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Abstract This work deals with the modeling of a water distribution system with a
view to optimizing real-time pump schedules through the use of an integer linear
programming (ILP) tool. We describe a number of different constraints that need
to be modeled, and we provide mathematical models for each of them. Along with
the more familiar capacity and demand satisfaction constraints, we consider spe-
cific constraints related to requirements such as water quality and maximum power
consumption. Problems include taking the discrete behavior of pumps into account
and modeling hydraulic phenomena. Solutions must be applicable to very large
networks (about 100 pumps and 50 storage tanks in our example), and available
computation time is limited in practice (30 min maximum in the application in
hand) because of the real-time scheduling constraint. This problem is not new, but
there are very few studies in the literature that address these various aspects of the
problem at the same time, which implies a significant number of variables. We
present as exhaustive a panorama as possible of the constraints and elements that
have to be considered when modeling a water distribution system, and then
describe our own model and computational work.
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1 Introduction

Given a water distribution network and some forecasts about consumption at
different nodes of the network over a specific time horizon, the problem addressed
here is the scheduling of water pump jobs such that water demands are satisfied
and conform to quality standards set by French and European legislation while
minimizing operating costs (water treatment and electricity).

Among the approaches in the literature for solving this problem, we find linear
programming (LP) [1], nonlinear programming [2], ant colony optimization [3],
and genetic algorithms [4].

Each method has its own advantages and drawbacks, and a strategy may be
more or less efficient, depending on the characteristics of any given network. The
characteristics of the networks that concern us in particular are as follows:

• The considered networks are very large (about 100 pumps and 50 storage tanks).
• The computation time available for devising optimized solutions is relatively

short (30 min maximum) because of the real-time scheduling constraint.
• The discrete behavior of pumps needs to be expressed through the model. The

pumping stations work at some defined level of pumping depending on the type
and the power of the station and changes in the pumping regime can take place
only periodically.

We chose to use LP for several reasons. First, our intention is to enhance an
existing tool that is based on LP. Secondly, LP provides an appropriate modeling
tool for most of the constraints encountered in drinking water distribution net-
works, including some related pressure constraints (known to be difficult to handle
within an LP framework but that we have managed to express in a linear form).
Finally, efficient solvers are already available.

The starting point is an existing software tool, Saphir [5], which already models
the pump-scheduling problem with LP. Our aim is to enhance this tool so as to
achieve the following:

• Modeling, through the use of LP, new constraints that have not been expressed
before.

• Expressing in a linear form the hydraulic phenomena in the system.
• Placing a limit on computation time while dealing with integer LP models of

large dimensions.

The first difficulty is to model new elements of the network (such as pumps with
variable flow) and to take into account the discrete behavior of pumps. This
discrete behavior makes the optimization problem more difficult to handle: while
the continuous problem can be solved with a polynomial algorithm, the mixed
integer linear programming (MILP) problem is NP-hard and requires a branch and
price procedure [6], but it represents the real-life operation of the pumps much
better than a continuous approach. We therefore included in this formalization new
constraints that have not been expressed before. The second difficulty is to respect

154 L. B. de la Perrière et al.



or even reduce the limits placed on computation time, and to this end, we have
looked at a number of different strategies.

In this chapter, we describe the previous existing formalization of a water
network with MILP, we describe the new constraints, we provide some results, and
we show how these results allow a better choice of parameters in the optimization.

2 Water Distribution System Modeling

In this section, we present the main elements of a water distribution network, and
we list the associated structural constraints.

2.1 Elements

A water distribution system can be described by nodes and edges; each element in
the network implies the creation of a set of constraints. The time horizon is divided
into different time slots. The aim of the optimization is to determine whether each
element, and in particular each pump, should operate or not operate within each
time slot.

Let us consider the nodes and their associated constraints. We consider four
different kinds of node:

• Production points must respect the maximum flow production and the discrete
behavior of the pumps. Some of these production points have a semi-discrete
behavior, as their flow can vary between two fixed values. Each production point
has only one outgoing pipe in our model.

• Storage tanks must respect the maximum and minimum volumes of water they
can contain. The level of each storage at the end of the day also has a required
value, and the non-respect of this constraint penalizes the objective function (the
penalty is commensurate with the difference observed).

• Consumption points have only one input pipe in our model.
• Connection nodes represent points where several pipes are connected.

Each node in the model needs to respect an additional constraint, namely
continuity of flow. For every connection node and storage tank, the volume of
water entering the node during a given time slot is equal to the outgoing volume
(with an acceptable gap corresponding to the variation of volume inside the
storage tank).

The volume produced during a time slot by a production element is equal to the
volume of water carried by the outgoing pipe during this time slot. Finally,
the volume required by a consumption point during a given period is equal to the
volume carried by its input pipe.
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Let us now consider the different pipes to be found in the network model:

• Non-gravitational pipes have exactly the same constraints as for production
points, because both are composed of pumps.

• Gravitational pipes have a continuous behavior: They only need to respect the
maximum volume they are able to carry during a given time slot.

Each element of the network has to respect this basic set of structural con-
straints, to ensure continuity of flow and the coherence of the model. A large
network therefore implies a large number of variables and constraints to be taken
into account, which is one of the difficulties of our problem. Because of the
discrete behavior of the pumps, we have to employ integer variables, which means
using integer linear programming (ILP) models. The larger the network, the larger
the number of these integer variables, which seriously impacts computation time.

2.2 Mathematical Formulation

We now introduce the mathematical formulation for the main elements of the
network.

• For a production element p:

qp;t ¼ fp;t � Qp;t ð1Þ

qp;t ¼ qk;t ð2Þ

where parameter t represents the index of the considered time slot; element p is the
index of the production node. Parameter Qp,t is the water volume that can be
produced if element p operates during time slot t.

Element k is the index of the single output pipe from production node p.
Variable fp,t is a binary variable that represents the operation (fp,t = 1) or non-

operation state (fp,t = 0) of element p. Variable qp,t is the volume of water actually
produced by production node p during time slot t.

Variable qk,t is the volume of water carried by pipe k during time slot t.
Constraint 1 represents the flow of element p at each time slot.
Constraint 2 is the flow continuity constraint, which gives a flow value to

element k.
Most of the time production elements have a discrete behavior as described

above. But some production elements have a partial continuous behavior, which
means that operation is discrete between 0 and a first flow value, and continuous
between this value and the maximum flow. To take this behavior into account in
the model, two variables fp,t are created and the equations rearranged.

qp;t ¼ fp;t � Qp;t þ f 0p;t Q0p;t � Qp;t

� �
ð3Þ
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f 0p;t� fp;t ð4Þ

0� f 0p; t� 1 ð5Þ

where fp,t still represents the operation or non-operation of pump, Qp,t is the first
acceptable flow value, Q0p,t is the maximum flow, and f0p,t is a continuous variable
that allows the flow to fluctuate between the first flow value and the maximum
flow.

• For a consumption element c:

qk;t ¼ qc;t ð6Þ

where k is the index of the single input pipe into consumption point c, variable qk,t

represents the volume transported by pipe k during time slot t, and variable qc,t

represents the consumption demand of node c during time slot t.

• For each connection node o, the flow continuity constraint can be expressed as
follows:

X
k2Uþ0

qk;t ¼
X
k2U�0

qk;t ð7Þ

where set Uo
+ is the set of successors of element o, and set Uo

- is the set of
predecessors of element o.

• Finally, a very similar expression can be obtained for a storage point l:

X
k2Uþl

qk;t ¼
X
k2U�l

qk;t þ Dðnl;tÞ ð8Þ

where variable D(nl,t) represents the variation in the volume held in storage tank
l during time slot t.

3 Operational Constraints

In addition to these structural constraints that describe the functioning network, a
number of operational constraints have to be considered. We first provide an
exhaustive list of the operational constraints to be taken into account and then
focus on two of them in particular.
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3.1 Operational Constraints

Constraints are more or less hard to express. The following are qualified as
‘‘simple’’ because they can be expressed through LP using conventional tools.

The constraints to be found already in the previous LP model are as follows:

• The maximum or minimum volume to be pumped in a day for a given pro-
duction element.

• The maximum electricity power levels defined by the electricity supplier’s
contractual obligations.

• The list of elements that must work only in cases of emergency.
• The maximum incremental rate for the flow in some elements of the network.

The constraints added in our new ILP model are as follows:

• Simultaneity and exclusion constraints (pumps that cannot work at the same
time or that are required to work at the same time).

• A maximum inactivity period length for some pumps.
• Ensuring a required water quality level through the mixing of water from dif-

ferent sources in some storage tanks (for instance by guaranteeing a percentage
from different water sources).

• Avoiding stagnation in storage tanks to ensure water quality.
• Taking account of transfer delays when using very long pipes.

We now focus on the stagnation avoidance constraint and on a specific con-
straint that does not appear in the list.

To maintain a high quality of distributed water, stagnation has to be avoided.
Most of the time water renewal occurs naturally, but in some areas with low
consumption, a constraint needs to be added in relation to storage.

We denote as d the maximum time water may remain in the tank. For each time
slot t, we can write:

nl;t�
Xtþd

t

X
k2Uþl

qk;t ð9Þ

where nl,t represents the volume held in tank l at time slot t, and set Ul
+ is the set of

pipes leading out of tank l. In other words, the volume held in the tank at a given
time slot may not exceed the outgoing volume over the following d hours, in order
to force a water turnover.

Because of the diversity of existing networks, highly specific constraints may
sometimes be encountered. The constraint described below was encountered in
only one network and required particular modeling. Two tanks are connected by
both a gravitational and a non-gravitational pipe. The use of a gravitational pipe is
possible only when the difference in levels is sufficiently large (Fig. 1).
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We expressed this constraint with ILP as follows:

htþ1�m 1� fg;t

� �
ð10Þ

ht�m 1� fg;t

� �
ð11Þ

0� qg;t� fg;t � Qþg;t ð12Þ

where variable ht represents the difference in levels between tanks S1 and S2 at the
beginning of time slot t (ht+1 represents this difference at the beginning of the next
time slot following t, that is to say t+1).

Parameter m is the minimum value possible for variable ht.
Parameter Qg,t

+ is the greatest possible volume that can be transported by
gravitational pipe during time slot t.

As before, the binary variable fg,t stands for the operation or non-operation of
gravitational pipe g during time slot t.

These equations represent the possibility or the impossibility of using gravi-
tational pipe g; the same equations can be used to represent the availability of pipe
g0, by changing variable ht.

If the difference in levels is negative at the beginning of the time step (repre-
sented by ht) or at the end of the time step (represented by ht+1), then the variable
fg,t is equal to zero. It is therefore impossible to use the gravitational pipe because
the flow qg,t will be null.

3.2 Production-Related Constraints and Simplification

As explained above, expressing the problem through ILP increases computation
time, which is a problem when seeking real-time solutions. To improve the solving
process, we propose the aggregation of some pumps in a ‘‘super-pump’’ structure,
in order to keep track of only the feasible flows. For example, having three
identical pumping stations linked to the same connection node means that to obtain
the same flow on this node, three pump combinations are possible, and so we have
more variables than are needed to represent the same information, that is feasible
flow. Therefore, under certain conditions, it will be more efficient to aggregate
these three pumping stations into a single one.

The delicate aspects of this are as follows:

Fig. 1 Two tanks connected
by a gravitational and a non-
gravitational pipe
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• Deciding when pumps cannot be aggregated (for example, if a particular con-
straint affects only one of the pumping stations).

• Transferring constraints from the previously separate pumps to the new
aggregate one.

Conversely, in order to express certain constraints, it may be helpful to separate
a pumping station with several allowed flows into different ‘‘simple pumps’’.

For example, consider four pumps in the same pumping station. One of them
can send water in two different directions, and only three pumps out of the four can
work at the same time because of the maximum power consumption allowed by
the electricity supply contract. To simplify, we separate the first pump into two
(with an exclusion constraint meaning that they cannot operate during the same
time slot), and express the constraints on the five pumps (Figs. 2, 3).

Depending on the constraint difficulty, two strategies may be helpful:
Dividing a complex production element into ‘‘pump units’’ may be helpful if

there is no other simple way to express particular constraints, but this means
increasing the number of variables.

Fig. 2 Initial real configuration of pumps

Fig. 3 New configuration and constraints associated
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Where possible we aggregate pump units, in order to limit the number of
variables and equations. For instance, situation involving only the pumps P1, P2,
and P3 can led to a simple case of aggregation of pumps.

3.3 Hydraulic Phenomena

The hardness of modeling hydraulic phenomena is the first reason cited in the
literature to disqualify the use of LP for the pump-scheduling problem. It was
therefore especially important for us to show that hydraulic phenomena can be
taken into account with a simplification precise enough for our needs. If the
linearization of the hydraulic behavior of components is not possible, or unsatis-
factory—as a result, for example, of an unacceptable increase in the number of
constraints and the length of computation time—an alternative strategy may be to
work with a hydraulic module during the optimization, in order to obtain the real
flow values. This is already done in some applications such as the Derceto soft-
ware [7].

A situation involving hydraulic phenomena arises when there are different
gravitational pipes that bring water to or from a particular location, while the water
distribution depends on pressure. The equations representing this situation are
clearly nonlinear.

Another problem with pressure is water exchanges between storage tanks that
supply the same consumption area. Given the difference in pressure between them
their water levels tend to become balanced. To understand this phenomenon, we
studied experimentally the behavior of two tanks supplying the same consumption
area, with and without consumption.

The two storage tanks provide a certain amount of water to satisfy demand, and
when consumption is low or null the water in the two of them will move toward
the same level (Fig. 4). The equations above (obtained with Kirchhoff’s nodal rule
and Kirchhoff’s mesh rule) represent the mathematical formalization of the flows

Fig. 4 Parallel tanks
supplying the same
consumption area C
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Q1, Q2, and Q3 between points A, B, and C (Fig. 5). We shall not explain the
notation here, as our aim is simply to show the nonlinearity of the equations.

We attempted to model experimentally the movements using the hydraulic
software tool EPANET. We found that the curve representing the exchanges
between A and B when there is no demand can be linearized (Fig. 6).

We performed other experiments with nonzero consumption and for different
pipe parameters, and we concluded that in the case of two parallel storage tanks,
the different flows can be calculated from the experimental curves, based only on
knowledge of consumption and water levels.

Fig. 5 Hydraulic behavior equations

Fig. 6 Flow from storage B to A with respect to the difference in levels between B and A

Fig. 7 New test network modeled with EPANET
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We generalized this approach to a slightly more complicated case with 4 tanks,
10 pipes, and 3 consumption points (Fig. 7).

In addition to the flow values in the pipes, we add a pressure value on the nodes.
On each pipe, we add a linear equation of the following form, where f is a linear
function:

qk;t ¼ f hi;t; hf ;t;Hk

� �
ð13Þ

The flow through a pipe qk depends on the pressure hi,t in its initial node, in the
pressure hf,t in its final node, and on certain known parameters of the pipes Hk

(such as diameter and length).
For 19 different combinations of storage level values, we calculated the flow

and pressure values on this small network, both with our linear model and with the
hydraulic software tool EPANET (Table 1).

Table 1 Comparison in percentages between the results from EPANET and from our linear
model
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We know that our results cannot be exactly the same as those calculated from a
real hydraulic model, owing to the simplifications we introduced. Regarding the
margins of error calculated, we conclude that they are acceptable for our needs.
Moreover, the largest differences in percentages correspond to only small differ-
ences in absolute values.

We now have to test this linear model on a real network. The most significant
concern is the likely increase in computation time as a result of the new equations
added. It may be possible to address this problem by reducing the number of
integer time steps, as shown in Sect. 3.2.

4 Solution Strategies

The model as it is formalized can provide the network manager with a pumping
schedule for the day. But the efficiency and the speed of the search for a solution
can still be improved, as we see in this section. First, we discuss the formulation of
the objective function. Then, we describe the optimization parameters that can
help to improve the efficiency of the search for a solution.

4.1 Two-Stage Optimization Strategy

The objective function is formulated as follows:

f ¼
XH

t¼1

X
x

Cx;tfx;t þ
XH

t¼1

X
y

Kyky;t ð14Þ

where parameter H is the time horizon (the number of time slots in the optimi-
zation). Parameter Cx,t represents economic cost penalties, and variable fx,t rep-
resents the operation or non-operation of the corresponding element x during time
slot t. Parameter Ky,t is the penalty for not respecting constraint y; variable ky,t is
different from 0 only if constraint y is not respected at time slot t.

One problem of this objective function is its heterogeneity. Penalties Cx,t rep-
resent real economic costs, while penalties Ky are set arbitrarily to enforce the
respect of some constraints if possible.

Introducing these two goals into the objective function (to ensure that opera-
tional constraints are met as far as possible while minimizing the economic cost) is
not the most efficient way to proceed. It might even be counterproductive, in that it
can lead to aberrations if the arbitrary penalty is not well chosen (for example,
failure to respect a particular constraint, because this is a less expensive option,
whereas optimization of economic cost should only begin once all operational
constraints have been met).

A two-stage optimization might be an answer to this problem. First, we opti-
mize taking into account only the constraint penalties. At the end of this step, we
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are able to set the maxim penalties allowed for the non-respect of each constraint.
For example, we know the smallest deficit value for the storage tanks that will still
allow us to reach a feasible solution.

Once these new constraints have been established, we can start to optimize in
the second step, taking into account only the economic penalties.

We tested this approach with a time limit of 1,800 s (30 min). We compared a
direct optimization with a two-stage resolution. After a few trials, we decided to
devote the largest amount of available computation time to the first stage (1,790 s)
and only 10 s to the second stage (Fig. 8).

The cost of the objective function is always less for direct optimization, but
most of the time (except for five instances out of twelve) two-stage optimization
better respects the constraints of the problem.

Our test showed us that the most difficult part of the optimization problem was
emphatically not the economic aspect, but the respect of all constraints (as stated
above, we had to set the first step of the optimization to 1,790 s, and the second
step to only 10 s). Two-stage optimization is therefore relevant to our problem, but
might be refined to obtain better results. The values of the penalties, in particular,
have to be chosen very carefully.

4.2 Partially Continuous Relaxation Strategy

Another idea for reducing computation time is to reduce the number of integer
time steps. As we are periodically recalculating the pump scheduling because
consumption predictions are constantly being updated, it is possible to use integer
time steps during an initial phase only, before switching to continuous time steps
for the remainder of the solution process.

The correct schedule obtained in this fashion for the first time steps can be
implemented directly. For subsequent time steps, we will have continuous values

Fig. 8 Comparison between
economic costs of a direct or
two-stage optimization

Water Planning and Management 165



(somewhere between 0 and 1) for the pump operation. It will not be possible to use
these values directly, but they will give us an idea of the volumes to be exchanged.

We tested the computation time for 20, 12, and 4 initial integer time steps,
followed by continuous time steps (Table 2, Fig. 9).

Reducing the number of integer time steps considerably increases the efficiency
of the solution process. For the test with only four integer time steps, we obtained
an optimal solution in less than 10 s for each instance.

But we have to determine the smallest number of time steps necessary to
guarantee the quality of the solution.

Table 2 Gap between best bound and best feasible solutions for different numbers of integer
time steps

Instance All integer time steps (24) 20 integer time steps

CPU Solution Bound Gap (%) CPU Solution Bound Gap (%)

1 60 – 2.27E+06 – 60 2.17E+06 2.17E+06 0.04
2 60 – 2.23E+06 – 60 2.13E+06 2.13E+06 0.06
3 60 1.75E+06 8.15E+05 53.54 60 7.35E+05 7.34E+05 0.11
4 60 1.22E+07 7.75E+05 93.64 60 6.95E+05 6.93E+05 0.19
5 60 2.98E+06 7.76E+06 40.99 60 1.32E+06 1.32E+06 0.10
6 60 2.79E+06 1.93E+06 30.83 60 1.24E+06 1.24E+06 0.04
7 60 – 1.73E+06 – 60 1.29E+06 1.29E+06 0.13
8 60 – 1.89E+06 – 60 1.21E+06 1.21E+06 0.02
9 60 – 1.45E+06 – 60 9.79E+05 9.78E+05 0.03
10 60 – 1.39E+06 – 60 9.20E+05 9.19E+05 0.05
11 60 1.82E+07 1.41E+06 92.24 60 9.49E+05 9.48E+05 0.03
12 60 – 1.34E+06 – 60 8.88E+05 8.88E+05 0.02
12 integer time steps 4 integer time steps
1 60 2.09E+06 2.09E+06 0.02 1.15 2.05E+06 2.05E+06 0.01
2 60 2.05E+06 2.05E+06 0.02 1.95 2.01E+06 2.01E+06 0.01
3 60 6.64E+05 6.63E+05 0.06 0.7 6.26E+05 6.26E+05 0.01
4 60 6.18E+05 6.18E+05 0.04 0.89 5.80E+05 5.79E+05 0.01
5 60 1.21E+06 1.21E+06 0.05 4.52 1.13E+06 1.13E+06 0.01
6 60 1.13E+06 1.13E+06 0.04 4.56 1.05E+06 1.05E+06 0.00
7 60 1.18E+06 1.18E+06 0.07 6.36 1.11E+06 1.11E+06 0.00
8 60 1.09E+06 1.09E+06 0.06 1.78 1.02E+06 1.02E+06 0.01
9 60 8.82E+05 8.82E+05 0.01 0.81 8.29E+05 8.29E+05 0.01
10 60 8.23E+05 8.23E+05 0.04 1.9 7.67E+05 7.67E+05 0.00
11 60 8.53E+05 8.53E+05 0.02 1.09 8.02E+05 8.02E+05 0.00
12 60 7.92E+05 7.92E+05 0.02 1.01 7.39E+05 7.39E+05 0.00
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4.3 Enlarging the Horizon Time

Another problem is planning for the final time slots of the day. Some constraints
are hard to take into account unless we have some knowledge concerning the
following periods. For example, in the case of the constraint designed to avoid
stagnation in the storage tanks, we need to know if consumption will be low or
high just after the end of the optimization.

To overcome this difficulty, we planned to extend the optimization horizon: If
the requested planning was over 24 h, the optimization would be over a period of
48 h so as to avoid the problem of non-visibility affecting the final periods. But
extending the optimization horizon increases the computation time, which is a
serious drawback in a real-time context. We therefore retained the principle while
slightly modifying the model for the following 24 h in order to have no more than
an overall vision of the volume and constraints present the following day, thus
avoiding a large increase in computation time.

We tested the differences between a 24-hour and a 48-hour optimization. A
computation time limit of 30 min was specified in advance, and we compared the
final discrepancy between the feasible solution and the best bound found. The
storage tanks were required to be full at the end of the optimization, and the first
time slot was fixed at 6 a.m. The different instances tested had different initial
water levels in the tanks and the tests concerned different periods of the year or
week, which impacts the level of consumption and certain energy-related con-
straints (price and maximum authorized power) (Tables 3, 4).

The first column indicates the instance tested: the initial level in the tanks, the
season, the consumption prediction used for the first 24 h, and the consumption
prediction for the latest 24 h (because the consumption is different during the week
and during the week end). There are more instances for the 48-hour optimization
because there are a larger number of possibilities when we are dealing with two

Fig. 9 Comparison of gap
for 20 and 24 integer time
steps
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separate days. The three other columns respectively show the final feasible solu-
tion obtained, the best bound, and the difference between these two values. These
results are presented in the following graphic (Fig. 10):

Table 3 24-hour optimization

Characteristics Solution Best bound Gap (%)

Full storages–summer–week/week 2.81E+06 2.81E+06 0.05
Full storages–summer–week/Sunday 2.62E+06 2.62E+06 0.05
Full storages–summer–Sunday/week 2.77E+06 2.77E+06 0.05
Full storages–winter–week/week 1.36E+06 1.36E+06 0.11
Full storages–winter–week/Sunday 1.30E+06 1.30E+06 0.12
Full storages–winter–Sunday/week 1.32E+06 1.32E+06 0.13
Low storages–summer–week/week 1.86E+06 1.86E+06 0.15
Low storages–summer–week/Sunday 1.63E+06 1.63E+06 0.13
Low storages–summer–Sunday/week 1.79E+06 1.79E+06 0.07
Low storages–winter–week/week 1.82E+06 1.82E+06 0.18
Low storages–winter–week/Sunday 1.76E+06 1.75E+06 0.24
Low storages–winter–Sunday/week 1.75E+06 1.75E+06 0.12
Half-full storages–summer–week/week 1.58E+06 1.58E+06 0.04
Half-full storages–summer–week/Sunday 1.36E+06 1.36E+06 0.07
Half-full storages–summer–Sunday/week 1.52E+06 1.52E+06 0.08
Half-full storages–winter–week/week 1.53E+06 1.53E+06 0.08
Half-full storages–winter–week/Sunday 1.47E+06 1.47E+06 0.09
Half-full storages–winter–Sunday/week 1.48E+06 1.47E+06 0.08

Table 4 48-hour optimization

Characteristics Solution Best bound Gap (%)

Full storages–summer–week/week 2.41E+06 2.27E+06 5.98
Full storages–summer–week/Sunday
Full storages–summer–Sunday/week 2.32E+06 2.23E+06 4.03
Full storages–winter–week/week 9.45E+06 8.16E+06 13.67
Full storages–winter–week/Sunday
Full storages–winter–Sunday/week 9.11E+06 7.75E+06 14.98
Low storages–summer–week/week 2.31E+06 1.77E+06 23.22
Low storages–summer–week/Sunday
Low storages–summer–Sunday/week 2.20E+06 1.93E+06 12.30
Low storages–winter–week/week 2.27E+06 1.73E+06 23.57
Low storages–winter–week/Sunday
Low storages–winter–Sunday/week 2.16E+06 1.89E+06 12.64
Half-full storages–summer–week/week 1.76E+06 1.45E+06 17.18
Half-full storages–summer–week/Sunday
Half-full storages–summer–Sunday/week 1.69E+06 1.42E+06 16.03
Half-full storages–winter–week/week 1.75E+06 1.41E+06 19.30
Half-full storages–winter–week/Sunday
Half-full storages–winter–Sunday/week 1.54E+06 1.35E+06 12.55
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We can see that the 48-hour optimization converges faster on the best bound
than the 24-hour solution. This is encouraging and will enable us to reduce the 30-
min limit on computation time.

5 Conclusions

The aim of this study is to build a realistic mathematical model giving rise to
pertinent, feasible solutions, where computation time has been reduced as much as
possible and the solutions are of a high quality.

The use of integer variables in our model takes into account the discrete
behavior of pumps, and the solutions obtained are therefore easy to implement. We
also take new constraints into account. The next important step for us will be to
increase the relevance of our model by taking fully into account a number of
hydraulic phenomena that can be observed in the network.

We succeeded in reducing computation time and the discrepancy between the
best bound and feasible solutions by changing some parameters in our optimization.
Our intention is now to refine our optimization techniques and to introduce new
ways of reasoning with the aim of reducing the solution space and the computation
time. We also plan to look at other optimization tools (such as constraint pro-
gramming) that may be able to solve the same model more efficiently.

References

1. Guhl, F. (1999). Gestion optimale des réseaux d’eau potable. Ph.D. thesis, Université Louis
Pasteur.

2. Ulanicki, B., Kahler, J., & See, H. (2007). Dynamic optimization approach for solving an
optimal scheduling problem in water distribution systems. Journal of Water Resources
Planning and Management, 133, 23–32.

Fig. 10 Comparison of gap
for a 24-hour and a 48-hour
optimizations concerning 18
different instances

Water Planning and Management 169



3. Lopez-Ibanez, M., Prasad, T. D., & Paechter, B. (2008). Ant colony optimization for optimal
control of pumps in water distribution networks. Journal of Water Resources Planning and
Management, 134, 337–346.

4. Nicklow, J. (2010). State of the art for genetic algorithms and beyond in water resources
planning and management. Journal of Water Resources Planning and Management, 136,
412–432.

5. Nace, D., Demotier, S., Carlier, J., Daguinos, T., & Kora, R. (2001). Using linear programming
methods for optimizing the real-time pump scheduling. World Water and Environmental
Resource Congress.

6. Wosley, L. A. (1998). Integer linear programming. New York: Wiley.
7. Pegg, S. (2001). An online optimised pump scheduling system. Proceedings of the ORSNZ

Conference Twenty Naught One.

170 L. B. de la Perrière et al.


	13 Water Planning and Management: An Extended Model for the Real-Time Pump Scheduling Problem
	Abstract
	1…Introduction
	2…Water Distribution System Modeling
	2.1 Elements
	2.2 Mathematical Formulation

	3…Operational Constraints
	3.1 Operational Constraints
	3.2 Production-Related Constraints and Simplification
	3.3 Hydraulic Phenomena

	4…Solution Strategies
	4.1 Two-Stage Optimization Strategy
	4.2 Partially Continuous Relaxation Strategy
	4.3 Enlarging the Horizon Time

	5…Conclusions
	References


