,t measure the average rate of dissipation of turbulent energy
and temperature variance, and are known as the mean energy and thermal dissipation
rates respectively. Equations (1.25, 1.26) can be rewritten as:

〈ε〉V,t = αg〈Uzθ〉V,t (1.31)

〈χ〉V,t = κ〈 �∇ · (θ �∇θ)〉V,t (1.32)

Next, we show that the two terms on the right hand side of Eqs. (1.31, 1.32) are
related to the heat transfer by the fluid. Define the Nusselt number (Nu) as the heat
flux transferred by the fluid normalized by the heat flux in the hypothetical situation
that the fluid remains at rest under the same boundary conditions. The heat flux
transferred by the fluid across any horizontal plane of the convective cell is given by

Q = 〈ρ0cUzθ − k
∂θ

∂z
〉z,t (1.33)

where c is the specific heat capacity of the fluid. In the hypothetical situation that
there was no fluid motion, the temperature profile would be linear in z: θ = �/2 −
(�/H)z, and the heat flux transferred would be k�/H . Thus Nu is defined as

Nu = Q

k�/H
(1.34)

Since the lateral sidewalls are thermally insulating, Q is independent of z. As a result,
we have

Q = 1

H

∫ H

0
Qdz = ρ0c〈Uzθ〉V,t + k�

H
(1.35)
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where we have used the boundary conditions Eqs. (1.12, 1.11 or 1.14). Thus

Nu = 〈Uzθ〉V,t

κ�/H
+ 1 (1.36)

where the relation κ = k/(ρ0c) is used. Writing 〈 �∇ · (θ �∇θ)〉V in terms of a surface
integral and using Eq. (1.10), we get

〈 �∇ · (θ �∇θ)〉V = 1

H

[〈
θ
∂θ

∂z

〉
z=H

−
〈
θ
∂θ

∂z

〉
z=0

]
(1.37)

For the top plate, Eqs. (1.12, 1.33) imply

〈
θ
∂θ

∂z

〉
z=H,t

= −�

2

〈
∂θ

∂z

〉
z=H,t

= �Q

2k
(1.38)

For the bottom plate, we get the same result for both the conditions of fixed temper-
ature and constant heat flux:

〈
θ
∂θ

∂z

〉
z=0,t

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

2

〈
∂θ

∂z

〉
z=0,t

= −�Q

2k
fixed temperature

− Q

k
〈θ〉z=0,t = −�Q

2k
constant heat flux

(1.39)

Here, we have used Eqs. (1.11, 1.33) for the case of fixed temperature condition, and
Eqs. (1.13, 1.14) for case of constant heat flux. Thus Eqs. (1.37–1.39) together with
Eq. (1.34) give

κ〈 �∇ · (θ �∇θ)〉V,t = κ
�2

H2 Nu (1.40)

Substitute Eqs. (1.36, 1.40) into Eqs. (1.25, 1.26), we finally obtain two exact rela-
tions:

〈ε〉V,t = αgκ
�

H
(Nu − 1) = νκ2

H4 Ra(Nu − 1) (1.41)

〈χ〉V,t = κ�2

H2 Nu (1.42)

which relate the mean energy and thermal dissipation rates to Nu and Ra.
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Chapter 2
Statistical Analysis of Turbulent Fluctuations

Abstract We first introduce the basic statistical tools, including probability density
functions (PDF) and conditional statistics, for studying fluctuations in general. Then
we discuss the closure problem in turbulence. Because of this closure problem, exact
implicit relations between different statistical quantities are useful. We derive two
implicit results relating the PDF of fluctuations to two conditional means respectively
for stationary and statistically homogeneous fluctuations. Furthermore, we discuss
how these implicit PDF formulae have been applied to studying the temperature
fluctuations in turbulent Rayleigh–Bénard convection, and the implications of the
results obtained.

Keywords Probability density function (PDF) · Conditional probability · Closure
problem · Implicit PDF formula · Stationarity · Statistical homogeneity

2.1 Basic Statistical Tools

In turbulent Rayleigh–Bénard convection, as in turbulence in general, experimental
measurements of the physical quantities of interest such as velocity and temperature
at a certain position display fluctuations as a function of time. The details of the
fluctuating measurements in turbulent flows are unpredictable but their statistical
properties are reproducible. So one aims to understand the statistical properties and
not the details of a turbulent fluid flow. In this section, we introduce the basic statistical
tools used in the study of turbulence [1, 2] as well as a general stochastic process.

E. S. C. Ching, Statistics and Scaling in Turbulent Rayleigh-Bénard Convection, 9
SpringerBriefs in Applied Sciences and Technology, DOI: 10.1007/978-981-4560-23-8_2,
© The Author(s) 2014
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2.1.1 Cumulative Distribution and Probability Density
Function (PDF)

The statistics of any fluctuating quantity are characterized by its probability density
function (PDF). Consider any real scalar random variable U , which can have any
value in the real space. The cumulative distribution function of U is defined by

F(x) = Prob{U < x} (2.1)

where Prob{. . .} denotes the probability of the event described inside { . . . }. It is
clear that U (x) is a non-decreasing function of x . The PDF of U , denoted as PU (x)

or simply P(x) when there is no ambiguity of which variable is being discussed, is
defined as the derivative of the cumulative distribution function:

P(x) = d F(x)

dx
(2.2)

P(x) ≥ 0 and satisfies the normalization condition:

∞∫
−∞

P(x)dx = 1 (2.3)

The probability of U having a value in a certain interval (x1, x2) is

Prob{x1 ≤ U < x2} = F(x2) − F(x1) =
x2∫

x1

P(x)dx (2.4)

For an infinitesimal interval, we have

Prob{x ≤ U < x + dx} = P(x)dx (2.5)

Therefore, the PDF of U is the probability of U per unit ‘distance’ in the sample
space and hence the term probability density function.

2.1.2 Moments and Characteristic Function

The quantity

〈U m〉 =
∞∫

−∞
xm P(x)dx, m = 1, 2, . . . (2.6)
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if exists, is called the mth order moment of the random variable U . Here, 〈. . .〉
denotes an ensemble average. If P(x) is an infinitely differentiable function, then
the existence of the moments is assured. Most random variables of physical interest
can be assumed to have finite moments of the first few orders. The first-order moment
of U , with m = 1, is called the mean value or mean of U . For any function Q(U ) of
U , the mean value of Q is given by

〈Q(U )〉 =
∞∫

−∞
Q(U = x)P(x)dx (2.7)

The fluctuation of U , denoted as u, is the deviation of U from its mean value, and
is defined by

u = U − 〈U 〉 (2.8)

Denote the PDF of u by Pu(x), then we have Pu(x) = PU (x +〈U 〉). It is convenient
to define the central moments, which are the moments of the fluctuation:

〈um〉 =
∞∫

−∞
xm Pu(x)dx, m = 1, 2, . . . (2.9)

The first-order central moment vanishes by definition. The second-order central
moment is known as the variance of U and the square root of the variance of U
is known as the standard deviation of U . The values of the central moments give
information about the shape of the PDF. The standard deviation generally gives
information about the width of the distribution. It can be seen from Eq. (2.9) that
the contribution to the integral by the large values of |x | increases with m. Thus
the high order moments are affected more by the ‘tails’ of the PDF, the regions of
P(x) when x → ±∞. For a variable U whose PDF is symmetric about the mean
value: Pu(x) = Pu(−x), the odd central moments would vanish. Thus the degree
of asymmetry is often measured by the skewness, which is the third-order central
moment normalized by the standard deviation and is denoted by S:

S = 〈u3〉
〈u2〉3/2 (2.10)

The kurtosis or flatness, denoted as K, is the fourth-order central moment normalized
by the standard deviation:

K = 〈u4〉
〈u2〉2 (2.11)

A PDF that decreases slowly with |x | and thus having flatter tails will have a larger
value of K.
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The characteristic function of U is defined as the inverse Fourier transform of the
PDF P(x):

φ(k) =
∞∫

−∞
eikx P(x)dx (2.12)

and P(x) is given by the Fourier transform of φ(k):

P(x) = 1

2π

∞∫
−∞

e−ikxφ(k)dk (2.13)

From Eqs. (2.7) and (2.12), it can be seen that

φ(k) = 〈eikU 〉 (2.14)

Thus if we write eikU as an infinite series, we have

φ(k) =
n−1∑
m=1

〈U m〉 (ik)m

m! + O(kn), (2.15)

as long as the moments exist. Moreover, the moments can be obtained by differenti-
ating the characteristic function:

〈U m〉 = dmφ(k)

d(ik)m

∣∣∣∣
k=0

(2.16)

Because of this, the characteristic function is also called the moment-generating
function.

2.1.3 Some Common Examples of PDFs

1. The uniform distribution:
If U is uniformly distributed in the interval [a, b), then the PDF of U is

P(x) =
{

1
b−a a ≤ x < b

0 otherwise
(2.17)

2. The Gaussian or normal distribution:
If U is normally distributed with mean μ and standard deviation σ, then the PDF
of U is
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P(x) = 1√
2πσ

e− (x−μ)2

2σ2 (2.18)

3. The log-normal distribution:
If U is normally distributed with mean μ and standard deviation σ, then another
variable V , defined by V = eU , is, by definition, log-normally distributed. The
PDF of V can be obtained from that of U as follows. The cumulative distribution
function of V is:

FV (y) = Prob{V < y} = Prob{U < ln y} = FU (ln y) (2.19)

The PDF of V is given by

PV (y) = d FV (y)

dy
= d FU (ln y)

dy
= d FU (x)

dx

dx

dy
= 1

y
PU (ln y) (2.20)

where x = ln y. Hence using Eq. (2.18),

PV (y) = 1√
2πσy

e− (ln y−μ)2

2σ2 (2.21)

2.1.4 Joint PDF and Conditional Probability

Our discussions of the cumulative distribution function and PDF of a scalar random
variable can be generalized to multiple joint scalar random variables in a straight-
forward manner. A vector-valued random variable, for example the velocity 	U at a
particular location and time in a turbulent flow, can be treated as three joint scalar
random variables (U1, U2, U3), where Ui , i = 1, 2, 3 are the components of 	U . As
an illustration, we consider two joint scalar variables in the following discussion, and
generalization to more variables is straightforward. The joint cumulative distribution
of two random variables U1 and U2 is defined as

FU1,U2(x1, x2) = Prob{U1 < x1 and U2 < x2} (2.22)

and the joint PDF of U1 and U2 is given by

PU1,U2(x1, x2)= ∂2 FU1,U2(x1, x2)

∂x1∂x2
(2.23)

Moreover,

PU1,U2(x1, x2)dx1dx2

= Prob{x1 ≤ U1 < x1 + dx1 and x2 ≤ U2 < x2 + dx2} (2.24)
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The PDF of U1, denoted by PU1(x1), and the PDF of U2, denoted by PU2(x2), can
thus be obtained from their joint PDF by

PU1(x1) =
∞∫

−∞
PU1,U2(x1, x2)dx2 (2.25)

PU2(x2) =
∞∫

−∞
PU1,U2(x1, x2)dx1 (2.26)

If Q(U1, U2) is a function of U1 and U2, then its mean is given by

〈Q(U1, U2)〉 =
∞∫

−∞

∞∫
−∞

Q(x1, x2)PU1,U2(x1, x2)dx1dx2 (2.27)

Similarly, the moments of the joint PDF are defined as:

〈U m
1 U n

2 〉 =
∞∫

−∞

∞∫
−∞

xm
1 xn

2 PU1,U2(x1, x2)dx1dx2, m = 1, 2, . . . n = 1, 2, . . .

(2.28)
When more than one variable is involved, we can define the conditional probability

of some event given that a certain particular event has occurred. That is, out of the
original ensemble, one forms a new ensemble in which the particular event has
occurred. In particular, the conditional probability density of U1 given {y ≤ U2 <

y+dy}, denoted as PU1|U2(x |y), is the probability density of U1 in the new ensemble
in which y ≤ U2 < y + dy. Then

PU1|U2(x |y)dx = Prob{x ≤ U1 < x + dx and y ≤ U2 < y + dy}
Prob{ y ≤ U2 < y + dy} (2.29)

and we have

PU1|U2(x |y) = PU1,U2(x, y)

PU2(y)
(2.30)

Similarly, denote the conditional probability density of U2 given {y ≤ U1 < y +dy}
as PU2|U1(x |y), we have

PU2|U1(x |y) = PU1,U2(y, x)

PU1(y)
(2.31)

The conditional moments of U1 given {y ≤ U2 < y + dy} are defined by
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〈U m
1

∣∣ U2 = y〉 =
∞∫

−∞
xm PU1|U2(x |y)dx m = 1, 2, . . . (2.32)

Similarly, the conditional moments of U2 given {y ≤ U1 < y + dy} are defined by

〈U m
2

∣∣ U1 = y〉 =
∞∫

−∞
xm PU2|U1(x |y)dx m = 1, 2, . . . (2.33)

If U1 and U2 are statistically independent of one another, then PU1|U2(x |y) =
PU1(x) and PU2|U1(x |y) = PU2(x). As a result,

PU1,U2(x1, x2) = PU1(x1)PU2(x2) (2.34)

Moreover, the conditional moments reduce to the usual moments:

〈U m
1

∣∣ U2 = y〉 = 〈U m
1 〉 (2.35)

〈U m
2

∣∣ U1 = y〉 = 〈U m
2 〉 (2.36)

2.1.5 Random Functions

A scalar or vector-valued random variable, which depends on one or more space or
time coordinates, is called a random function or a random or stochastic process. A
physical example is the velocity 	U (	r , t) as a function of position 	r and time t in
turbulent flows. To see how a random function is characterized, we use the simple
example of a scalar random variable U (t) that depends on t . At a particular instant
t = t0, U (t0) is a random variable and is characterized by a one-time PDF, P1(x, t0).
Thus to completely characterize U (t), we need the joint PDF of U (ti ) at all instants
of time ti , i = 1, 2, . . .:

PN (x1, t1; x2, t2; x3, t3; . . . ; xN , tN ) with N → ∞ (2.37)

2.1.5.1 Statistical Symmetries

When a random function obeys certain statistical symmetries such as stationarity, sta-
tistical homogeneity, and statistical isotropy, considerable simplification occurs for its
statistics. We shall define these statistical symmetries and discuss the corresponding
simplifications.
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1. Stationarity:
A random function U (t) is stationary if its joint P DF at all t is invariant under
a shift in time:

PN (x1, t1 + h; . . . ; xN , tN + h) = PN (x1, t1; . . . ; xN , tN ) (2.38)

for all N , ti , i = 1, 2, . . . N , and h. In particular, for N = 1 and 2:

P1(x, t + h) = P1(x, t) (2.39)

P2(x1, t1 + h; x2, t2 + h) = P2(x1, t1; x2, t2) ∀h (2.40)

Take h = −t in Eq. (2.39), we have

P1(x, t) = P1(x, 0) = P1(x) (2.41)

Therefore the one-time PDF and all one-time statistics are independent of time t .
Take h = −t2 in Eq. (2.40), we have

P2(x1, t1; x2, t2) = P2(x1, t1 − t2; x2, 0) (2.42)

Thus the two-time PDF and thus all two-time statistics depend on the time dif-
ference t1 − t2 only. As an example, the correlation

〈U (t1)U (t2)〉 =
∞∫

−∞

∞∫
−∞

x1x2 P2(x1, t1; x2, t2)dx1dx2 (2.43)

depends on t1 − t2 only.
2. Statistical homogeneity:

A random function U (	r) is statistically homogeneous if its joint P DF at all 	r is
invariant under a shift in position:

PN (x1, 	r1 + 	l; . . . ; xN , 	rN + 	l) = PN (x1, 	r1; . . . ; xN , 	rN ) (2.44)

for all N , 	ri , i = 1, 2, . . . N , and 	l. Analogous to stationary fluctuations, all one-
point statistics at 	r are independent of 	r , and all two-point statistics at 	r1 and 	r2,
e.g., 〈U (	r1)U (	r2)〉 depend on 	r1 − 	r2 only.

3. Statistical isotropy:
A random function is statistically isotropic if all its statistics are invariant under
rotation.

Consider a general random vector function 	U (	r , t). Define the correlation function
of the i th and j th components of 	U as

�i j (	r1, t1; 	r2, t2) = 〈ui (	r1, t1)u j (	r2, t2)〉 (2.45)
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where 	u(	r , t) = 	U (	r , t) − 〈 	U (	r , t)〉 is the fluctuation of 	U . If 	U is stationary, then
�i j depends on t1 − t2 only. If 	U is statistically homogeneous, then �i j depends on
	r1 − 	r2 only. If 	U is also statistically isotropic, then �i j depends on |	r1 − 	r2| only.

The averages that we have discussed so far are ensemble averages. In experiments,
statistical properties are usually determined by taking average over time. For station-
ary processes that decorrelate rapidly enough, time averaging over a sufficiently long
period of time gives a good approximation as ensemble averaging. To see this, let
U (t) be a stationary process and denote the correlation function of its fluctuation
u = U − 〈U 〉, 〈u(t)u(t ′)〉, by R(t − t ′). The time average of U over a time interval
T is defined by

〈U (t)〉t ≡ 1

τ

τ∫
0

U (t)dt (2.46)

Since U is stationary, 〈U 〉 is independent of time t and 〈U 〉 = 〈 〈U 〉 〉t . Thus

〈[〈U 〉t − 〈U 〉]2〉 = 〈[〈 U − 〈U 〉 〉t ]2〉

=
〈

1

τ2

τ∫
0

τ∫
0

u(t)u(t ′)dtdt ′
〉

= 1

τ2

τ∫
0

τ∫
0

R(t − t ′)dtdt ′

= 2

τ2

τ∫
0

dt

t∫
0

R(t ′)dt ′ ≤ 2

τ

∞∫
0

|R(t)|dt (2.47)

where we have interchanged ensemble averaging and integration. Thus if U (t) decor-
relates rapidly with time such that

∫ ∞
0 |R(t)|dt is finite, then 〈U 〉t → 〈U 〉 as τ → ∞.

2.1.5.2 Spectral Analysis of Random Functions

For a stationary random function U (t), its frequency spectrum E( f ) is defined as
the Fourier transform of its correlation function:

E( f ) = 1

2π

∞∫
−∞

e−i f s〈u(t)u(t + s)〉ds (2.48)

where u(t) is the fluctuation of U (t). The inverse Fourier transform of Eq. (2.48)
gives
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�(s) ≡ 〈u(t)u(t + s)〉 =
∞∫

−∞
ei f s E( f )d f = 2

∞∫
0

cos( f s)E( f )d f (2.49)

Note that stationarity implies 〈u(t)u(t + s)〉 = 〈u(t − s)u(t)〉 and thus
E( f ) = E(− f ). Hence

∞∫
0

E( f )d f = 1

2
〈[u(t)]2〉 (2.50)

and E( f )d f is the contribution to (1/2)〈[u(t)]2〉 due to the Fourier modes in the
frequency range between f and f + d f . When U (t) is a velocity component, then
(1/2)〈[u(t)]2〉 would be the energy (per unit mass) due to the fluctuations of this
velocity component and thus E( f ) is naturally known as the (one-dimensional)
energy frequency spectrum of this velocity component.

For a statistically homogeneous random function 	U (	r , t), its spectral functions
are defined by

�i j (	k, t) = 1

(2π)3

∫
Ri j (	r , t)e−i 	k·	r d	r (2.51)

where
Ri j (	r , t) = 〈ui (	x, t)u j (	x + 	r , t)〉 (2.52)

and 	u = 	U − 〈 	U 〉. Similarly, Ri j is obtained from the inverse Fourier transform of
Eq. (2.51) and we have

〈	u(	x, t) · 	u(	x + 	r , t)〉 =
3∑

i=1

Rii (	r , t) =
3∑

i=1

∞∫
−∞

�i i (	k, t)ei 	k·	r d	k (2.53)

If 	U is also statistically isotropic, then Ri j (	r , t) = Ri j (r, t) and �i j (	k, t) = �i j (k, t)
where r = |	r | and k = |	k|. Thus,

∞∫
−∞

�i i (	k, t)ei 	k·	r d	k = 4π

∞∫
0

�i i (k, t)k2
(

sin kr

kr

)
dk (2.54)

and

1

2
〈	u(	x, t) · 	u(	x + 	r , t)〉 =

∞∫
0

E(k, t)

(
sin kr

kr

)
dk (2.55)
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where

E(k, t) = 2πk2
3∑

i=1

�i i (k, t) (2.56)

is the spatial spectrum. When 	U is the velocity, E(k, t)dk is the contribution to the
turbulent kinetic energy (per unit mass), (1/2)〈	u · 	u〉, from the Fourier modes of
wave vector with a magnitude in the range between k and k + dk. Thus E(k, t) is
known as the energy spatial spectrum.

2.2 The Closure Problem of Turbulence

Using the equations of fluid motion, one can derive equations for the mean velocity
and other statistical quantities of interest. However, because the equations of motion
are nonlinear, the equation for the mean velocity, a first order moment, will contain
terms involving the correlations of two velocity components, which are second-order
statistical quantities. Likewise, the equation for the second-order velocity correlations
will contain the third-order correlations of three velocity components. As a result,
we always have one unknown more than the number of equations, rendering a direct
calculation of the statistics of turbulent fluctuations from the equations of motion
impossible. This is known as the closure problem of turbulence. An explicit illustra-
tion of this problem will be presented using the Navier–Stokes equation Eq. (1.1).

Using the Reynolds decomposition, we write

	U (	r , t) = 〈 	U (	r , t)〉 + 	u(	r , t) (2.57)

By definition, 〈	u〉 = 0. Using Eq. (1.4), we get

	∇ · 〈 	U 〉 = 0 and 	∇ · 	u = 0 (2.58)

We note that the order of taking average and differentiation can be interchanged.
Taking the average of Eq. (1.1), we obtain the Reynolds equations:

∂

∂t
〈 	U 〉 + 〈 	U · 	∇ 	U 〉 = −1

ρ
	∇〈p〉 + η

ρ
∇2〈 	U 〉 (2.59)

and

〈 	U · 	∇ 	U 〉 = 〈 	U 〉 · 	∇〈 	U 〉 + 〈	u · 	∇ 	u〉 = 〈 	U 〉 · 	∇〈 	U 〉 +
3∑

i=1

∂

∂ri
〈ui 	u〉 (2.60)

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
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As a result, the Reynolds equation for the mean velocity 〈 	U 〉 contains the second-
order statistical correlations 〈ui u j 〉, which are known as Reynolds stresses. Without
additional knowledge about the Reynolds stresses, the mean velocity 〈 	U 〉 cannot be
solved from the equations of motion. This is a manifestation of the closure problem.

For practical calculation of the statistical quantities, turbulence modeling is often
employed. Turbulence modeling involves finding appropriate models of the Reynolds
stress, which are hypotheses of the functional relationship between the Reynolds
stresses 〈ui u j 〉 and the mean velocity 〈 	U 〉. One example is the turbulent viscosity
model [3], in which the Reynolds stresses are expressed in terms of the spatial
derivatives of the mean velocity:

〈ui u j 〉 = 2

3
K δi j − νT

(
∂〈Ui 〉
∂r j

+ ∂〈U j 〉
∂ri

)
(2.61)

where K ≡ (1/2)〈	u · 	u〉 and νT > 0 is known as the turbulent or eddy viscosity,
and can generally be a function of 	r and t . Such turbulence modeling often contains
empirical parameters and different turbulent-flow problems will require different
turbulence models.

Using Eq. (1.1), one can derive [3, 4] an evolution equation for the one-point,
one-time PDF of the velocity at the point 	r and time t , denoted by P 	U ( 	V ; 	r , t).
Define

f ( 	V ; 	r , t) ≡ δ( 	U (	r , t) − 	V ) (2.62)

then P 	U ( 	V ; 	r , t) is given formally by the the ensemble average of f ( 	V ; 	r , t):

P 	U ( 	V ; 	r , t) = 〈 f ( 	V ; 	r , t)〉 (2.63)

Moreover, for any well-behaved function g(	r , t), we have

〈g(	r , t) f ( 	V ; 	r , t)〉 = 〈g(	r , t)| 	U (	r , t) = 	V 〉P 	U ( 	V ; 	r , t) (2.64)

where 〈g(	r , t)| 	U (	r , t) = 	V 〉 is the conditional mean of g(	r , t) given { 	V ≤ 	U ≤
	V + d 	V }. Taking the spatial gradient and time derivative of f ( 	V ; 	r , t) and using
chain rule, we get

∂ f

∂t
= −

3∑
j=1

∂ f

∂Vj

∂U j

∂t
= −

3∑
j=1

∂

∂Vj

(
f
∂U j

∂t

)
(2.65)

∂ f

∂ri
= −

3∑
j=1

∂ f

∂Vj

∂U j

∂ri
= −

3∑
j=1

∂

∂Vj

(
f
∂U j

∂ri

)
(2.66)

http://dx.doi.org/10.1007/978-981-4560-23-8_1


2.2 The Closure Problem of Turbulence 21

Here, we have used the independence of 	U and 	V . Furthermore,

	U (	r , t) · 	∇ f = 	∇ · ( 	U f ) = 	∇ · ( 	V f ) = 	V · 	∇ f (2.67)

In Eq. (2.67), the first equality follows from incompressibility, the second equality
makes use of the property of the delta-function, and the final equality results because
	V is independent of 	r . Hence, using Eqs. (2.65)–(2.67), we have

D f

Dt
= ∂ f

∂t
+ 	V · 	∇ f = −

3∑
j=1

∂

∂Vj

(
f

DU j

Dt

)
(2.68)

Taking the ensemble average of Eq. (2.68) and using Eq. (2.64) yields

∂P 	U
∂t

+ 	V · 	∇ P 	U = −
3∑

j=1

∂

∂Vj

(
P 	U

〈
DU j

Dt
| 	U = 	V

〉)
(2.69)

Finally, using the Navier–Stokes equation Eq. (1.1) to substitute DU j/Dt , we obtain
an evolution equation for P 	U ( 	V ; 	r , t) in terms of the undetermined conditional mean
of the sum of viscous dissipation and the pressure gradient:

∂P 	U
∂t

+ 	V · 	∇ P 	U = −
3∑

j=1

∂

∂Vj

[
P 	U

(〈
ν∇2U j − 1

ρ

∂ p

∂x j
| 	U = 	V

〉)]
(2.70)

To evaluate the conditional mean, the joint PDF of 	U and ν∇2U j − (1/ρ)∂ p/∂x j

is needed. Thus the equation for the PDF of 	U depends on the joint PDF of 	U and
another variable. Similarly, the equation for the joint PDF of two variables would
depend on the joint PDF of three variables. The equation for the joint PDF of N
variables introduces a higher-order joint PDF of one additional variable thus again
there is always one unknown more than the number of equations. This is another
manifestation of the closure problem.

The work of studying turbulence via such an infinite hierarchy of equations for
the joint PDFs has been initiated by Lundgren [4], Monin [5], and Novikov [6], and
the interested reader is referred to the review [7]. With stochastic modeling for the
respective conditional means, a class of turbulent models, known as PDF methods [3],
have been developed and particularly applied in turbulent reactive flows [8]. Other
work has used data obtained from direct numerical simulations to specify the condi-
tional means with an attempt to achieve a direct link between the observed statistical
properties and the basic dynamical features of the systems under consideration [7].

http://dx.doi.org/10.1007/978-981-4560-23-8_1
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2.3 Exact Implicit PDF Formula

When the systems under consideration obey certain statistical symmetries, the PDF
equation for a physical variable of interest can be solved to give an implicit result
in terms of the conditional means of the time derivatives or spatial gradients of the
variable. Such results have been derived for general stationary [9] or statistically
homogeneous fluctuations [10]. Because of the closure problem, these implicit PDF
formulae are useful for studying turbulent flows. Furthermore, exact results for the
conditional means can be obtained directly from the equations of motion in some
cases (see Sect. 2.4).

2.3.1 Stationary Fluctuations

Consider a stationary random process X (t) and denote its one-time PDF as PX (x).
A physical example would be the temperature or a velocity component in a stationary
turbulent flow measured at a certain fixed spatial location as a function of time t . Since
X (t) is stationary, all its one-time statistics are independent of time. Specifically,

〈
d

dt

[
h(X)Ẋ

]〉 = 0 (2.71)

for any well-behaved function h(X) of X . This implies

〈h(X)Ẍ〉 = −〈h′(X)(Ẋ)2〉, (2.72)

where h′(X) ≡ dh(X)/d X and an overdot indicates a time derivative. Write the
ensemble averages in Eq. (2.72) in terms of integrals of PX (x), we get:

∞∫
−∞

h(x)〈Ẍ
∣∣ X = x〉PX (x)dx = −

∞∫
−∞

h′(x)〈(Ẋ)2
∣∣ X = x〉PX (x)dx (2.73)

Here, 〈Ẍ
∣∣ X = x〉 is the conditional mean of the second-order derivative of X given

{x ≤ X < x + dx}, and 〈(Ẋ)2
∣∣ X = x〉 is the conditional mean of the square of

the derivative of X given {x ≤ X < x + dx}. The two conditional means are thus
functions of x . After integrating by parts once the integral on the right hand side and
using PX (x) → 0 as |x | → ∞, we get

∞∫
−∞

h(x)

{
〈Ẍ

∣∣ X = x〉PX (x) − d

dx

[
〈(Ẋ)2

∣∣ X = x〉PX (x)
]}

dx (2.74)
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Since Eq. (2.74) holds for any well-behaved h(X), the expression inside the curly
bracket has to be identically zero. This gives a differential equation for PX (x):

〈Ẍ
∣∣ X = x〉PX (x) = d

dx

[
〈(Ẋ)2

∣∣ X = x〉PX (x)
]

(2.75)

Solving Eq. (2.75), we obtain:

PX (x) = C1

〈Ẋ2
∣∣ X = x〉 exp

⎛
⎝ x∫

0

〈Ẍ
∣∣ X = x ′〉

〈(Ẋ)2
∣∣ x ′〉 dx ′

⎞
⎠ (2.76)

where C1 is the normalization constant fixed by
∫ ∞
−∞ PX (x)dx = 1. Equation (2.76),

which was first derived in Ref. [9], is an exact formula that expresses PX (x) implicitly
in terms of two undetermined conditional means: 〈(Ẋ)2

∣∣ X = x〉 and 〈Ẍ
∣∣ X = x〉.

Its derivation requires only stationarity and differentiability of X (t). With Eq. (2.76),
we can calculate PX (x) if 〈(Ẋ)2

∣∣ X = x〉 and 〈Ẍ
∣∣ X = x〉 are known or we can

calculate any one of these three functions if the other two are known.

2.3.2 Statistically Homogeneous Fluctuations

We next consider a statistically homogeneous process Y (	r) whose PDF is PY (y).
We can think of Y (	r) as the turbulent temperature or velocity fluctuation measured
as a function of position r at a certain instant of time in a statistically homogeneous
fluid flow. Because of homogeneity, we have

〈∇ · [g(Y )∇Y ]〉 = 0 (2.77)

for any well-behaved function g(Y ) of Y . As a result,

〈g(Y )∇2Y 〉 = −〈g′(Y )|∇Y |2〉 (2.78)

where g′(Y ) ≡ dg(Y )/dY . Equation (2.78) can be similarly written in terms of
integrals of PY (y):

∫
g(y)

{
〈∇2Y

∣∣ Y = y〉PY (y) − d

dy

[
〈|∇Y |2 ∣∣ Y = y〉PY (y)

]}
dy = 0 (2.79)

where 〈∇2Y
∣∣ Y = y〉 and 〈|∇Y |2 ∣∣ Y = y〉 are respectively the conditional mean of

the Laplacian of Y and the conditional mean of the square of the gradient of Y given
{y ≤ Y < y + dy}, and are functions of y. The derivation of an implicit formula for
PY (y) then parallels that for stationary processes. In particular, the manipulations
corresponding to (2.74)–(2.76) lead to
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〈∇2Y
∣∣ Y 〉PY (y) − d

dy

[
〈|∇Y |2 ∣∣ Y = y〉PY (y)

]
= 0 (2.80)

and

PY (y) = C2

〈|∇Y |2 ∣∣ Y = y〉 exp

⎛
⎝ y∫

0

〈∇2Y
∣∣ Y = y′〉

〈|∇Y |2 ∣∣ Y = y′〉 dy′
⎞
⎠ . (2.81)

Here C2 is again the normalization constant determined by
∫ ∞
−∞ PY (y)dy = 1.

Equation (2.81) now expresses PY (y) implicitly in terms of 〈∇2Y |Y = y〉 and
〈|∇Y |2 ∣∣ Y = y〉.

In turbulent fluid flows, we are often interested in the statistical properties of
not only the velocity or temperature fluctuations measured at one position but also
the simultaneous difference of velocity or temperature fluctuations between two
positions, i.e., the statistical properties of δY (	r1, 	r2) ≡ Y (	r1) − Y (	r2). Identities
like (2.80) and (2.81) relating the PDF to conditional means of �Y can be similarly
obtained. Instead of (2.77), the starting point is

〈(∇r1 + ∇r2) · [g(δY )(∇r1 + ∇r2)δY ]〉 = 0. (2.82)

Similar manipulations together with a use of ∇r1 · ∇r2δY ≡ 0, yield

〈(∇2
r1

+ ∇2
r2

)δY
∣∣ δY = z〉PδY (z) − d

dz

[
〈|(∇r1 + ∇r2)δY |2 ∣∣ δY = z〉PδY (z)

]
= 0

(2.83)
and the PDF of δY , denoted by P�Y (z), is given by

P�Y (z)= C3

〈|(∇r1 +∇r2)δY |2 ∣∣ δY = z〉 exp

⎛
⎝ z∫

0

〈(∇2
r1

+∇2
r2

)δY
∣∣ δY = z′〉

〈|(∇r1 +∇r2)δY |2 ∣∣ δY = z′〉 dz′
⎞
⎠ .

(2.84)

2.4 Some Exact Results for Conditional Means

With the implicit PDF formulae, the problem of understanding the statistics of any
stationary or statistically homogeneous fluctuation is equivalent to understanding
the two conditional means of time derivatives or spatial gradients of the fluctuation.
In general, the calculation of these conditional means directly from the equation of
motion is a very difficult problem. In two special cases of homogeneous turbulent
flows, exact results for either one of the two conditional means, 〈∇2θ|θ = x〉 and
〈|∇θ|2 |θ = x〉, of the temperature fluctuation θ(	r , t) = T (	r , t)−T0 can be obtained
directly from the equation of motion [11]. The PDF of θ is given by Eq. (2.81) with
Y = θ:
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Pθ(x) = CN

〈|∇θ|2 ∣∣ θ = x〉 exp

⎛
⎝ x∫

0

〈∇2θ
∣∣ θ = x ′〉

〈|∇θ|2 ∣∣ θ = x ′〉 dx ′
⎞
⎠ , (2.85)

where CN is the normalization constant. Since only one of the two conditional means
can be found, Pθ is still undetermined up to the remaining conditional mean. We are
going to discuss these exact results in this section.

2.4.1 Decaying Homogeneous Temperature Fluctuations

Consider an incompressible homogeneous fluid flow without any heat source such
that the temperature fluctuations are decaying in time. The governing equations of
motion are Eqs. (1.4) and (1.8). Multiplying Eq. (1.8) by 2nθ2n−1 and taking an
ensemble average, we have

d

dt
〈θ2n〉 + 〈 	∇ · ( 	Uθ2n)〉 = κ〈∇2(θ2n)〉 − 2n(2n − 1)κ〈θ2n−2|∇θ|2〉 (2.86)

where we have used Eq. (1.4). Both 〈 	∇ · ( 	Uθ2n)〉 and 〈∇2(θ2n)〉 vanish because of
homogeneity. As a result, we obtain:

d

dt
〈θ2n〉 = −2n(2n − 1)κ〈θ2n−2|∇θ|2〉 (2.87)

The right hand side of (2.87) is negative, expressing the decay of temperature fluc-
tuations. The decay rate for the temperature variance is given by 2κ〈|∇θ|2〉/〈θ2〉,
which is the ratio of the scalar dissipation to the variance.

Now suppose the normalized fluctuation, X ≡ θ/〈θ2〉1/2, reaches a statistically
stationary state although θ itself decays in time [12]. As a result,

d〈X2n〉
dt

= 0, (2.88)

which relates the decay rate of the nth moment, 〈θ2n〉, to that of the variance, 〈θ2〉:

1

〈θ2〉n

d〈θ2n〉
dt

− n
〈θ2n〉

〈θ2〉n+1

d〈θ2〉
dt

= 0 (2.89)

The approach to stationary X could involve some delicate questions. Suppose that
the velocity field spectrum and the initial temperature spectrum have a low-cutoff
wavenumber kc. The advection process will induce a tail k � kc in the temperature
spectrum. If the flow region is infinite, this tail will move to ever-lower k. If, instead,
the flow region is contained in a periodic box, then there is a smallest wavenumber

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
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k0 of the order of the inverse of the size of the box. In this case, a stationary cascade
of X is expected when the low k-tail has saturated at k0.

Equations (2.87) and (2.89) yield

〈θ2n−1∇2θ〉 = −〈|∇θ|2〉
〈θ2〉 〈θ2n〉, (2.90)

which is true for arbitrary n, and thus implies

〈∇2θ
∣∣ θ = x〉 = −〈|∇θ|2〉

〈θ2〉 x (2.91)

Equation (2.91) is an exact result for the conditional mean 〈∇2θ|θ = x〉, and holds
for the special case of homogeneous temperature fluctuations with no heat source
and that the temperature fluctuation decays in such a fashion that its normalized
fluctuation is stationary. Then Pθ(x) is determined by 〈|∇θ|2 |θ = x〉 only, and it is
given by

Pθ(x) = CN

〈|∇θ|2 ∣∣ θ = x〉 exp

⎡
⎣−〈|∇θ|2〉

〈θ2〉
x∫

0

x ′dx ′

〈|∇θ|2 ∣∣ θ = x ′〉

⎤
⎦ . (2.92)

Equation (2.92) was derived by Sinai and Yakhot [12] but they did not emphasize the
implied linearity of the conditional mean 〈∇2θ

∣∣ θ = x〉 (Eq. (2.91)). This linearity
result is independent of the statistics of the homogeneous velocity field, and is a
consequence of the linearity of Eq. (1.8) in θ. The conditional mean is no longer
linear if nonlinearity is introduced. Suppose there is an additional nonlinear term
f (θ) on the right hand side of Eq. (1.8). The stationarity of the normalized field now
requires

〈[κ∇2θ + f (θ)]θ2n−1〉 = 〈[κ∇2θ + f (θ)]θ〉
〈θ2〉 〈θ2n〉, (2.93)

which implies that 〈∇2θ|θ = x〉 is a nonlinear function of x :

κ〈∇2θ
∣∣ θ = x〉 =

[ 〈 f (θ)θ〉 − κ〈|∇θ|2〉
〈θ2〉

]
x − f (x). (2.94)

2.4.2 Stationary Homogeneous Temperature Fluctuations
with a White-in-time Heat Source

When there is a heat source s(	r , t), the turbulent temperature fluctuations are sta-
tionary, and Eq. (1.8) becomes:

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
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∂θ

∂t
+ 	U · 	∇θ = κ∇2θ + s (2.95)

Consider the heat source s to be a homogeneous white-in-time field that satisfies

〈s(	r , t)〉 = 0, 〈s(	r , t)s(	r , t ′)〉 = 2qδ(t − t ′) (2.96)

Multiplying both sides of (2.95) by a well-behaved function g(θ) and taking ensemble
averages, we get

d

dt
〈G(θ)〉 + 〈 	U · 	∇G(θ)〉 = κ〈g(θ)∇2θ〉 + 〈sg(θ)〉 (2.97)

where G ′(θ) = g(θ) and ′ denotes a derivative with respect to θ. Stationarity implies
d〈G(θ)〉/dt = 0, and 〈 	U · 	∇G(θ)〉 = 0 because of homogeneity and incompress-
ibility as in the previous case. Thus we obtain the steady-state balance equation:

κ〈g(θ)∇2θ〉 + 〈sg(θ)〉 = 0 (2.98)

To evaluate the term 〈sg(θ)〉, we use Eq. (2.95) to invoke the equation of motion of
g(θ):

∂g(θ)

∂t
= − 	U · 	∇g(θ) + κg′(θ)∇2θ + sg′(θ) (2.99)

Integrating this equation from t ′ to t with t > t ′, then multiplying s(	r , t) and taking
ensemble average, we find

〈s(	r , t)g(θ(	r , t))〉 =
t∫

t ′
〈s(	r , t)s(	r , t̃)g′(θ(	r , t̃))〉 dt̃ (2.100)

In obtaining Eq. (2.100), we have used the fact that θ(	r , t̃) is independent of s(	r , t)
for t̃ < t because of causality. Let t ′ tend to t and use the property of the source s
(Eq. (2.96)), we then get 〈sg(θ)〉 = q〈g′(θ)〉 (2.101)

Using Eqs. (2.98) and (2.101) together with Eq. (2.78) for Y = θ, we find

〈g′(θ) |∇θ|2〉 = q

κ
〈g′(θ)〉 (2.102)

Equation (2.102) shows that the square of the temperature gradient is uncorrelated
with any well-behaved function of the temperature field. Such a feature was also
found for the vorticity gradient and the vorticity field in two-dimensional turbulence
driven by a white-in-time force [13]. Writing Eq. (2.102) in terms of integrals of Pθ

and noting that it is valid for any arbitrary well-behaved function g′(θ), we finally
get
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〈|∇θ|2 ∣∣ θ = x〉 = 〈|∇θ|2〉 = q

κ
. (2.103)

Equation (2.103) is an exact result for the case of a homogeneous white-in-time heat
source. In this case, the conditional mean 〈|∇θ|2 ∣∣ θ = x〉 is independent of x and is
equal to q/κ. Moreover, we have

Pθ(x) = CN exp

⎡
⎣κ

q

x∫
0

〈∇2θ
∣∣ θ = x ′〉dx ′

⎤
⎦ . (2.104)

Equation (2.104) implies that 〈∇2θ
∣∣ θ = x〉 is positive when x is negative and

negative when x is positive if Pθ(x) is a decreasing function of |x |.

2.5 Stationary Temperature Fluctuations in Rayleigh-Bénard
Convection

The Rayleigh–Bénard convection system is not homogeneous throughout the whole
cell because of the presence of boundaries. Due to the no-slip boundary condition
(Eq. (1.9)), there are viscous (velocity) boundary layers near the top and bottom
plates as well as near the sidewall of the cylindrical convection cell. In addition,
there are thermal (temperature) boundary layers near the top and bottom plates due
to the constant temperature or constant heat flux boundary conditions (Eqs. (1.12)
and Eq. (1.11) or Eq. (1.13)). Relatively large mean velocity or temperature gradients
exist in the viscous or thermal boundary layers while there are vanishingly small mean
velocity and temperature gradients at the center of the cell. Thus the system can be
divided into the central region, a core bulk region around the cell center, the boundary
layers near the sidewall, and the top and bottom plates, and the remaining regions,
and different statistical properties and scaling behavior in the different regions are
expected. Temperature fluctuations T (t) are measured by a thermistor as a function of
time t at a single location. Let X (t) ≡ (T −〈T 〉)/√〈(T − 〈T 〉)2〉 be the normalized
temperature fluctuation, where 〈. . .〉t is an average over time.

2.5.1 The Central Region

As the flow is driven by a heat source with a constant heat flux, the temperature
fluctuations are stationary and not decaying. Thus the derivation leading to Eq. (2.90)
for decaying temperature fluctuations is not valid. Ching [14] assumed that a relation
similar to Eq. (2.90) but with the spatial gradient replaced by the time derivative:

〈X2n−1 Ẍ〉 = −〈Ẋ2〉〈X2n〉 ∀n, (2.105)

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
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holds in general for stationary homogeneous turbulent temperature fluctuations. This
assumption is not obvious and might be justified by considerations of universality of
fluctuations in turbulence.

Using Eq. (2.105), we have

〈Ẍ
∣∣ X = x〉 = −〈Ẋ2〉x (2.106)

Substituting Eq. (2.106) into Eq. (2.76) gives:

PX (x) = CN

〈Ẋ2
∣∣ X = x〉 exp

⎡
⎣−

x∫
0

〈Ẋ2〉x ′

〈Ẋ2
∣∣ X = x ′〉 dx ′

⎤
⎦ (2.107)

Equation (2.107) has first been tested [14] to hold for experimental measurements
taken at the center of a convection cell of H=40 cm and D=20 cm, filled with helium
gas at about 5 K [15] for a wide range of Ra from 107 − 1014. The PDF of X (t),
PX (x), and the conditional mean 〈Ẋ2

∣∣X = x〉 are calculated from the experimental
data. Both quantities are symmetric in x . A theoretical PDF of X , denoted by Pth(x),
is computed using the calculated conditional mean and Eq. (2.107). Pth(x) agrees
very well with PX (x) for all the data studied. The good agreement has been quantified
by calculating

σ ≡
∫ ∞
−∞{log2[ Pth(x)

PX (x)
]}2[PX (x)]1/2dx

∞∫
−∞

[PX (x)]1/2dx

(2.108)

where the weight factor [PX (x)]1/2 is included to take into account the statistical
error in computing Pth(x). As can be seen in Table 2.1, σ < 0.5 for the wide range
of Ra studied. The linearity of the conditional mean 〈Ẍ |X = x〉 (Eq. (2.106)) has
been directly verified [9] using measurements in helium [15]. A verification using
more recent measurements in water [16] is shown in Fig. 2.1. As has been shown in
Ref. [14], Eq. (2.107), and thus Eq. (2.106), holds also for the normalized temperature

Table 2.1 Values of σ (see
Eq. (2.108)) for the
comparison of PX (x) against
Pth(x)

Ra σ

6.9 × 106 0.26
2.1 × 107 0.30
6.0 × 108 0.44
4.0 × 109 0.48
7.3 × 1010 0.45
6.0 × 1011 0.43
6.7 × 1012 0.39
4.1 × 1013 0.36
5.8 × 1014 0.33
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Fig. 2.1 Plot of r(x) ≡ 〈Ẍ
∣∣ X = x〉/〈(Ẋ)2〉 as a function of x at the cell center (circles) using

experimental measurements taken in water at Ra = 8.3 × 109 [16]. The solid line is −x

increments, X = Xτ ≡ Tτ/
√〈T 2

τ 〉, where Tτ (	r , t) ≡ T (	r , t + τ ) − T (x, t) is the
temperature difference separated by a time interval τ , except for very short time
separations, as well as for passive temperature data measured in the wake of a slightly
heated cylinder. The cylinder was heated so slightly that the buoyancy term was
unimportant and temperature acted as a passive scalar. Later work found [17] that
Eq. (2.106) holds well also for stationary passive temperature and spanwise vorticity
fluctuations obtained in other turbulent shear flows.

An interesting implication of Eq. (2.107) is that the shape of PX (x), especially
its tails at large |x |, is determined by the functional dependence of the conditional
mean 〈Ẋ2

∣∣ X = x〉. We shall discuss several cases below.

1. The conditional mean 〈Ẋ2
∣∣ X = x〉 is independent of x , and thus

〈Ẋ2
∣∣ X = x〉 = 〈Ẋ2〉 (2.109)

In this case, PX (x) is a standardized Gaussian with zero mean and unit standard
deviation:

PX (x) = 1√
2π

e−x2/2 (2.110)

2. The conditional mean 〈Ẋ2|X = x〉 has a power-law dependence on |x | for large
x :

〈Ẋ2
∣∣ X = x〉
〈Ẋ2〉 ∼ |x |α

a
(2.111)

for large |x | with a > 0 and 0 < α < 2. Then PX (x) has stretched exponential
tails:

PX (x) ∼ e−A|x |2−α
for large |x | (2.112)
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where A = a/(2 − α). For the special case of

〈Ẋ2
∣∣ X = x〉
〈Ẋ2〉 = 1 + B|x |

1 + B〈|X |〉 (2.113)

with B > 0, an explicit mathematical form of PX (x) can be obtained:

PX (x) = CN e−b|x |(1 + B|x |)b/B−1 (2.114)

where b = 〈|X |〉+1/β, and the constants CN and B are fixed by the normalization
condition and 〈X2〉 = 1.

3. The conditional mean 〈Ẋ2
∣∣ X = x〉 is quadratic in x :

〈Ẋ2
∣∣ X = x〉
〈Ẋ2〉 = 1 + cx2

1 + c
(2.115)

where c > 0. In this case, PX (x) has algebraic tails [18]:

PX (x) = CN (1 + cx2)
−

(
1+3c

2c

)
(2.116)

and CN and c are again fixed by the normalization condition and 〈X2〉 = 1.
PDFs with algebraic tails are related to the observed hyperbolic intermittency in
atmospheric dynamics [19].

The PDF of temperature fluctuations at the cell center is Gaussian for Ra below
108 in the regime of soft turbulence, and changes to one with exponential tails at
higher Ra in the hard-turbulence regime [20]. This change in the PDF can thus be
understood as the consequence of the corresponding change in the conditional mean
〈Ẋ2

∣∣ X = x〉 from Eqs. (2.109) to (2.113). Such a change in the conditional mean
has been confirmed directly by the data [10] (see Fig. 2.2). On the other hand, the
PDF of the normalized temperature increments, PXτ (x), is well approximated by
a stretched-exponential B exp(−d|x |β) with β increasing with τ [21]. This implies

that 〈Ẋτ
2 ∣∣ Xτ = x〉 should depend on |x | as |x |α with α = 2 − β. This has indeed

been found [14].
Using experimental measurements, it has been reported [22, 23] that the velocity

and temperature fluctuations in the central region are also statistically homogeneous
and isotropic to a good approximation. We note that this can, at best, be an approx-
imation. This is because velocity and temperature fluctuations that are stationary as
well as statistically homogeneous are incompatible with the equation of motion for
the temperature field (Eq. (1.8)). To show this, recall θ(	r , t) = T (	r , t) − T0, where
T0 = 〈T (	r , t)〉V,t is the average over the whole cell and time. Let f = δ(θ(	r , t)−w).
Using results analogous to Eqs. (2.65) and (2.66), we get:

D f

Dt
= ∂ f

∂t
+ 	∇ · ( 	U f ) = − ∂

∂w

[
f

Dθ

Dt

]
(2.117)

http://dx.doi.org/10.1007/978-981-4560-23-8_1
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Fig. 2.2 Plot of q(x) ≡ 〈Ẋ2
∣∣ X = x〉/〈(Ẋ)2〉 as a function of x at the cell center (circles) using

experimental measurements [15] taken in helium at Ra 6.9×106 (circles) and 7.3×1010 (squares).
The data for Ra=7.3 × 1010 have been shifted up by 2 for clarity

Taking the ensemble average of Eq. (2.117) and using Eq. (1.8) yield an evolution
equation for Pθ = 〈 f 〉:

∂Pθ

∂t
+ 	∇ · [〈 	U ∣∣ θ = w〉Pθ] = − ∂

∂w
[κ〈∇2θ

∣∣ θ = w〉Pθ] (2.118)

The temperature fluctuations are stationary thus ∂Pθ/∂t = 0. If the velocity and tem-
perature fluctuations are also statistically homogeneous, then 	∇·[〈 	U |θ = w〉Pθ] = 0.
Thus Eq. (2.118) becomes

〈∇2θ
∣∣ θ = w〉Pθ = C (2.119)

for some constant C . Statistically homogeneity further gives

0 = 〈∇2θ〉 =
∞∫

−∞
〈∇2θ

∣∣ θ = w〉Pθ(w)dw (2.120)

which requires that C = 0, yielding the unphysical result of a zero P(θ). Hence, the
stationary velocity and temperature fluctuations cannot also be exactly statistically
homogeneous in the central region.

2.5.2 Near the Bottom Plate

The temperature fluctuations are stationary but not homogeneous. Thus the PDF of
the normalized temperature fluctuations is also a function of position. We assume

http://dx.doi.org/10.1007/978-981-4560-23-8_1
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Fig. 2.3 Plot of the PDF of the normalized temperature fluctuations PX (τ ) (solid line) as a function
of τ at the center of the bottom plate using experimental measurements taken in water at Ra
= 8.3 × 109 [16]. Pth(τ ) (squares) is the PDF calculated from Eq. (2.76) using the two conditional
means shown in Fig. 2.4. Good agreement can be seen

that the fluctuations are statistically homogeneous on a horizontal plane [24, 25] such
that the PDF of the normalized temperature fluctuations is a function of the vertical
coordinate z but not the polar coordinates (r,φ). In Fig. 2.3, we show PX (τ ) at the
bottom plate. We note that the experimental boundary condition for the bottom plate
is given by Eq. (1.13) and not Eq. (1.11) thus there are non-vanishing temperature
fluctuations at the bottom plate. It can be seen that unlike the PDF at the cell center,
PX (τ ) at the bottom plate is highly asymmetric in τ . This is caused by much more
frequent hotter fluctuations from the bottom plate. Similarly, the two conditional
means: 〈Ẋ2

∣∣ X = τ 〉 and 〈Ẍ
∣∣ X = τ 〉 would generally depend on z too. As

shown in Fig. 2.4, 〈Ẍ
∣∣ X = τ 〉 is not linear in τ and 〈Ẋ2

∣∣ X = τ 〉 is asymmetric.
Thus, Eq. (2.105) does not hold for the stationary temperature fluctuations in the
thermal boundary layers. Nonetheless, the general result of Eq. (2.76) for stationary
fluctuations remains valid, as shown also in Fig. 2.3.

Therefore, in the thermal boundary layers, the functional form of PX (τ ) is deter-
mined by the functional form of both the two conditional means. Moreover, the z-
dependence of PX (τ ) would be reflected by the z-dependence of both 〈Ẋ2

∣∣ X = τ 〉z

and 〈Ẍ
∣∣ X = τ 〉z . Here we use the subscript z to emphasize the z-dependence. On

the other hand, in Eq. (2.118), statistical homogeneity on a horizontal plane gives

	∇ · [〈 	U ∣∣ θ = w〉z Pθ] = ∂

∂z
[〈Uz

∣∣ θ = w〉z Pθ] (2.121)

Thus Pθ(w) satisfies

∂

∂z
[〈Uz

∣∣ θ = w〉z Pθ] + ∂

∂w
[κ〈∇2θ

∣∣ θ = w〉z Pθ] = 0 (2.122)

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
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Fig. 2.4 Plot of the conditional means: q(τ ) = 〈Ẋ2
∣∣ X = τ 〉 (circles) and r(τ ) = 〈Ẍ

∣∣ X = τ 〉
(triangles) as a function of τ at the center of the bottom plate using experimental measurements
taken in water at Ra = 8.3 × 109 [16]

This equation has been derived in [25]. The conditional mean 〈Uz
∣∣ θ = w〉 has been

naturally interpreted as the vertical velocity of the thermal plumes [26]. Hence, the
temperature statistics in the thermal boundary layers can be related to the dynamics
of the thermal plumes. Now X (t) and θ(t) are related by

θ(t) = X (t)〈[T (t) − 〈T 〉z]2〉1/2
z + 〈T 〉z − T0 , (2.123)

thus
PX (τ ) = Pθ(w)〈[T (t) − 〈T 〉z]2〉1/2

z (2.124)

where w = τ 〈[T (t) − 〈T 〉z]2〉1/2
z + 〈T 〉z − T0. Furthermore, the conditional means

〈(Ẋ)2
∣∣ X = τ 〉z and 〈Ẍ

∣∣ X = τ 〉z are related to the conditional means 〈Uz
∣∣ θ = w〉z

and 〈∇2θ
∣∣ θ = w〉z . In future work, it is worthwhile to pursue this interesting result

to shed light on the physical meanings of the conditional means 〈(Ẋ)2
∣∣ X = τ 〉z

and 〈Ẍ
∣∣ X = τ 〉z (see Chap. 5).
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Chapter 3
Phenomenology and Scaling Theories

Abstract The statistics of the velocity and temperature differences, between mea-
surements taken at two points separated by a distance l, can reveal the structure of
turbulence. These structure functions often exhibit power laws or scaling laws in l.
We introduce the important concept of energy cascade in turbulent flows and the
different theories for the scaling behavior of the velocity and temperature fluctu-
ations. We start with the scaling theory for non-buoyant turbulent flows and then
discuss how the presence of buoyancy would affect and modify the scaling behavior.
A crossover between the two types of scaling behavior is expected to occur at a length
scale, the Bolgiano length, above which buoyancy is significant. Furthermore, there
are corrections to these scaling theories due to the intermittent nature of turbulent
fluctuations, and we discuss the idea of refined similarity hypothesis used to account
for these corrections.

Keywords Energy cascade · Kolmogorov scaling · Four-fifth law · Obukhov–
Corrsin scaling · Bolgiano–Obukhov scaling · Bolgiano length

3.1 Richardson’s Energy Cascade

One important concept of fluid turbulence is the energy cascade introduced by
Richardson [1]. Turbulent flows are dissipative thus energy input by external forces
is required to maintain a turbulent fluid flow. The characteristic scale of this energy
input is typically of the size of the system, known as the integral scale, denoted by l0.
On the other hand, the characteristic scale of energy dissipation by viscous effects,
known as the dissipative scale and, denoted by ld , is much smaller than the integral
scale. As a result, there must be a transfer of energy from large to small scales. A
transfer of energy between scales indicates an interaction between the Fourier modes
of velocity of different wave numbers or scales. This is possible because of the non-
linear advection term �U · �∇ �U in the Navier–Stokes equation. Richardson pictured this
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energy transfer as a cascade process. Large eddies of the integral scale are produced
by the external forces. They are unstable due to the nonlinearity of the dynamics and
break up into eddies of smaller scale. These smaller eddies are themselves unstable
and break up into eddies of even smaller scale. This process continues until dis-
sipative effects due to viscosity are significant, and the turbulent kinetic energy is
then dissipated into heat. This picture of energy cascade is succinctly summarized
in Richardson’s famous rhyme [1]:

Big whorls have little whorls
Which feed on their velocity
And little whorls have lesser whorls
And so on to viscosity
(in the molecular sense)

An inherent feature of the cascade picture is that the energy transfer among scales
is local, that is, the effective energy exchange between modes of different wave
numbers decreases as the ratio of the wave numbers increases. It is expected that
the statistics at the integral scale are determined by the mechanism of energy input
and would vary from flow to flow. Because of the locality of the energy transfer, the
statistics at small scales, scales further down the cascade and far from the integral
scale, are not directly influenced by the mechanism of energy input. Thus this locality
feature of the energy cascade allows for the possibility of universal characteristics
for the statistics of small scales.

3.2 The Kolmogorov 1941 Theory

Based on Richardson’s energy cascade, Kolmorogov developed in 1941 a phenom-
enological theory (K41) [2] for the statistics of velocity difference,

δ �U (�r , �l) ≡ �U (�r + �l, t) − �U (�r , t) (3.1)

measured at the same time and at two positions separated by a displacement vector �l.
There are several hypotheses in the K41 theory. We shall focus on two of them. The
first one is an assumption of statistical homogeneity and isotropy of the small-scale
turbulent motion when, the Reynolds number (Re) is sufficiently high and far from
the boundaries. For statistically homogeneous fluctuations, δU (�r , �l) = δu(�r , �l) as
〈 �U (�r , t)〉 = 〈 �U (�r + �l, t)〉. Thus under this hypothesis, the statistics of δ�u(�r , �l) do
not depend on �r nor the direction of �l but depend only on l = |�l| for l � l0. The
second assumption is that under the same conditions stated in the first assumption,
there exists a range of intermediate length scales in which the statistics of δ�u(l) are
uniquely and universally determined by the mean energy transfer rate and l. This
range of intermediate length scales, ld � l � l0, is known as the inertial range. The
locality of energy cascade makes it possible that the statistics in the inertial range to
be universal. The mean energy transfer rate is equal to the mean energy dissipation
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rate as well as to the mean energy input rate. The mean energy dissipation rate is
given by 〈ε〉, where ε(�r , t) is defined by Eq. (1.29), and the ensemble average, can
be taken as the spatial average in statistically homogeneous turbulent flows.

Using these two hypotheses and dimensional analysis, one therefore obtains

〈δ�u(l) · δ�u(l)〉 = C〈ε〉2/3l2/3 (3.2)

where C is a universal constant. Since

〈δ�u(l) · δ�u(l)〉 = 2[〈�u · �u〉 − 〈�u(�r + �l, t) · �u(�r , t)〉] (3.3)

we obtain

〈δ�u(l) · δ�u(l)〉 = 4

∞∫
0

E(k)

[
1 −

(
sin kl

kl

)]
dk (3.4)

using Eq. (2.55). As a result, Eq. (3.2) is equivalent to the result that the spatial
energy spectrum E(k) follows a k−5/3 law over a suitable range of wave number k.
There is good experimental support for the −5/3 power-law in the energy frequency
spectrum E( f ) (see [5] for details). Similar arguments can be applied to give higher-
order statistics of δ�u(l). The longitudinal velocity difference along the direction of
the separation, denoted by δu‖(l), is given by

δu‖(l) ≡ δ�u(l) · �l
l

(3.5)

Then we have
Sp(l) ≡ 〈[δu‖(l)]p〉 = C p〈ε〉p/3l p/3 (3.6)

for arbitrary p > 0. Here, Sp(l) is known as the longitudinal velocity structure
function of order p. A power-law dependence of Sp(l) on l indicates that the inertial-
range turbulent statistics are scale-invariant and Eq. (3.6) is a statement of the K41
scaling. For p = 3, an exact result can be derived from the Navier–Stokes equation
for statistically homogeneous and isotropic flows:

S3(l) = −4

5
〈ε〉l (3.7)

This exact result is known as the four-fifth law and was derived by Kolmogorov also
in 1941 [3]. It is one of the very few exact results for turbulent flows, and will be
discussed in details in the next section.

In the above discussion, the K41 scaling is obtained by dimensional analysis based
on the requirement that in the inertial range Sp(l) depends only on 〈ε〉 and the scale
l. Thus we have the same scaling behavior for the velocity structure function using
δu(l) = |δ�u(l)|:

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_2
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Su
p(l) ≡ 〈[δu(l)]p〉 ∼ 〈ε〉p/3l p/3 (3.8)

The K41 scaling can also be obtained by the requirement that the rate of energy
transfer (per unit mass) is scale-independent in the inertial range. To see this, think
of δu(l) as the velocity of a turbulent eddy of scale l. The energy transfer rate (per
unit mass) at scale l can be estimated as [δu(l)]2/tl . Here, tl , known as the eddy
turnover time, is the typical time for the eddy of size l to deform or change in energy,
and can be estimated as tl = l/δu(l). Requiring the rate of energy transfer to be
independent of scale l implies [δu(l)]3/ l ∼ const but the mean energy transfer rate
has to be equal to the mean energy dissipation rate thus const = 〈ε〉, hence

[δu(l)]3

l
∼ 〈ε〉 (3.9)

This gives
δu(l) ∼ 〈ε〉1/3l1/3 (3.10)

which further implies Eq. (3.8).
The dissipative scale ld can be estimated as the scale at which the rate of dissipation

due to viscosity is comparable to 〈ε〉:

ν

[
δu(ld)

ld

]2

∼ 〈ε〉 (3.11)

Then take ld to be at the edge of the inertial range such that Eq. (3.10) holds at
l = ld . Eliminating δu(ld) from Eqs. (3.10) and (3.11) gives ld ∼ (ν3/〈ε〉)1/4. The
Kolmogorov dissipative scale ηK is defined as:

ηK ≡
(

ν3

〈ε〉
)1/4

(3.12)

and typically ld is of the order of 10ηK .
Denote the normalized velocity difference by Yl :

Yl ≡ δu(l)

〈[δu(l)]2〉1/2 (3.13)

An important consequence of Eq. (3.8) is that all the moments of Yl are independent
of l. This l-independence follows directly from the proportionality of the scaling
exponents p/3 of Su

p(l) to p, and further implies that the PDF of Yl is indepen-
dent of l. Thus the K41 theory predicts that the statistics of inertial-range turbu-
lent velocity fluctuations are scale-independent and thus self-similar. Experiments
confirmed the power-law dependence or scaling of Su

p(l) but show that the scaling

exponents, defined by Su
p(l) ∼ lζ(p), depend on p in a nonlinear fashion. This devia-
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tion of the scaling behavior from the K41 prediction is known as anomalous scaling.
Furthermore, the discrepancy between the observed scaling exponents ζ(p) and the
predicted values of p/3 is known as intermittency corrections as the origin of the
correction is believed to be due to the intermittent nature of turbulent fluctuations.
The problem of anomalous scaling is a longstanding problem of turbulence and is
remained to be solved. We shall discuss one particular idea, the refined similarity
hypothesis, proposed by Kolmogorov and Obukhov in Sect. 3.7.

3.3 The Four-Fifth Law

We show in detail the derivation of the exact four-fifth law. We shall follow the
treatment in [4] and [5]. In this subsection, we denote ∂/∂t and ∂/∂ri by ∂t and ∂i ,
and adopt the Einstein notation of summation over repeated indices. We write the
Navier–Stokes equation Eq. (1.1) with an external force in component form:

∂tUi + Uk∂kUi = −1

ρ
∂i p + ν∂2

k Ui + fi (3.14)

Here, ρ �f is the external force per unit volume. Denote quantities evaluated at �r ′ =
�r + �l by the same notations with a prime, e.g., U ′

i ≡ Ui (�r ′, t), and ∂/∂r ′
i by ∂′

i .
Then taking the ensemble average of the product of U ′

j with Eq. (3.14) and Ui with
Eq. (3.14) for U ′

j , we have

∂t 〈UiU
′
j 〉 = −∂k〈UkUiU

′
j 〉 − ∂′

k〈U ′
kU ′

jUi 〉 − 1

ρ
∂i 〈U ′

j p〉 − 1

ρ
∂′

j 〈Ui p′〉
+ ν(∂2

k + ∂′2
k )〈UiU

′
j 〉 + 〈U ′

j fi 〉 + 〈Ui f ′
j 〉 (3.15)

Here, we have used the interchangeability of taking derivative and ensemble average,
incompressibility, and the derivative of primed quantities with respect to unprimed
coordinates vanishes.

Consider turbulent flows that are statistically homogeneous and isotropic. Because
of homogeneity and isotropy, the averages of the product of primed and unprimed
quantities depend only on l = |�r ′ − �r |. Therefore,

∂i 〈·〉 = −∂′
i 〈·〉 = −∂li 〈·〉 (3.16)

Thus
〈U ′

j p〉 = g(l)n j (3.17)

for some function g(l) and n j ≡ l j/ l. Incompressibility implies 0 = ∂′
j 〈U ′

j p〉 =
∂l j 〈U ′

j p〉, and using

http://dx.doi.org/10.1007/978-981-4560-23-8_1
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∂li = ∂l

∂li
∂l = ni∂l , ∂li = ∂nk

∂li
∂nk = 1

l
(δik − ni nk)∂nk (3.18)

we get
dg(l)

dl
+ 2

l
g(l) = 0 ⇒ g(l) = const

l2 (3.19)

But g(l) has to be finite at l = 0 thus const = 0 giving g(l) = 0 or 〈U ′
j p〉 = 0.

Similarly, 〈Ui p′〉 = 0. Define the velocity correlation and structure functions as
follows.

bi, j = 〈UiU
′
j 〉 (3.20)

Bi j = 〈(U ′
i − Ui )(U

′
j − U j )〉 (3.21)

bi j,m = 〈UiU jU
′
m〉 (3.22)

Bi jm = 〈(U ′
i − Ui )(U

′
j − U j )(U

′
m − Um)〉 (3.23)

Statistical homogeneity and isotropy imply that these functions depend only on l.
Moreover, 〈Ui (�r , t)U j (�r + �l, t)〉 = 〈Ui (�r − �l, t)U j (�r , t)〉 = 〈Ui (�r + �l, t)U j (�r , t)〉,
thus bi, j = b j,i is symmetric in the indices i and j . Therefore, the most general
forms for bi, j and bi j,m are:

bi, j = A(l)δi j + B(l)ni n j (3.24)

bi j,m = C(l)δi j nm + D(l)
(
δimn j + δ jmni

) + F(l)ni n j nm (3.25)

The form in Eq. (3.25) takes into account the symmetry in the indices i and j .
Homogeneity implies 〈U ′

jU
′
kUi 〉 = 〈U j (�r , t)Uk(�r , t)Ui (�r − �l, t), which is equal

to −b jk,i using Eq. (3.25). We write Eq. (3.15) for statistically homogeneous and
isotropic turbulent flows:

∂t bi, j = −∂k(bki, j + bkj,i ) + 2ν∂2
k bi, j + 〈U ′

j fi 〉 + 〈Ui f ′
j 〉 (3.26)

Using Eq. (3.26), a relation between the second- and third-order longitudinal velocity
structure functions can be derived and from this relation the four-fifth law follows.

As we are interested in the longitudinal structure functions, we let the x-axis be
along the direction of �l. Then we take i = j = 1 in Eq. (3.26) and obtain

∂t b‖,‖ = −2∂kbk‖,‖ + 2ν∂2
k b‖,‖ + 2

3
〈 �f · �U 〉 − 〈δ f‖δu‖〉 (3.27)

where δ fi = f ′
i − fi . The subscript ‖ denotes the component along the longitudinal

direction along �l and there is no summation over this direction. Next, we relate ∂2
k b‖,‖

to S2(l). Now S2(l) can be written as
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S2(l) = 〈δu2‖〉 = Bi j ni n j = 2

3
〈 �U · �U 〉 − 2b‖,‖ = 2

3
〈 �U · �U 〉 − 2(A + B) (3.28)

where we have used

〈U ′
i U

′
j 〉 = 〈UiU j 〉 = 1

3
〈 �U · �U 〉δi j (3.29)

Using Eqs. (3.16) and (3.18), we get

∂2
k bi, j =

(
d2 A

dl2 + 2

l

d A

dl
+ 2

l2 B

)
δi j +

(
d2 B

dl2 + 2

l

d B

dl
− 6

l2 B

)
ni n j (3.30)

The incompressibility condition gives 0 = ∂′
j bi, j , which implies

l

2

d

dl
(A + B) + B = 0 (3.31)

Thus
d S2

dl
= −2

d

dl
(A + B) = 4

l
B(l) (3.32)

and

∂2
k bi, j = −

(
d2 B

dl2 + 4

l

d B

dl

)
δi j +

(
d2 B

dl2 + 2

l

d B

dl
− 6

l2 B

)
ni n j

⇒ ∂2
k b‖,‖ = − 2

l4

d(l3 B)

dl
= − 1

2l4

d

dl

[
l4 d S2

dl

]
(3.33)

Then we relate ∂kbk‖,‖ to S3(l). The incompressibility condition gives 0 =
∂′

mbi j,m . Using again Eqs. (3.16) and (3.18), we get

[
dC

dl
+ 2

l
(C + D)

]
δi j +

[
2

d D

dl
+ d F

dl
+ 2

l
(F − D)

]
ni n j = 0 (3.34)

Thus

dC

dl
+ 2

l
(C + D) = 0 (3.35)

d(3C + 2D + F)

dl
+ 2

l
(3C + 2D + F) = 0 (3.36)

Equation (3.36) is obtained by taking the trace of Eq. (3.34). The functions C , D,
and F have to be finite at l = 0, thus

3C + 2D + F = 0 (3.37)
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We can then express D and F in terms of C and dC/dl:

D = −C − l

2

dC

dl
(3.38)

F = l
dC

dl
− C (3.39)

and obtain

bi j,m = Cδi j nm −
(

C + l

2

dC

dl

)
(δimn j + δ jmni ) +

(
l
dC

dl
− C

)
ni n j nm

(3.40)
Thus

S3(l) = 〈δu3‖〉 = Bi jmni n j nm (3.41)

= 2(bi j,m + bim, j + b jm,i )ni n j nm = −12C(l) (3.42)

where we have used 〈U ′
i U

′
jU

′
m〉 = 〈UiU jUm〉. Moreover,

− ∂kbki, j =
(

−2

l
C + 2

dC

dl
+ l

2

d2C

dl2

)
ni n j −

(
2

l
C + 3

dC

dl
+ l

2

d2C

dl2

)
δi j

⇒ −∂kbk‖,‖ = − 1

l4

d

dl
(l4C) = − 1

12l4

d

dl
(l4S3) (3.43)

Putting all the results together, we finally obtain

1

6l4

d

dl
(l4S3) − ν

l4

d

dl

(
l4 d S2

dl

)
= −2

3
〈ε〉 − 1

2
∂t S2 + 〈δ f‖δu‖〉 (3.44)

Here, we have used
1

2
∂t 〈 �U · �U 〉 − 〈 �f · �U 〉 = −〈ε〉 (3.45)

which follows from Eq. (3.14). For decaying turbulence, �f = 0 and ∂t S2 ≈ 0 for
l � l0. For stationary turbulence forced by �f that acts only at the largest scales,
∂t S2 = 0 and 〈δ f‖δu‖〉 ≈ 0 for l � l0. Thus for both cases, we have

1

6l4

d

dl
(l4S3) − ν

l4

d

dl

(
l4 d S2

dl

)
= −2

3
〈ε〉 (3.46)

for l � l0. In the limit of ν → 0, the viscous term is negligible. On the other
hand, it is assumed that 〈ε〉 remains finite in this limit. This implies that the velocity
gradients ∂ui/∂r j become unlimited as ν → 0 or as Re → ∞, which further
implies that vorticity is generated in turbulent flows and increases with Re. The
result that the dissipation remains finite as Re → ∞ is generally referred to as the
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“dissipative anomaly”, and is well supported by experimental and numerical results.
Thus in the limit of ν → 0, integrating Eq. (3.46) gives the four-fifth law Eq. (3.7).
We note that for stationary homogeneous and isotropic turbulence with �f acting over
all scales, we have the more general result [6]

S3(l) = −4

5
〈ε〉l + 6

l4

l∫
0

l ′4〈δ f‖(l ′)δu‖(l ′)〉dl ′ (3.47)

for l � l0.

3.4 The Obukhov–Corrsin Theory for Passive Scalar

Obukhov [7] and Corrsin [8] extended Kolmogorov’s 1941 theory to study tempera-
ture fluctuations in weakly-heated incompressible turbulent flows. The heating is so
weak that the resulted temperature variations have no dynamical effect on the turbu-
lent flow itself. As a result, the velocity field is still governed by the Navier–Stokes
equation. In this case, the temperature is known as a passive scalar. The equations of
motion are thus Eqs. (1.1) and (1.8). The Obukhov–Corrsin theory gives the statistics
of the temperature difference, defined by

δT (�r , �l) ≡ T (�r + �l, t) − T (�r , t) (3.48)

which is taken to be statistically homogeneous and isotropic. Besides the cascade
of turbulent energy, there is also a cascade of temperature variance from large to
small scales. The mean temperature dissipation rate is given by 〈χ〉, where χ(�r , t) is
defined in Eq. (1.30). In analogy to the K41 theory, the temperature variance transfer
rate, estimated by [δT (l)]2/tl , is scale-independent and thus equals to 〈χ〉 in the
intermediate inertial-convective range, the range of scales within the inertial range
where buoyancy is insignificant. That is,

[δT (l)]2δu(l)

l
∼ 〈χ〉 (3.49)

Together with Eq. (3.10) for δu(l), we obtain

δT (l) ∼ 〈ε〉−1/6〈χ〉1/2l1/3 (3.50)

and the Obukhov–Corrsin (OC) scaling for passive temperature fluctuations:

Sθ
p(l) ≡ 〈[δT (l)]p〉 ∼ 〈ε〉−p/6〈χ〉p/2l p/3 (3.51)

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
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Here, Sθ
p is known as the pth order temperature structure functions. Experiments

again confirm the power-law dependence but show that there are intermittency cor-
rections to the OC scaling such that Sθ

p(l) ∼ lξ(p) and ξ(p) deviates from p/3 [9].

3.5 The Bolgiano–Obukhov Scaling

In turbulent convection, temperature variations result in a buoyancy force that drives
the fluid motion, and temperature is now an active scalar. The presence of buoyancy
could affect and modify the scaling behavior. In several theoretical studies [6, 10–13],
arguments were given that buoyancy would give rise to a different scaling behavior:

Su
p(l)〉 ∼ (αg)2p/5〈χ〉p/5l3p/5 (3.52)

Sθ
p(l) ∼ (αg)−p/5〈χ〉2p/5l p/5 (3.53)

This type of scaling behavior, which is known as the Bolgaino–Obukhov (BO) scal-
ing, was originally proposed by Bolgiano [14] and Obukhov [15] for stably stratified
flows (see also discussions in [16]) based on dimensional analysis and the argument
that the velocity and temperature structure functions would depend only on αg, 〈χ〉
and l. Here, αg is the additional parameter that describes the strength of buoyant cou-
pling when buoyancy is significant. In turbulent Rayleigh–Bénard convection, the
BO scaling can be obtained based on a cascade of temperature variance (Eq. (3.49))
or a cascade of entropy flux [12] (for θ � T0,

∫
θ2d3x describes the entropy increase

per unit mass and volume due to the temperature fluctuations [13]) together with the
argument that the buoyant term dominates the dynamics and balances the nonlinear
advection term:

αgδT (l) ∼ [δu(l)]2

l
(3.54)

Equations (3.49) and (3.54) imply

δu(l) ∼ (αg)2/5〈χ〉1/5l3/5 (3.55)

δT (l) ∼ (αg)−1/5〈χ〉2/5l1/5 (3.56)

Then Eqs. (3.52) and (3.53) follow directly.

3.6 Crossover in Scaling

The BO scaling would hold only when buoyancy is significant. When buoyancy is
negligible, temperature behaves as a passive scalar and K41 and OC scaling would
hold. The buoyant term, estimated by αgδT (l)δu(l), increases with l. Thus one
expects a crossover from the K41-OC scaling to the BO scaling to occur at the
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crossover scale lc when
〈δu(lc)

BO〉 = 〈δu(lc)
K 41〉 (3.57)

Using Eqs. (3.10) and (3.55), we get

lc = 〈ε〉5/4

(αg)3/2〈χ〉3/4 ≡ L B (3.58)

Thus the crossover scale is given by L B , which is known as the Bolgiano length and
is the length scale above which buoyancy is important. The Bolgiano length was first
defined in terms of αg, 〈ε〉, and 〈χ〉 using dimensional analysis [16], Furthermore,
we have

αg〈δu(l)δT (l)〉 ≥ 〈ε〉 for l ≥ L B (3.59)

therefore L B is also the scale at which the power injected into the flow due to
buoyancy is equal to the mean energy dissipation rate [17]. Using the exact relations
Eqs. (1.41) and (1.42), L B can be related to Nu and Ra:

L B = Nu1/2

(PrRa)1/4 H (3.60)

Hence, the picture emerging from these scaling theories is that the BO scaling
is expected to hold in the buoyancy subrange, l0 � l > L B , while the K41-OC
scaling is expected to hold in the inertial-convective subrange, ld � l < L B . If L B

is of the order of l0 ≈ H or even larger, then only K41-OC scaling will be observed.
On the other hand, if L B is of the order of ld or even smaller, then only the BO
scaling would be observed [13]. However, there are two complications. The first
complication is that turbulent Rayleigh–Bénard convection is inhomogeneous. Thus
it is more appropriate to define a local crossover or Bolgiano length using the energy
and thermal dissipation rates averaged over the local region of interest. As a result, it
is possible that different scaling behavior is observed in different regions of the cell.
This will be discussed in Chap. 4 when we examine the scaling behavior observed in
experiments and numerical calculations. The second complication is the existence
of intermittency corrections to the scaling behavior. In the next Section, we shall
discuss one particular idea, the refined similarity hypothesis, which was proposed to
account for the intermittency corrections.

3.7 Refined Similarity Hypothesis

To account for the intermittency corrections of velocity fluctuations, Kolmogorov
proposed in 1962 [18] to refine his second hypothesis by replacing the mean energy
dissipation rate 〈ε〉 with a locally-averaged energy dissipation rate over a scale l,
defined as

http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_1
http://dx.doi.org/10.1007/978-981-4560-23-8_4
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εl(�r , t) ≡ 3

4πl3

∫
|�y|≤l

ε(�x + �y, t)d �y (3.61)

Similar ideas were also proposed independently by Obukhov [19]. As a result of this
refinement, which is known as the refined similarity hypothesis (RSH), Eq. (3.10) is
modified to

δu(l)K 41 ∼ ε
1/3
l l1/3 (3.62)

⇒ Su
p(l) ∼ 〈εp/3

l 〉l p/3 (3.63)

Corrections to the K41 scaling can thus be resulted from the l-dependence of the
moments of εl . In particular, let

〈εq
l 〉 ∼ lτ (q) (3.64)

then
ζ(p) = τ

( p

3

)
+ p

3
(3.65)

Different intermittency models have been proposed which give different results for
τ (q).

A direct implication of Eq. (3.62) is

〈[δu(l)]p
∣∣ εl = x〉 ∼ x p/3l p/3 (3.66)

where 〈[δu(l)]p
∣∣ εl = x〉 is the conditional velocity structure function of order p

when the value of εl is fixed at a small range about x . Thus 〈[δu(l)]p
∣∣ εl = x〉 ∼ l p/3

exhibits the K41 scaling. Support for Eq. (3.66) has been found in both experi-
ments [20] as well as in direct numerical simulations and large-eddy simulations [21].

The refined similarity hypothesis has been extended to temperature fluctuations
by replacing also χ by the locally averaged χl(�r , t), which is similarly defined:

χl(�r , t) = 3

4πl3

∫
|�y|≤l

χ(�x + �y, t)d3 y (3.67)

For passive temperature fluctuations, Eq. (3.50) becomes [22, 23]:

δT (l)OC ∼ ε
−1/6
l χ

1/2
l l1/3 (3.68)

and for the BO scaling, Eqs. (3.55) and (3.56) become [24]:

δu(l)BO ∼ (αg)2/5χ
1/5
l l3/5 (3.69)

δT (l)BO ∼ (αg)−1/5χ
2/5
l l1/5 (3.70)
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3.8 Conditional Structure Functions

We note the interesting observation that the dependence on χl is different for the
two scaling behaviors, K41-OC and BO, as shown in Eqs. (3.62), (3.68), (3.69) and
(3.70). This difference can be clearly spelled out by studying the conditional velocity
and temperature structure functions evaluated at fixed values of χl :

S̃u
p(l, x) ≡ 〈[δu(l)]p

∣∣ χl = x〉 (3.71)

S̃θ
p(l, x) ≡ 〈[δT (l)]p

∣∣ χl = x〉 (3.72)

We have used these conditional structure functions [24] and similar conditional struc-
ture functions evaluated at given values of local temperature variance transfer rate
[25] to examine the validity of refined similarity hypothesis in turbulent Rayleigh–
Bénard convection.

To evaluate S̃u
p(l, x) and S̃θ

p(l, x) from Eqs. (3.62) and (3.68) in the case of the
K41-OC scaling, we need to evaluate the conditional average 〈εq

l

∣∣ χl = x〉 for
various values of q. In this case, temperature is a passive scalar so we make use of
the measured approximate statistical independence of εl and χl for passive scalar
fluctuations [26] to approximate:

〈εq
l

∣∣ χl = x〉 ≈ 〈εq
l 〉 K41 − OC (3.73)

As a result, we obtain

S̃u
p(l, x) ∼

{
〈εp/3

l 〉l p/3 K41

(αg)2p/5x p/5l3p/5 BO
(3.74)

S̃θ
p(l, x) ∼

{
〈ε−p/6

l 〉x p/2l p/3 OC

(αg)−p/5x2p/5l p/5 BO
(3.75)

From Eqs. (3.74) and (3.75), we see the different x-dependence of S̃u
p and S̃θ

p for the

two different scaling behaviors: S̃u
p is independent of x for the K41 scaling but has

a power-law dependence of x p/5 for the BO scaling. Similarly, S̃θ
p has the power-

law dependence of x p/2 for the OC scaling but a different dependence of x2p/5 for
the BO scaling. Hence it is possible to reveal the two different scaling behaviors
by studying the x-dependence of S̃u

p(l, x) and S̃θ
p(l, x). This method is particularly

useful because the unknown intermittency corrections might hinder direct revelation
of the scaling behavior. Details about this method will be discussed in Chap. 4.

http://dx.doi.org/10.1007/978-981-4560-23-8_4
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Chapter 4
Observed Scaling Behavior

Abstract We first introduce the local Bolgiano length, which depends on the vertical
coordinate as a result of the inhomogeneity of the system. Based on the local Bolgiano
length evaluated in numerical calculations, K41-OC scaling is expected in the central
region and BO scaling is expected to exist only near the top and bottom plates.
Then we discuss the experimentally observed scaling behavior in the central region,
which has been reviewed in [1]. Next, we discuss the more recent analysis of the
conditional temperature structure functions using experimental measurements at the
bottom plate. We show that the experimental results are consistent with the theoretical
expectations.

Keywords Local Bolgiano length · Conditional structure functions

4.1 Local Bolgiano Length

Turbulent Rayleigh–Bénard convection is not homogeneous. We make the assump-
tion of statistical homogeneity and isotropy on a horizontal plane. Then one can
define [2] a local Bolgiano length using 〈ε〉z and 〈χ〉z :

lB(z) = 〈ε〉5/4
z

(αg)3/2〈χ〉3/4
z

(4.1)

Thus different scaling behavior could be observed in different regions of the convec-
tive cell depending on the relative size of lB(z) and H .

In two numerical studies using a lattice Boltzmann scheme [2, 3], lB(z) has been
evaluated. Isothermal and no-slip boundary conditions are enforced respectively for
the temperature and velocity fields at the top and bottom plates of the convection cell.
The other boundary conditions are different in the two numerical studies. Adiabatic
boundary conditions for the temperature field and free-slip boundary conditions for
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52 4 Observed Scaling Behavior

the velocity field were used on the vertical sidewalls in [2] whereas periodic boundary
conditions were used in the horizontal directions (along the vertical sidewalls) for
both fields in [3]. Despite the difference in the boundary conditions, the same general
feature is found: lB(z) is maximum on the central plane z = H/2, and decreases as
one moves toward the top and bottom plates: z = H and z = 0. Specifically, for Ra
= 3.5 × 107 and Pr about 1, lB(z) > 0.8H in the central region |z − H/2| ≤ H/3,
and lB(z) < 0.2H for z < 0.05H and z > 0.95H [3].

In a more recent direct numerical simulation of an aspect-ratio-one cylindrical
cell [4] for Ra ranges between 108 and 1010 with Pr = 4 or 6.4, adiabatic sidewall
and isothermal top and bottom plates for the temperature field and no slip boundary
condition for the velocity field at all boundaries were used. The pointwise Bolgiano
length at each position lB(�r) has been evaluated using the time-averaged energy and
thermal dissipation rates:

lB(�r) = ε(�r)5/4

(αg)3/2χ(�r)3/4 (4.2)

where ε(�r) ≡ 〈ε(�r , t)〉t and χ(�r) ≡ 〈χ(�r , t)〉t . The numerical calculations show
that lB(�r) can be one order of magnitude larger than the global Bolgiano length L B ,
calculated using Eq. (3.60) and the measured value of Nu, and is strongly space-
dependent: lB(�r) is the smallest (less than 0.1H at Ra = 1×109) within the thermal
boundary layers at the top and bottom plates, the average value of lB(�r) in the central
core region (0.1H < r < 0.4H at z = H/2), denoted as lbulk

B , is about 0.3H at Ra
∼ 1010, and lB(�r) is the largest, comparable to H , at the mid-height of the sidewall.
Moreover, lbulk

B has been found to increase with Ra. The large lB(�r) at the sidewall is
not difficult to understand. Temperature gradient vanishes at the sidewall because of
the thermally insulating boundary condition. As a result, χ(�r) is very small leading
to the large value of lB(�r) near the sidewall. On the other hand, the increase of lbulk

B
with Ra cannot be explained [1] using the estimates of the bulk quanities in the
Grossmann-Lohse theory of heat transport [5]. Similarly, the relative size of lB(�r)

or lB(z) in the central bulk region and the thermal boundary layers is also remained
to be understood.

Based on these numerical results of lB(z) and lB(�r), one thus expects to observe
the BO scaling only close to the top and bottom plates. Even in these boundary-layer
regions, the BO scaling, if exists, would only cover a very narrow range because
of the proximity of lB(z) to H . This lack of a long scaling range makes the direct
observation of the BO scaling inherently challenging. Moreover, because the inter-
mittency corrections to the scaling behavior are a priori unknown, it is additionally
difficult to clearly identify the type of the scaling behavior observed. In the central
region, to study scales larger than lbulk

B , one would get close to the sidewall region at
which lB(�r) is the largest. Thus one expects to observe mostly the K41-OC scaling
in the central region.

http://dx.doi.org/10.1007/978-981-4560-23-8_3
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4.2 Early Measurements in Time Domain

In early experiments, measurements of the temperature fluctuations were taken by a
thermistor and velocity fluctuations by laser Doppler velocimetry (LDV) as a function
of time at a single point. Such measurements have been made at several positions
within the convection cell. With the measured velocity and temperature time series,
the temporal velocity and temperature differences between two times separated by a
time interval τ :

δu(τ ) ≡ u(�r , t + τ ) − u(�r , t) (4.3)

δT (�r , τ ) ≡ T (�r , t + τ ) − T (�r , t) (4.4)

can be calculated. Then analogous to Eqs. (3.8) and (3.51), the temporal velocity and
temperature structure functions can be defined as

Su,τ
p (τ ) ≡ 〈[δu(τ )]p〉 (4.5)

Sθ,τ
p (τ ) ≡ 〈[δT (τ )]p〉 (4.6)

using the temporal velocity and temperature differences. The frequency spectrum is
the Fourier transform of the temporal correlation function (see Eq. (2.48)), thus

Su,τ
2 (τ ) = 4

∞∫
0

(1 − cos f τ )Eu( f )d f (4.7)

Sθ,τ
2 (τ ) = 4

∞∫
0

(1 − cos f τ )Eθ( f )d f (4.8)

where Eu( f ) and Eθ( f ) are the velocity and temperature frequency spectra. Thus
if Su,τ

2 ∼ τα, Eu( f ) ∼ f −(α+1) and vice versa. Similar result holds for Sθ,τ
2 (τ )

and Eθ( f ). There were experimental reports [6–9] that Eθ( f ) ∼ f −7/5 at the cell
center. The frequency spectrum of the vertical velocity component Eu( f ), measured
at positions other than the cell center, at about H/4 from the bottom plate [7] and
near the sidewall [10], was also found to exhibit a scaling in f : Eu( f ) ∼ f −11/5.
These observations thus imply Su,τ

2 (τ ) ∼ τ6/5 and Sθ,τ
2 (τ ) ∼ τ2/5. Taylor’s frozen

flow hypothesis [11] would relate Su,τ
2 (τ ) to Su

2 (l), and Sθ,τ
2 (τ ) to Sθ

2(l) by l = U0τ
where U0 is the mean velocity of the turbulent flow. Thus the observed scaling in
the frequency spectra apparently coincide with the BO scaling for Su

2 (l) and Sθ
2(l)

(see Eqs. (3.52) and (3.53)). However, Taylor’s frozen flow hypothesis is valid only
when the mean flow velocity is much larger than the root-mean-squared velocity
fluctuation, and this condition is not satisfied in the central region. Moreover, using
both velocity and temperature time-domain data at the cell center, Ching et al. [12]
have found that the cross-scaling between the normalized temporal velocity and

http://dx.doi.org/10.1007/978-981-4560-23-8_3
http://dx.doi.org/10.1007/978-981-4560-23-8_3
http://dx.doi.org/10.1007/978-981-4560-23-8_2
http://dx.doi.org/10.1007/978-981-4560-23-8_3
http://dx.doi.org/10.1007/978-981-4560-23-8_3
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temperature structure functions is different from that implied by the BO scaling,
casting further doubt to this apparent BO scaling at the cell center. Indeed, direct
spatial measurements at the cell center showed that the scaling behavior at the cell
center is not BO but K41-OC. This will be discussed in the next section. In particular,
by comparing S3(l) and Su,τ

3 (τ ) directly, Sun et al. [13] have shown explicitly that
the scaling exponent of Su,τ

3 (τ ) in τ is different from that of Su
3 (l) in l.

4.3 Central Region

With developments in particle image velocimetry (PIV), direct measurements of the
spatial velocity difference, between two points separated by a distance, have now
been carried out. Using PIV and two thermistors with one fixed and the other movable
along the vertical direction, Sun et al. [13] measured the velocity field in a vertical
plane of 4×4 cm2 in the central region, with the center of the plane located at the cell
center, and the temperature difference along the vertical direction. The experiment
was performed in a cylindrical cell of aspect ratio one with water. The velocity
measurements were made at Ra = 7.0 × 109 and temperature measurements at Ra
= 1.0 × 1010 with Pr = 4.3 in both cases. Using the measured two-dimensional
velocity field, they calculated the longitudinal velocity structure functions Sp(l)
as well as the transverse velocity structure functions, S⊥

p (l), with the separation
perpendicular to the velocity direction. Their measurements show that both Sp(l)
and S⊥

p (l) obey the K41 scaling plus intermittency corrections close to that given

by the She-Leveque model [14] while Sθ
p(l) obey OC scaling plus intermittency

corrections close to those observed in a passive scalar experiment [15].
Later, Kunnen et al. [4] also measured spatial velocity structure functions using

the stereoscopic PIV technique. This technique allows for measurements of the three
velocity components at the same time. The experiment was done in water with Pr =
6.37 for three different values of Ra: 1.1×108, 3.34×108, and 1.10×109 and Kunnen
et al. focused on S⊥

p (l) of the vertical velocity component. They estimated the value

of lbulk
B using the numerical data and found a very short range of the BO scaling

at separations above lbulk
B for the first and second-order transverse vertical velocity

structure functions. For higher orders, the scaling exponents deviate from the BO
values possibly due to intermittency corrections. They had also estimated lbulk

B ≈ 5.6
cm for Ra = 1.0 × 1010 and Pr = 4.3, explaining why Sun et al. did not observe
the BO scaling in their experiment which covered only l ≤ 4 cm. For separations
below lbulk

B , using extended self-similarity (ESS) [16], the relative scaling exponents
are also consistent with the K41 scaling plus intermittency corrections given by the
She-Leveque model.

Hence, direct spatial measurements show that the scaling behavior of velocity and
temperature fluctuations in the central region is given by the K41-OC scaling, with
the possibility of a very short range of the BO scaling for l > lbulk

B for certain range
of Ra.
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Fig. 4.1 Plot of αp as a function of τ/τ0 for measurements at the center of the bottom plate.
p = 1, 2, 3 and 4 from bottom to top, and the dashed lines are 2p/5

4.4 Near the Top and Bottom Plates

Kunnen et al. [4] have taken velocity measurements close to the top plate and found
that the measurements were affected by the oscillating large-scale circulating flow.
They did not observe BO scaling but found that the second-order transverse vertical
velocity structure function has a scaling behavior consistent with the shear-flow
scaling predicted by Lohse [17]:

Su
p(l) ∼ l2p/3 (4.9)

Sθ
p(l) ∼ l p/6 (4.10)

for a turbulent shear-dominated flow with passive temperature. Here s is the shear
rate, which introduces an additional length scale and thus modifies Eqs. (3.8) and
(3.51) to

δu(l) ∼ 〈ε〉1/6s1/2l2/3 (4.11)

δT (l) ∼ 〈ε〉−1/12s−1/4〈χ〉1/2l1/6 (4.12)

On the other hand, Ching et al. [18] have attempted to reveal the scaling behavior
using the conditional structure functions S̃u

p(l, x) and S̃θ
p(l, x) at fixed local thermal

dissipation rate χl = x , as discussed in Sect. 3.8. To calculate these conditional
velocity and temperature structure functions, one needs to have measurements of
velocity, temperature and thermal dissipation rates taken simultaneously as a function
of space and time. Such experimental measurements are very challenging and yet
to be made. But simultaneous measurements of temperature and thermal dissipation
rate at a fixed location as a function of time have been obtained recently [19]. The
range of Ra covered is 9 × 108 ≤ Ra ≤ 9 × 109 and Pr = 5.5. χ(�r , t) was measured

http://dx.doi.org/10.1007/978-981-4560-23-8_3
http://dx.doi.org/10.1007/978-981-4560-23-8_3
http://dx.doi.org/10.1007/978-981-4560-23-8_3
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Fig. 4.2 Plot of αm(p) as a function of p at the bottom plate (triangles). The solid line is 2p/5

by a probe consisting of four small identical thermistors, with one placed at the center,
and the other three placed at a distance δl = 0.25 ± 0.1 mm from the central one,
each along the three perpendicular directions. From the simultaneous temperature
signals measured from the four thermistors, T (t) from the central thermistor and
Ti (t)(i = x, y, z) from the other three thermistors, the three components of the
temperature gradient, (Ti −T )/δ� (i = x, y, z), and thus χ(�r , t) can be obtained as a
function of time t . Using these measurements, a locally averaged thermal dissipation
rate over a time interval has been constructed [20, 21]:

χτ (�r , t) ≡ 1

τ

t+τ∫
t

χ f (�r , t ′)dt , (4.13)

where χ f (�r , t) ≡ κ|∇T f (�r , t)|2 and T f is the temperature fluctuation. Then the
conditional temperature structure functions in the time domain at a given fixed value
of χτ :

Ŝθ,τ
p (τ , x) ≡ 〈|T (�r , t + τ ) − T (�r , t)|p

∣∣ χτ = x〉 (4.14)

are defined. The conditional structure functions, whether in spatial or time domain,
have the same dimension, and χτ has the same dimension as χr , thus Ŝθ,τ

p (τ , x) are
expected to have the same power-law dependence on x as S̃θ

p(l, x) (see Eq. (3.75)):

Ŝθ,τ
p (τ , x) ∼

{
x p/2 OC
x2p/5 BO

(4.15)

Since we are interested in the dependence on the value of χτ and not the scaling
behavior, the difficulty of relating the scaling behavior in τ to that in l is avoided.

Using measurement taken at the center of the bottom plate, Ŝθ,τ
p (τ , x) are cal-

culated. In the calculation χτ is measured in units of the standard deviation σχ f of
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Fig. 4.3 Same as Fig. 4.1 for measurements at the cell center. The dashed lines are p/2
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Fig. 4.4 Same as Fig. 4.2 for measurements at the cell center. The solid line is p/2

χ f and the average is taken over those measurements with |χτ/σχ f − x | ≤ 0.005.
The value of τ is normalized by the sampling time interval τ0 = 1/40 s. Power-law
dependence on x has indeed been found:

Ŝθ,τ
p (τ , x) ∼ xαp (4.16)

The values of αp obtained are shown in Fig. 4.1. For each p, αp attains a maximum
value αm(p) at a certain τm(p), therefore αp ≈ αm(p) for a small range of τ close
to τm(p), i.e., we have

Ŝθ,τ
p (τ , x) ∼ xαm (p) for τ ≈ τm(p) (4.17)

It is found that τm(p) decreases from about 200τ0 to about 20τ0 as p increases,
indicating that the range of τ over which Eq. (4.17) holds changes with p. This
feature has not been understood. We plot αm(p) as a function of p in Fig. 4.2.
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It can be seen that the values of αm(p) are in excellent agreement with the predicted
values of 2p/5 for the BO scaling.

As a comparison, we have carried out similar analysis using the measurements
taken at the cell center. The values of αp obtained at the cell center are shown in
Fig. 4.3. At the cell center, τm(p) is about 20τ0 and is the same for all the values
of p studied. The values of αm(p) are clearly different from those obtained at the
bottom plate, and are in good agreement with p/2 (see Fig. 4.4) for the OC scaling.
These results thus support that studying the x-dependence of Ŝθ,τ

p (τ , x) can reveal
the scaling behavior of Sθ

p(l).
In short, the analysis of the χτ -dependence of the conditional temperature struc-

ture functions Ŝθ,τ
p (τ , x)has successfully recovered the OC scaling plus intermittency

corrections observed experimentally in the central region. Moreover, the observed
χτ -dependence at the bottom plate indicates that the scaling behavior near the bottom
plate is likely to be BO scaling plus intermittency corrections.
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Chapter 5
Summary and Outlook

We summarize our present understanding of the statistical properties and scaling behavior of
turbulent Rayleigh-Bénard convection, and discuss the outstanding issues to be understood
in future work.

The Rayleigh-Bénard convection system consists of a closed cell of fluid heated
from below and cooled from above. Turbulent Rayleigh-Bénard convection is a fun-
damental problem of great research interest. In this monograph, we have discussed
Rayleigh-Bénard convection exclusively in the Oberbeck-Boussinesq approxima-
tion, and focused on two issues of interest. The first issue is the characterization
and understanding of the statistics of the velocity and temperature fluctuations in the
system. The second issue is the revelation and understanding of the nature of the
scaling behavior of the velocity and temperature structure functions.

The statistics of the velocity and temperature fluctuations are characterized by
their PDFs. Because of the closure problem in turbulence, these PDFs cannot be
calculated directly from the equations of motion. When the fluctuations obey cer-
tain statistical symmetries such as stationarity or statistical homogeneity, there are
exact implicit PDF formulae that express the PDF of a fluctuation in terms of two
conditional means of its time derivative or spatial gradients. Although these exact
formulae cannot give us explicit results for the PDF, they could provide insights
for understanding the features of the PDF of the fluctuations. In turbulent Rayleigh-
Bénard convection, velocity and temperature fluctuations are stationary but generally
statistically inhomogeneous. In the central region, the PDF of the normalized tem-
perature fluctuation X (t) = [T (t) − 〈T 〉]/〈[T (t) − 〈T 〉]2〉1/2, denoted by PX (x),
is Gaussian at low Ra but displays exponential tails at higher Ra. In addition, there
is the interesting result that the conditional mean 〈Ẍ

∣∣ X = x〉 ≈ −x . Using this
result together with the exact PDF formula for stationary fluctuations [Eq. (2.76)],
the change in the functional form of PX (x) can be understood as an increase in
the statistical correlation of Ẋ(t) with X (t) as Ra increases, which is manifested
as the change of the conditional mean 〈(Ẋ)2

∣∣ X = x〉 from being x-independent
to having a linear dependence on |x |. Within the thermal boundary layers near the
top and bottom plates of the convective cell, PX (x) becomes highly asymmetric.
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This skewness naturally occurs as a consequence of the much more frequent hotter
or colder fluctuations from the bottom or the top plate. The feature 〈Ẍ

∣∣ X = x〉 ≈ −x
does not hold and PX depends on both 〈Ẍ

∣∣ X = x〉 and 〈(Ẋ)2
∣∣ X = x〉. Making the

assumption that the fluctuations on a horizontal plane are statistically homogeneous
and isotropic and using the equation of motion for the temperature field [Eq. (1.8)],
Pθ(w) can be related to the conditional mean of the vertical velocity 〈Uz

∣∣ θ = w〉z

and the conditional mean of the thermal dissipation κ〈∇2T
∣∣ θ = w〉z , evaluated at a

given temperature fluctuation. Both of these two conditional means are related to the
dynamical features of the flow. In particular, the conditional mean 〈Uz

∣∣ θ = w〉z has
been naturally identified as the vertical velocity of the thermal plumes [1]. Thus the
thermal plumes are a source of the skewness of the temperature fluctuations within
the thermal boundary layer. More generally, since X (t) and θ(t) are related, the con-
ditional means 〈Ẍ

∣∣ X = x〉 and 〈(Ẋ)2
∣∣ X = x〉 are related to the conditional means

〈Uz
∣∣ θ = w〉z and κ〈∇2T

∣∣ θ = w〉z with w = x〈[T (t) − 〈T 〉z]2〉1/2
z + 〈T 〉z − T0.

In future work, it would be interesting to study these relations and to understand
the statistical properties in terms of the dynamical features of the flow. In the early
days, velocity measurements were taken using LDV, and LDV measurements are
not sampled uniformly in time, making it difficult to obtain velocity time derivatives
directly from the measurements. As a result, previous studies have concentrated on
temperature fluctuations and the conditional means of the temperature derivatives.
With the advance in PIV measurements and in direct numerical simulations, exten-
sion of the study to velocity fluctuations and the conditional means of the velocity
derivatives is possible and could lead to additional insights.

For the scaling behavior of velocity and temperature structure functions, the pic-
ture emerging from the scaling theories is that: the BO scaling plus intermittency
corrections holds for scales above the Bolgiano length while the K41-OC scaling
plus intermittency corrections holds for scales below the Bolgiano length. The rel-
evant Bolgiano length, which is the crossover scale of the scaling behavior, is the
local Bolgiano length evaluated using the local mean energy and thermal dissipation
rates. Numerical simulations show that the local Bolgiano length lB(z) is highly
inhomogeneous in turbulent Rayleigh-Bénard convection: it is maximum and of the
order of the integral scale H on the central plane and is minimum close to the top and
bottom plates. In the central region, experimental measurements [2] show that the
velocity structure functions, both longitudinal and transverse, obey the K41 scaling
plus intermittency corrections close to that given by the She-Leveque model [3] while
the temperature structure functions obey OC scaling plus intermittency corrections
close to those observed in a passive scalar experiment [4]. This observed K41-OC
scaling behavior is thus consistent with the relatively large lB(z) in the central region.
More recent measurements [5] showed that a very short range of the BO scaling is
possible for l > lB(z) for some Ra. On the other hand, by studying the dependence of
the conditional temperature structure functions on the locally averaged thermal dis-
sipation rate, indication of the BO scaling plus intermittency corrections has indeed
been found at the bottom plate [6]. Thus the observed scaling behavior of Rayleigh-
Bénard convection is in accord with the theoretical picture. In future work, it would
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be interesting to directly observe the BO scaling for both velocity and temperature
fluctuations. For this purpose, measurements taken on a horizontal plane as close
to the top and bottom plates as possible are needed. Such velocity measurements
are difficult to obtain experimentally. Investigation using DNS calculations with the
boundary condition of constant heat flux [Eq. (1.13)] would thus be fruitful.

We end this Chapter by discussing two questions that remain to be answered. The
first question is what physics sets the size of the local Bolgiano length. Specifically,
why is the local Bolgiano length in turbulent Rayleigh-Bénard convection compara-
ble to H for most part of the convective cell and is relatively smaller than H only
near the top and bottom boundaries? Insights can be gained by looking at the exact
relations discussed in Sect. 1.4. The exact balance Eq. (1.31) reads:

αg〈vzθ〉V,t = αg〈uzθ〉V,t = 〈ε〉V,t (5.1)

For homogeneous systems, one might take αg〈uzθ〉V,t loosely as the sum of
αg〈δu(l)δθ(l)〉t over all the scales ld ≤ l ≤ l0 = H , and get

H∑
l=ld

αg〈δu(l)δθ(l)〉t ∼ 〈ε〉V,t (5.2)

One expects the correlation 〈δu(l)δθ(l)〉t to increase with l and be positive in thermal
convection such that the sum is dominated by the contribution at the integral scale
l0 ∼ H , which implies

αg〈δu(H)δθ(H)〉t ∼ 〈ε〉V,t (5.3)

giving L B ≈ H using Eq. (3.59). Homogeneous turbulent Rayleigh-Bénard con-
vection [7] can be obtained numerically by imposing periodic boundary conditions
for both the velocity and temperature at the top and bottom boundaries, and driving
the system by a constant temperature gradient along the vertical direction. In three-
dimensional homogeneous turbulent Rayleigh-Bénard convection, K41-OC scaling
plus intermittency corrections has indeed been observed [8]. A completely analogous
relation for Eq. (5.2) can be derived [9] for the shell model of homogeneous turbulent
convection. In two dimensions, because of the inverse energy transfer from small to
large scales, a damping has to be enforced at the integral scale to achieve stationarity.
In this case, the exact balance would be modified to:

αg〈uzθ〉V,t = 〈ε〉V,t + 〈εdamp〉V,t (5.4)

where 〈εdamp〉V,t is the mean energy dissipation rate due to the damping. When
〈εdamp〉V,t � 〈ε〉V,t , then we can have L B 	 H and thus the BO scaling. This
has indeed been found in two-dimensional homogeneous turbulent Rayleigh-Bénard
convection, in which the BO scaling plus intermittency corrections has been observed
[10]. The BO scaling has also been observed in two-dimensional experiments using
soap films [11] and soap bubbles [12, 13]. In future work, it would be interesting

http://dx.doi.org/10.1007/978-981-4560-23-8_1
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to make these heuristic results for the local Bolgiano length rigorous for turbulent
Rayleigh-Bénard convection confined by physical boundary conditions.

The second question is whether the BO scaling is associated with an upscale
energy transfer [14]. In the BO scaling, Eq. (3.55) implies that the rate of energy
transfer is scale-dependent:

[δu(l)]3

l
∼ l4/5 (5.5)

This is feasible if there is a conversion between buoyant potential energy and turbulent
kinetic energy at all scales at which the BO scaling holds. This picture is in contrast
to the Richardson energy-cascade picture in which energy is input at the largest
scale only and the mean rate of energy transfer is constant in the inertial range. In
Rayleigh-Bénard convection, the thermal stratification is unstable and we, therefore,
expect a net conversion of buoyant potential energy into turbulent kinetic energy due
to work done by the buoyant forces. Eq. (5.5) indicates that the rate of energy transfer
decreases as the scale decreases. If energy is transferred from large to small scales,
it is difficult to reconcile the decreasing rate of energy transfer as one goes from
large to small scales with the injection of turbulent energy from buoyant forces at all
scales. This difficulty, referred to as the “paradoxical nature” of the BO scaling, was
discussed as an argument against the realization of the BO scaling [15]. Note that
such a difficulty does not exist for turbulent flows with stable thermal stratification
since in this case, there is a net conversion of turbulent energy into buoyant potential
energy through work done by the turbulent motion against the buoyant forces. This
is why the BO scaling was first proposed for stably stratified flows [16]. Here, we
point out the interesting possibility that this apparent difficulty in Rayleigh-Bénard
convection can be avoided if energy is actually transferred from small to large scales
when the BO scaling is valid. When turbulent energy is transferred from small to
large scales, the injection of kinetic energy into the flow due to the work done by the
buoyant forces against the turbulent motion would consistently give rise to an energy
transfer rate that is increasing with the scale as depicted by Eq. (5.5). Hence, it would
be interesting to investigate the direction of energy transfer to check the validity of
this picture in future work.
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