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Abstract De nombreux codes sont en cours d’élaboration pour résoudre
les équations de Saint–Venant. Parce qu’elles sont utilisées dans les études
hy-drau-li-ques et environnementales, leur capacité à simuler correctement les flux
en eau est indispensable afin de préserver les infrastuctures et la sécurité humaine.
Par conséquent, la validation de ces codes et des méthodes numériques associées
est un problème essentiel. Des solutions analytiques de référence constitueraient
une excellente réponse à ces questions. Toutefois, les solutions analytiques aux
équations de Saint–Venant sont rares. Et surtout, elles ont été publiées sur une
période de plus de cinquante ans, ce qui fait qu’elles sont dispersées à travers la
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littérature. Dans cet article, un nombre important de solutions analytiques aux
équations de Saint–Venant est décrit dans un formalisme unifié. Elles englobent
une grande variété de conditions d’écoulement (supercritique, sous-critique,
choc…), en une ou deux dimensions d’espace, avec ou sans frottement, pluie et
topographie, pour des écoulements transitoires ou à l’état stationnaire. Une
caractéristique originale est que les codes source correspondants sont mis gratu-
itement à disposition de la communauté (http://www.univ-orleans.fr/mapmo/soft/
SWASHES), afin que les utilisateurs de modèles en eaux peu profondes puissent
facilement trouver un banc d’essai adaptable pour valider leurs méthodes
numériques.

Keywords Shallow water equation � Saint–Venant system � Analytic solutions �
Benchmarking � Validation of numerical methods � Steady-state flow � Transitory
flow � Source terms

1 Introduction

Nowadays, shallow water equations are widely used to model flows in various
contexts, such as overland flow [1, 2], rivers [3, 4], flooding [5, 6], dam breaks [7,
8], near shore [9, 10], tsunami [11–13]. This system of partial differential equa-
tions (PDEs), proposed by Adhémar Barré de Saint–Venant in 1871 to model flows
in a channel [14], consists in a system of conservation laws describing the
evolution of the height and mean velocity of the fluid.

In real situations (realistic geometry, sharp spatial or temporal variations in the
parameters), it is impossible to give an analytic formula for the solutions of this
system of PDEs. Thus, there is a necessity to develop specific numerical schemes
to compute approximate solutions for these PDEs [15–17]. Implementation of such
methods implies a subsequent step of code validation.

Validation of a model (that is, the equations, the numerical methods and their
implementation) is essential to know if it describes suitably the considered phe-
nomena. At least three complementary kinds of numerical tests help us ensure that
a numerical code is suitable for the considered system of equations. First, we can
perform convergence or stability analysis (e.g. by refining the mesh). But this
validates only the numerical method and its implementation. Second, approximate
solutions can be compared with analytic solutions available for some simplified or
specific cases. Finally, numerical results can be applied on experimental data,
produced indoor or outdoor. This step should be done after the previous two; it is
the most difficult one and must be validated by a specialist of the domain. In [18],
we have focused on the second approach.
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In numerical code validation, analytic solutions seem to be underused. We think
that there are two possible reasons. First, each analytic solution has a limited scope
in terms of flow conditions. Second, as they are dispersed through the literature,
they are difficult to find. However, an important number of published analytic
solutions allow us to embrace a wide range of flow conditions. Thus, overall, the
existing analytic solutions have a large potential for numerical code validation. In
the literature, we can find benchmarks for hydraulic river modelling software [19].
But they are too specific (weirs, pump, culverts… treatment validation), and there
are too few tests available for numerical methods for shallow water equations.

In Ref. [18], we have tried to overcome these problems both by gathering a
significant set of analytic solutions and by providing the corresponding source
codes. Reference [18] describes the analytic solutions and gives some comments
about their use and advantage. The source codes are freely available through the
Shallow Water Analytic Solutions for Hydraulic and Environmental Studies
(SWASHES) library. With SWASHES software, we do not pretend to list all
existing analytic solutions. Indeed, SWASHES is a framework to which users are
invited to contribute by sending other analytic solutions together with the
dedicated code.

The chapter is organized as follows: in Sect. 2, we briefly present the notations
we use and the main properties of shallow water equations. In Sect. 3, we will
focus on stationary solutions which are well known by the hydraulics community
but much less by mathematicians, that is, ‘‘backwater curves’’. Lastly, in Sect. 4,
we will present SWASHES and the interest of solutions described in [18].

2 Equations, Notations and Properties

In the first section, we give the ‘‘complete’’ shallow water system in two space
dimensions, that is, with topography, rain, infiltration, soil friction and viscous
term. Then, we give this system in one space dimension and its main properties are
recalled.

2.1 General Settings

The Shallow-Water equations in two space dimensions take the following form:

oth þ ox huð Þ þ oy hvð Þ ¼R� I

ot huð Þ þ ox hu2 þ gh2

2

� �
þ oy huvð Þ ¼ gh SOx � Sfx

� �
þ lSdx

ot hvð Þ þ ox huvð Þ þ oy hu2 þ gh2

2

� �
¼ gh SOy � Sfy

� �
þ lSdy

; ð1Þ
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where the unknowns of the model are the water height (h t; x; yð Þ[L]) and u t; x; yð Þ,
v t; x; yð Þ the horizontal components of the vertically averaged velocity L=T½ �
(Fig. 1a) and g ¼ 9:81 m/s2 is the gravity constant. The first equation is the mass
conservation equation. The other two equations are the momentum conservation
equations; they involve forces such as gravity and friction. We give now a short
description of all the terms with their physical dimensions.

• z is the topography L½ �, since erosion is not considered here, it depends only on
space, z x; yð Þ, and SOx (resp. SOy ) is the opposite of the slope in the x (resp. y)
direction, SOx ¼ �oxz x; yð Þ (resp. SOy ¼ �oyz x; yð Þ);

• R� 0 is the rain intensity L=T½ �, and it is a given function R t; x; yð Þ� 0. In [20],
it is considered uniform in space;

• I is the infiltration rate L=T½ �. It is given by another model (such as Horton,
Philip, Green-Ampt, Richards …) and is not taken into account in the following;

• Sf ¼ Sfx ; Sfy

� �
is the friction force/law and may take various forms, depending

on both soil and flow properties. In the formulas below, U is the velocity vector,

U ¼ u; vð Þ with Uj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

and Q is the discharge Q ¼ hu; hvð Þ. In
hydrological models, two families of friction laws are encountered based on
empirical considerations. On the one hand, we have the family of Manning–
Strickler’s friction laws

Sf ¼ Cf
U Uj j
h4=3

¼ Cf
Q Qj j
h10=3

ð2Þ

Cf ¼ n2, where n is the Manning’s coefficient L�1=3T
� �

.
On the other hand, the laws of Darcy–Weisbach’s and Chézy’s family write

Fig. 1 Illustration of variables of a shallow water equations and b zones for classification of free
surface profiles
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Sf ¼ Cf
U Uj j

h
¼ Cf

Q Qj j
h3

ð3Þ

With Cf ¼ f= 8gð Þ, f a dimensionless coefficient (resp. Cf ¼ 1=C2,C L1=2=T
� �

),
we get the Darcy–Weisbach’s (resp. Chézy’s) friction law. Notice that the friction
may depend on the space variable, especially for large areas. In the following this
will not be considered.

• finally, lSd ¼ lSdx ; lSdy

� �
is the viscous term with l� 0 the viscosity of the

fluid L2=T½ �.

2.2 Properties

In this section, some properties of the shallow water model are recalled. These
properties are useful to the flow description. To simplify, we consider the one-
dimensional model, but extensions to two dimensions are straightforward. The 2D
shallow water system (1) rewrites

oth þ ox huð Þ ¼R � I

ot huð Þ þ ox hu2 þ gh2

2

� �
¼ gh SOx � Sf

� �
þ lox hoxuð Þ

: ð4Þ

The left-hand side of this system is the transport part of the model. It corre-
sponds to the flow of an ideal fluid in a flat channel, without friction, rain or
infiltration. It is in fact the model introduced by Saint–Venant in [14]. Several
important properties of the flow are included in this model. The one-dimensional
equations are rewritten using vectors’ form, in order to highlight these properties:

otW þ oxF Wð Þ ¼ 0; where W ¼ h
hu

� �
; F Wð Þ ¼ hu

hu2 þ gh2

2

� �
; ð5Þ

with F Wð Þ the flux of the equation. With the following nonconservative form,
where A Wð Þ ¼ F0 Wð Þ is the jacobian matrix or the matrix of transport coefficients

otW þ A Wð ÞoxW ¼ 0; with A Wð Þ ¼ F0 Wð Þ ¼ 0 1
�u2 þ gh 2u

� �
; ð6Þ

the transport is more clearly evidenced. More precisely, when the matrix turns out
to be diagonalizable, with eigenvalues

k1 Wð Þ ¼ u�
ffiffiffiffiffi
gh

p
� uþ

ffiffiffiffiffi
gh

p
¼ k2 Wð Þ: ð7Þ

If the water height is strictly positive, lambda_1(W) \ lambda_2(W), the
system is said to be strictly hyperbolic (see among others [21]). The eigenvalues
(7) are the velocities of surface waves on the fluid. For dry zones (i.e. if h ¼ 0 m),
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the eigenvalues coincide. In that case, the system is no longer hyperbolic, and this
induces difficulties at both theoretical and numerical levels, such as negative water
depths. Designing numerical schemes that preserve positivity for h is very
important in this context.

With these formulas we recover a useful classification of flows. Indeed, if
uj j\

ffiffiffiffiffi
gh
p

, the characteristic velocities (of the fluid u and of the waves
ffiffiffiffiffi
gh
p

) have
opposite signs and information propagates upwards as well as downwards the flow.
The flow is said to be subcritical or fluvial. In the other case, when uj j[

ffiffiffiffiffi
gh
p

the
flow is supercritical, or torrential, all the information goes downwards. A trans-
critical regime exists when some parts of a flow are subcritical, other supercritical.

Since we have two unknowns h and u (or equivalently h and q ¼ hu), a sub-
critical flow is therefore determined by one upstream and one downstream value,
whereas a supercritical flow is completely determined by the two upstream values.
Thus, for numerical simulations, we have to impose one variable for subcritical
inflow/outflow. For supercritical inflow, we impose both variables and free
boundary conditions are considered (see for example [22–24]).

Two quantities allow us to determine the type of flow. The first one is a
dimensionless parameter called the Froude number

Fr ¼ uj jffiffiffiffiffi
gh
p : ð8Þ

Its analogue in gas dynamics is the Mach number. If Fr\1 (resp. Fr [ 1), the
flow is subcritical (resp. supercritical). The other essential quantity is the critical
height hc which writes

hc ¼
qffiffiffi
g
p
� �2=3

; ð9Þ

for a given discharge q ¼ hu. It is a very readable criterion for criticality: the flow
is subcritical (resp. supercritical) if h [ hc (resp. h\hc).

In the presence of additional terms, we have to consider other properties, such
as the occurrence of steady-state (or equilibrium) solutions. In Sect. 3, we will
focus on backwater curves which are specific steady-state solutions.

3 Backwater Curves

By considering system (4) at steady state (oth ¼ otu ¼ otq), without rain and
diffusion (R ¼ 0 and l ¼ 0), it rewrites

q ¼ q0

oxh ¼ S0 � Sf

1� Fr2
:

ð10Þ
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In hydraulics, Eq. (10) is used as a base for theoretical analysis of the water
surface profiles obtained for different flow conditions in open channels [25–27].
It is called the gradually varied flow equation [25, 26]. Water surface profiles can
be deduced theoretically and drawn qualitatively by studying the relative position
of the profile (h) with respect to the critical-depth line (hc) and the normal-depth
line (hn, the height solution of equation S0 � Sf ¼ 0). We notice that the normal
height hn depends on the slope S0, while the critical height hc does not depend on
S0. Bottom slopes are classified into five categories (designated by the first letter of
the name): mild M if hn [ hc, critical C if hn ¼ hc, steep S if hn\hc, horizontal H
if S0 ¼ 0 and adverse A if S0\0. Now, we have to designate the relative position
of the free surface. In the cases of the mild and steep slopes, the space above the
topography is divided into three regions by the normal height and the critical
height (Fig. 1b). For the adverse, horizontal and critical slopes, there are only two
regions because the normal height does not exist for the first two slopes and is the
same as the critical one for the critical slope. The region between the lower line
and the topography is designated as ‘‘zone 3’’, and the region between the upper
and lower lines is designated as ‘‘zone 2’’ and that above both lines is designated
as ‘‘zone 1’’. Thus, we have 13 different types of water height profiles. This
technique allows us to make qualitative observations about various types of free
surface profiles. These observations allow us to draw the profile without any
detailed calculations. For example, we know if the water height increases or
decreases with distance, how the profiles end at downstream and upstream limits.
It is possible to put end-to-end several backwater curves to obtain a complete
profile. In some cases, it is possible to generate this method to section average
model (i.e. to take into account the shape of the cross-section).

For engineering applications, it is necessary to compute the flow conditions.
But the gradually varied flow equation (10) is nonlinear, and the dependence on h
is complicated, so the obtention of a general analytic solution is not possible: we
have to use higher-order numerical methods [24]. We start the computations from
downstream if the flow is subcritical and from upstream otherwise (see [25–27]).
Some computer programs such as HEC-RAS are based on this method. In the next
section, we will describe SWASHES library.

4 Advanced Analytic Solutions

SWASHES is freely available to the community through the SWASHES reposi-
tory hosted at http://www.univ-orleans.fr/mapmo/soft/SWASHES. It is distributed
under CeCILL-V2 (GPL compatible) free software licence. When running the
software, the user must specify the choice of the solution as well as the number of
cells for the discretization of the chosen analytic solution. The solution is calcu-
lated and is redirected in a gnuplot-compatible ASCII file. SWASHES is written in
object-oriented ISO C++ that allows us to easily implement a new solution.

We claim that SWASHES can be a useful tool for developers of shallow water
codes to evaluate the performances and properties of their own code. Indeed,
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SWASHES has been created because we have been developing a free software for
the resolution of shallow water equations, namely FullSWOF [28, 29], and we
wanted to validate it against analytic solutions. With SWASHES, a wide range of
flow conditions are available as developed in the following subsection: steady-
state solutions and transitory solutions.

4.1 Steady-State Solutions

In case of steady states (oth ¼ otu ¼ otq ¼ 0), the one-dimensional shallow water
Eq. (4) is reduced in the following system

q ¼Rxþ q0

oxz ¼ 1
gh

q2

h2
� gh

� �
oxh� Sf h; qð Þ þ l

gh
ox hox

q

h

	 
 : ð11Þ

System (11) enables us to produce an infinity of analytic solutions. For these
solutions, the strategy consists in choosing either a topography and getting the
associated water height or a water height and deducing the associated topography.
With the first approach, we can get, for example, the well-known solutions for flow
over a bump [30, 31], the backwater curves (Sect. 3)… With the second approach,
we get the MacDonald’s solutions (which are section-averaged) [32, 33] and all
their one-dimensional variants [20, 28].

Since [34] it is well known that the topography source term treatment is a
crucial point in preserving steady states. Thanks to the steady-state solutions
gathered in [18], one can check whether the steady state at rest and dynamic
steady-state solutions are satisfied by the considered schemes. These solutions,
integrated in SWASHES, cover a wide variety of flow conditions (fluvial, tor-
rential, transcritical, with shock…). Moreover, different source terms (topography,
friction, rain and diffusion) are taken into account, which allow us to validate each
source term treatment.

4.2 Transitory Solutions

In previous subsection, we dealt with the steady-state solutions of SWASHES.
These solutions can be used to check whether the numerical methods are able to
keep/catch steady-state flows. But even if the initial conditions differ from the
expected steady state, we do not have information about the transitory behaviour.
Thus, transitory solutions are also included in SWASHES, such as the dam-break
solutions of increasing complexity [35–37, 42], 1D and 2D Thacker’s and variants
solutions [38–40, 41]. These solutions allow us to test moving wet/dry transitions,
moving shock, moving wet/dry transitions with friction…
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5 Conclusions

We have developed SWASHES, a free tool for benchmarking in hydraulics. It is
open to user’s contributions. We think that it might be useful for codes/numerical
testing.
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