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Introduction

Acquisition of knowledge constitutes a fundamental human activity. To address this
question, it may appear that at the outset one should put down a definition of knowl-
edge. We will, however, side-step the issue of defining knowledge. Instead, we will
assume that people have at least some idea of what constitutes knowledge. The issue
that we consider is methods for acquiring knowledge. Even without having a defini-
tion of knowledge, one would agree that for the acquired knowledge to be reliable,
the methods for acquiring knowledge should also be reliable. In other words, if a
method for acquiring knowledge is not reliable, then the acquired knowledge cannot
also be considered reliable. !

The question of what constitutes reliable methods for acquiring knowledge has
been considered by philosophers since ancient times. Typically, discussions in philos-
ophy books talk about valid methods of acquiring knowledge. For the purpose of this
article, we will conflate ‘reliable’ with ‘valid’.> The methods of acquiring knowl-
edge that have been identified by philosophers are the following: perception; induc-
tive inference; deductive inference; analogy and comparison; and, testimony (of
authority).

I There are several issues here. For example, is it proper to talk about ‘unreliable knowledge’; i.e., if
something is unreliable, can it be considered to be knowledge? A related issue is that of quantifying
unreliable knowledge by assigning a score of unreliability. Of course, a statement such as ‘event X
holds with 80% probability’ is a definite statement about uncertainty. While these are interesting
questions, discussion of these issues are outside the scope of this article.

2The fine distinction between a ‘reliable method’ and a ‘valid method’ and by implication the fine
distinction between ‘reliable knowledge’ and ‘valid knowledge’ is again outside the scope of this
article.
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Our target of discussion is inductive inference and its relation to statistics and
machine learning. Before moving on to the details of inductive inference, we mention
a few words about the other methods. Perception primarily refers to the use of sense
organs. A deductive inference essentially refers to a statement that can be derived
from a set of statements using the rules of logic. Knowledge acquisition by analogy
refers to the translation of ideas from one context to another by an appeal to the
similarity of the two contexts. Knowledge from testimony is acquired by accepting
a statement from some person who can be trusted.

Statistical inference refers to a wide collection of techniques which aim to derive
information from observations. The methods of statistical inference involve mathe-
matical and computational methods. The role of mathematics is to formally prove that
statistical inference methods achieve their stated goals. This is essentially an appli-
cation of the deductive inference method mentioned above. Computational methods
are useful in actually implementing a statistical inference technique, or, more theo-
retically, for understanding the difficulties and limitations for the implementation of
various inference techniques. The justification or suitability of a particular statistical
method, however, is neither mathematical nor computational. Such justification is
usually provided as an appeal to intuition.

Machine learning techniques have a similar goal as statistical inference tech-
niques. In many cases, well-studied statistical techniques are classified as machine
learning methods. One way in which machine learning perhaps differs from statistics
is in the greater emphasis laid on computational issues in machine learning methods.
Similar to statistical inference, justifications for various machine learning methods
are also usually stated as being intuitive.

In this paper, we aim to provide perspectives on some statistical and machine
learning techniques from the viewpoint of inductive inference. To this end, in the first
part, we provide an overview of inductive inference and its various characteristics.
This will essentially summarise prior thoughts on inductive inference which are
relevant to statistics. In the second part, we will look at a number of techniques from
statistics and machine learning. The goal will be to point out why such techniques
are essentially inductive inferences and in particular which characteristics of the
methodology of inductive inference can be found in these techniques.

One may question the usefulness of the present work, especially since it does not
provide any new result in statistics and machine learning. A response would be that
explicitly seeing inductive inference at work within statistics and machine learning
satisfies a basic intellectual curiosity. Perhaps more importantly, fundamental philo-
sophical issues regarding the validity of inductive inferences can also be seen to
apply to statistical inferences and machine learning techniques. This would lead
to replacing an aura of definiteness by an umbra of doubt or uncertainty. In more
concrete terms, explicitly identifying the connections between the two areas will
perhaps lead to a more productive two-way flow of ideas.

The relation between inductive inference and statistics is known (but perhaps not
as well known as it should possibly be). In 1956, Mahalanobis had commented that
‘statistics is the universal tool of inductive inference’. A short paper by Fisher [6] had
commented on the relation between statistical methods and induction. The preface
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of the fascinating book on statistical thought by Chatterjee [3] mentions that the
book ‘views the problem of statistical induction in a wider philosophical context’.
More general connections between statistics and philosophy have been explored by
a galaxy of authors in a complied volume edited by Bandyopadhyay and Forster
[1]. The connection between machine learning and induction has been explored by
Harman and Kulkarni [7]. Finally, we would like to mention the book [11] entitled
‘Statistics and Truth: Putting Chance to Work’, by C. R. Rao which provides an
excellent overview of the nature and role of statistics in various fields of human
activity. In particular, we note that the preface of the book suggests that statistics
provides a method for codifying inductive reasoning.

In view of the above, our work may be seen as a continuation of the line of
thought connecting statistics and machine learning to induction and more generally
philosophical issues. We would like to mention that, to the best of our knowledge,
our approach of considering specific statistical inference and machine learning tech-
niques to bring out in details the features of inductive inference therein is not present
in the above-mentioned works. So, our work does offer something new to a reader
interested in the connection between inductive inference and statistics/ machine
learning.

Inductive Inference

Inductive inference as a method of acquiring knowledge has been studied in both
Western and Indian philosophies. Putting down a precise definition of ‘inductive
inference’ is rather difficult. The term refers to a broad set of inference mecha-
nisms which loosely speaking may be construed as inferring something about unper-
ceived situations from perceived information. We illustrate a few inductive inference
methods through examples.

Statements such as ‘the Sun rises in the East’, or, ‘all human beings are mortal’
are derived based on observations. These are examples of enumerative induction or
universal inference, i.e. inference from particular observations to a universal state-
ment. More generally, these are of the following type. Instances a;, ay,..., @, which
are all F’s are also observed to be G’s; from this a general principle ‘all F’s are G’s
is inferred.

Inductive inference need not only be from particular to the universal. For example,
from ‘all observed rubies have been red’ inferring ‘the next yet to be found ruby will
also be red’ is an example of inductive inference where the premise is general and
the conclusion is particular.

It is not necessary that an inductive inference will have a universal statement.
For example, from ‘Mercury is spherical, Venus is spherical, Earth is spherical, ...’
inferring ‘the next yet to be discovered planet will also be spherical’ does not involve
any universal step. This is called a singular predictive inference which moves from
particular premises to a particular conclusion.
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The Problem of Induction

In Western philosophy, Hume made the most influential contribution to the study of
inductive inference. The most disturbing question about induction is whether it is
justified. For example, what are the justifications for the above examples of inductive
inference? Clearly, these inferences cannot be justified using deductive methods. For
example, the argument.

((all observed F’s have also been G’s) and (a is an F)) imply (a is a G).
is invalid; i.e., there exists a model in which both the premises are true, but the
conclusion is false.

Hume had identified that any justification of inductive inference must necessarily
be inductive leading to a circularity of argument or petitio principii. This was summed
up in the following famous statement by Hume (1738) in ‘A Treatise of Human
Nature’: ‘instances, of which we have had no experience, must resemble those,
of which we have had experience, and that the course of nature continues always
uniformly the same’. This underlines that inductive inferences assume that nature
continues uniformly. The statement that nature continues uniformly itself requires
justification, and this justification can only be obtained through induction leading to
a circularity of argument.

The problem of induction is the question of how to distinguish reliable from
unreliable inductive inferences? This is a conundrum which is yet to be satisfactorily
resolved despite efforts by philosophers such as Karl Popper and others. Perhaps the
question does not even have a resolution. The inability to resolve the problem of
induction has at least two implications. The first is methodological; i.e. there is no
method or procedure which may be applied to distinguish good from bad inductive
inferences. The second question is more fundamental in that there is possibly no
objective difference between reliable and unreliable inductive inferences. While the
unresolved problem of induction is a philosophical irritant, in practice, inductive
inferences are regularly made. We refer to [9] for description of the problem of
induction.

The method of induction has been studied in Indian philosophy. The main criticism
against inductive inference is that of circularity. This was identified by the Carvaka
school of thought. Chapter 1 of [2] provides an excellent account of the Carvaka
criticism of induction. We also refer to [12] for a description of how the Carvaka
school of thought anticipated some modern notions.

The Principle of Simplicity

Often called Occam’s razor, the principle of simplicity is the idea that the simplest
among several available options should be chosen. For example, the simplest among
several competing hypotheses suggested by observations should be chosen. Another



Aspects of Inductive Inference in Statistics and Machine Learning 81

example would be to choose the simplest among several models. The simplicity
principle is ubiquitous in human reasoning.

One may look for an objective justification of the principle of simplicity. This,
however, is hard to find. One possible justification could be that this principle has
proved to be correct in the past, and so, it can be used in future. Such a justification
is essentially an inductive inference. An eloquent criticism of the justification of the
principle of simplicity by appealing to the past has been made by Bertrand Russell
in the book ‘On Scientific Method in Philosophy’ (1914). He remarks: ‘But it is just
this characteristic of simplicity in the laws of nature hitherto discovered which it
would be fallacious to generalise, for it is obvious that simplicity has been a part
cause of their discovery, and can, therefore, give no ground for the supposition that
other undiscovered laws are equally simple’.

There are several other troublesome issues. The principle of simplicity tacitly
assumes that the options are known, that it is possible to compare any two options
with regard to simplicity, and that the set of options has a unique simplest member. All
of these issues can be stated in a more formal framework though we are not aware of
any place where such formalisation has been done. Nevertheless, it is not our purpose
here to get into a detailed formal investigation of the principle of simplicity. We note
two points. In practice, the principle of simplicity is universally applied and that its
only possible justification arises as an inductive inference.

Inference to the Best Explanation

Philosophers distinguish between three types of inferences, namely deductive, induc-
tive and abductive [4]. Abductive inference is also called inference to the best expla-
nation (IBE). A standard example of IBE is the following. Suppose on waking up in
the morning, one finds the outside to be wet. From this, one infers that it had rained
in the night. This inference is the best one which explains the observation. In theory,
it is possible to make other inferences such as water was sprayed from a low flying
aircraft, but, would not be considered the best inference. Of course, the inference that
it rained in the night is also the simplest of explanations, so this particular example
is also an example of the application of the principle of simplicity.

The idea of abductive inference or abductive logic was introduced by Charles
Sanders Peirce. He considered abductive inference to be a form of non-deductive
inference which is different from inductive inference. The notion of abductive infer-
ence has been closely studied. We refer to [4] for an introduction to the various
issues.

The validity of IBE can be questioned. As in the case of the principle of simplicity,
one may ask for an objective justification of IBE. Such a justification may be provided
by considering past applications; i.e., IBE has proved to be true in the past and so it
will be true in the future. This is again an appeal to inductive inference. So, while
IBE is considered to be different from inductive inference, its justification seems to
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rely on inductive inference. So, IBE (and also the principle of simplicity) may be
considered to be second-order induction.

Pragmatism

Roughly speaking, pragmatism refers to the idea that among various options, choose
the one which is most useful. It may turn out that the most useful is also the simplest
or the best. For example, among various techniques that in theory can be employed
to analyse a situation, use the one which is the easiest to apply.

As in the case of simplicity and IBE, justification for pragmatism arises from
an appeal to induction. Further, the issue of determining the most useful option has
difficulties similar to that of determining the simplest or the best option.

Features of Inductive Inference

It has been mentioned that no objective justification of inductive inference has been
found till date. Nevertheless, investigations have identified several features that can
be seen in various inductive inferences. We briefly discuss these below.

Ampliative: This is intended to mean that the conclusion of the inference has more
content that its premise. For example, in universal inference, the premise consists of
some observations while the conclusion is a universal statement. This is a distinctive
feature of inductive inference as opposed to deductive inference in which there is no
amplification of the logical content of the conclusion beyond what is contained in
the premises.

Contingent: The conclusion of an inductive inference does not follow as a neces-
sary condition of its premise. In other words, it cannot be logically said that if the
premise holds then the conclusion must also hold.

Non-monotonic: Inductive inference is based upon perceived information. An
inference which is made from some amount of perceived information may become
invalid if additional information becomes available.

Non-preservation of truth: It is possible that the premises of an inductive inference
are true, yet the conclusion is false. For example, in an enumerative induction, the
individual premises are observations and are true. The universal conclusion, however,
could be false since it may not hold for some hitherto unobserved instance.

Statistical Methods and Inductive Inference

In this section, we consider some basic statistical notions and point out aspects of
induction that are implicit in such notions. This provides a better understanding of
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the link between the more philosophical notion of inductive inference and statistical
methods.

Sufficient statistic: The notion of sufficient statistic is a basic notion in statistical
inference. Given observations X, ..., X,, following some known distribution with an
unknown parameter 6, a statistic 7 is a function T’ (X, ..., X,,) of the observations.
In the words of Fisher [5], a statistic is sufficient for an unknown parameter if ‘no
other statistic that can be calculated from the same sample provides any additional
information as to the value of the parameter’. The notion of sufficient statistic provides
a simple example of non-monotonicity. It is easy to construct examples where a
statistic T is sufficient for a parameter using observations X1, ..., X,,, but is no longer
sufficient if an additional observation X,,; becomes available. So, it is important to
use all available data and it is usually assumed that the number of observations is
known and fixed.

Maximum likelihood estimate (MLE): Given data xi, ..., x,, the likelihood
function L(6; xy,...,x,) is a function of an unknown parameter 6 which gives the
probability of obtaining the sample xy,...,x, given the value of the parameter. Once
the data is available, an estimate of the value of the parameter 6 is desired. The
MLE 6 of 6 is the value which maximises the likelihood function. In other words, for
6 =0, the probability of observing the data xy, ..., x,, is maximised. The justification
for using MLE is implicitly based on abduction, or inference to the best explanation
(IBE). The rationale is that since § maximises the probability of observing the data,
it is the best explanation for observing the data.

Null hypothesis testing: A null hypothesis Hy to be tested is formulated. This
formulation involves defining a test statistic. A number of observations are made
which provide the data using which H is to be tested. The p-value of the test is the
probability that under H the test statistic equals the observation or more extreme.
The null hypothesis H is rejected at « level of significance if the p-value is less than
a.

Several features of inductive inference can be identified in the procedure. First, the
procedure is ampliative. The premise of the inference mechanism is the data while
the conclusion is about the hypothesis. So, the conclusion has more content than the
premise. Second, null hypothesis testing is non-monotonic; i.e., a hypothesis which
was not priorly rejected can become rejected with the availability of additional data.
So, the non-rejection of H( does not imply it is established. In the words of Fisher [6],
‘[i ]t is a fallacy, ..., to conclude from a test of significance that the null hypothesis
is thereby established; at most it may be said to be confirmed or strengthened’. The
third aspect of induction arises in the choice of «. Justification for choosing a value
for « is based on this value being used in various other situations. This justification
is essentially an inductive inference that the value of @ which has been appropriate
in other situations will also be appropriate for the situation at hand.

Prediction Error: Let X be a real-valued input random variable, i.e. a predictor
or a feature, and let Y be a real-valued output random variable, i.e. the response or
the dependent variable. Let Pr[X, Y] be the joint distribution of X and Y. A basic
statistical technique is regression, i.e. to obtain a function f (X) of X which can be used
to predict Y given X. A loss function is used to measure the efficacy of the prediction.
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The most common and convenient loss function is the squared error loss, i.e. L(Y,f (X))
=Y—-fX 2. Using this loss function, the expected (squared) prediction error is
defined to be EPE(f) = E(Y — f (X))%. The goal is to choose f such that EPE(f) is
minimised. The EPE can be simplified as EPE(f) = ExEyx[(Y — f(X)?)|X].
and so to minimise EPE(f) it is sufficient to perform point-wise minimisation, i.e.
f(x) = argmin, Eyx((Y — ¢)*|X = x). The solution is f(x) = E(Y|X = x). So,
we have that the conditional expectation, which is also called the regression function,
provides the best prediction of Y at a point x.

The notion of ‘best’ in the above is with respect to the squared error loss. One may
ask for a justification of using the squared error loss. For example, the loss function
could have been defined as |Y — f (X)l, in which case the solution would turn out
to be the conditional median, i.e. median(Y |X = x). Is there any a priori reason to
prefer squared error over absolute error? A sort of justification forwarded in [8] (the
descriptions of squared error and median error are also from [8]) is that ‘squared
error is analytically convenient and the most popular’. The reason for its popularity
is perhaps based on analytical convenience, so the main justification for using the
squared error is that it is analytically convenient. This is a pragmatic consideration.

We may take a moment to reflect on qualitative aspects of this issue. Regression
forms an important technique of statistical decision theory and machine learning.
Outputs of a prediction function will conceivably be used to arrive at decisions
which can have major social effects. The decisions and their social consequences
then depend upon the actual choice of the prediction function. So, for example,
using a prediction function based on squared error can lead to a decision which is
different from a decision which is arrived at by using a prediction function based
on absolute error. The justification for such a difference in decisions would really
be the analytical convenience of the squared error. In other words, the comparative
simplicity of being able to mathematically handle one expression over another can
lead to wholly different social consequences.

Model Selection: Suppose xi, ...,x, constitute the data. Further, suppose that
there is a set of models M1, ..., M, and the goal is to choose one of the models based
on the data. This is a typical setting of inductive inference, where from particular
observations, one infers a general statement. In this particular setting, the inference
is somewhat restricted in the sense that the requirement is to choose one among a
finite set of models. One may ask as to how the set of models have been determined?
The answer would typically be a combination of the following justifications: from
previous experience, usefulness, simplicity. All of these justifications themselves are
inductive inferences.

A model is determined by its parameters. Suppose the parameter vector for the
ithmodelis @;,i = 1, ...,m. Further, suppose that the dimension of 6; is k;, i.e. the ith
model is determined by k; parameters. Let L;(0;; x1, ...,x,) be the likelihood function
for the ith model.

Two standard ways of assigning scores to models are the Akaike information
criterion (AIC) and Bayesian information criterion (BIC). For the ith model, these
are defined as follows. Let éi be the MLE for 6;.
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AIC(M;) = 2k; — 2InL;(0;; x1, . .., Xp):
BIC(M;) = (Inn)k; — 2InL;(0;: x1, . . ., X,).

The procedure for selecting a model using AIC (resp. BIC) is to compute the AIC
(resp. BIC) scores for all the models and choose the one with the minimum score.
Both the AIC and the BIC scores use the MLE 6 i» and also both penalise models
having a large number of parameters. The extent of the penalty is smaller for the AIC
score than the BIC score.

Implicit in the above definitions of the AIC and BIC scores are two aspects of
inductive inference. The first is the use of MLE. As discussed earlier, the justifica-
tion for using MLE is inference to the best explanation. The second aspect is that
of penalising more complex models,, or in other words preferring simpler models.
Again, as discussed earlier, simplicity is justified by induction.

The AIC score for the ith model is derived through Taylor series approximations
of the Kullback—Leibler (KL) divergence of the density of the ith model from that of
the correct density. The goal of model selection based on the AIC score is essentially
to choose the model for which the KL divergence is the minimum. The choice of
KL divergence for use in model selection is itself based on induction; i.e., the KL
divergence has proved to be useful in various other settings, and so it should also be
useful for model selection.

The derivation of the BIC score is based on Bayes theorem. Suppose a prior prob-
ability p; is assigned to model M;. Also, consider the observations to be random vari-
ables X1,...,X,, drawn from an unknown distribution. From Bayes theorem, Pr(M;1X,
..., X;y) is proportional to Pr(Xy, ....X,IM;)p;. The BIC score is arrived at through
approximations of the last expression. The goal of the BIC score is to maximise the
probability Pr(M;1X, ...,X,), i.e. the probability of M; given the observations X1,
...,X,. This is an example of inference to the best explanation.

Machine Learning and Inductive Inference

Machine learning is a broad term used to denote a variety of techniques whose goal is
to gather information from data. The data consists of pairs (xi, y1), ..., (X,, y») Where
X1, ..., X, are feature vectors and yy, ...,y, are the labels associated to xi, ..., X,
respectively. The feature vectors are drawn from some distribution which is typically
unknown, so that the analysis is done in a non-parametric setting. Depending on the
nature of the labels, two kinds of problems are identified. If the y;’s are elements of
{0, 1}(or some finite non-empty set), then we have a classification problem, while if
the y;’s are elements of R, then we have an estimation problem. Given the pairs (X;,
yi), i =1, ..., n, the goal is to ‘learn’ some rules so that given a new feature vector
x, it is possible to provide the corresponding y. This problem is called supervised
learning, since there is a learning phase where the given pairs are used to learn a
rule. There is another problem called unsupervised learning which does not have a
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learning phase. We do not consider unsupervised learning in this brief discussion.
Statistics forms the basic theory for machine learning techniques. We refer to [8, 10,
13] for good introductions to the subject.

From the overview of machine learning stated above, the entire field essentially
amounts to inductive inference. A particular machine learning method is a particular
kind of inductive inference. Machine learning procedures measure performance by
bounds on the error in estimation or classification. This often involves sophisticated
mathematical machinery. Such mathematical rigour may lead one to believe that the
problem of induction (i.e. providing justification for employing a particular induction
procedure) discussed earlier has been addressed, if not fully at least partially. Such
an assumption, however, would be incorrect. In the various machine learning proce-
dures, aspects of inductive inference are implicitly used in such a manner that any
justification of the learning procedure would amount to circular reasoning. Below
we consider examples of implicit inductive inferences in two well-known machine
learning procedures.

Neural Networks

Neural networks are complex models for learning from data. They come in various
forms. Our brief consideration of neural networks is based on the treatment in [10].

Consider the problem of classification. A multilayer feed forward neural network
for this problem can be visualised in the following manner. The network consists of
computation units. The units are organised into layers. There is an input layer and an
output layer. The output layer has a single unit. Each unit receives some inputs and
provides a single output. The single unit in the output layer provides the output of
the network which is a binary value. The units in the input layer receive the input to
the network which is a feature vector. Connections between the units are as follows.
Suppose there are k + 1 layers Ly,...,L;, where L is the input layer and Ly is the
output layer. The output of any unit in layer L; is provided as input to one or more
units in layer L1, fori =0, ...,k — 1. These connections are considered to be directed
arcs from one unit to another. So, information flows from the input of the network to
the output of the network, i.e. the network maps a feature vector to a binary value.

Weights are associated to each of the arcs in the network. Suppose u is a unit in
a layer L; other than the input layer, i.e. i > 1. Further, suppose that outputs of the
units uy, ...,u; of the previous layer are provided as input to u. So, there are k arcs
connecting up, ...,u; to u. Let the weights associated to these arcs be wy, ...,wy. Ona
particular input x to the entire network, suppose that the outputs of uy,., u; are by,...,
by, respectively. Then, the consolidated input to u is the weighted sum a = w;b; +
... + wiby. The computation done by u is on the value a to produce an output b; if
L; is not the output layer, i.e., i < k, then the value b propagates to units in layer L;;;
to which u is connected.

The computation done by all the units in the network are the same. Each unit
computes a sigmoidal function, i.e., a function from R to R which is bounded and
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has non-negative derivative at all real values. Various sigmoidal functions are known
and used in neural network computations. The output unit additionally applies a
thresholding at the mid-point of the two bounds of the sigmoidal function to convert
the real value to a binary value.

The network ‘learns’ by modifying the weights associated to the arcs. Suppose
the set of arcs is A. Initially, the learning process starts out with a weight assignment
{wflo)}ae 4 After the first pair (X, y;) is processed, the weights are updated to

{wiP} _,: in general, after the ith pair (X;, y;) is processed, the weights are updated

to {wi} s
are {wf,”)}ae 4+ At this point, the network is ready to perform classification of new
inputs. On any new feature vector X, the corresponding classification value y is the
output of the network when fed with X.

The goal of learning is to minimise misclassification error. This implies that
learning is not perfect; i.e., from a finite number of samples, it is not possible to
predict all future outputs in an error-free manner. Suppose the training data (X|,
¥1)s- .., (Xi—1, yi—1) have already been processed and the arc weights are {w{ " }aeA.
The next training data s (X;, y;). The vector X; is provided as input to the network with
arc weights {wéi ’1)}aE 4» and the output y; of the network is computed. If y; = y;,

i=1,...,n So, at the end of the learning procedure, the final weights

then there is no error and the arc weights { w }ae are taken to be the arc weights

A
{wl ")}aE 4~ On the other hand, if y; # ¥;. then the network has made an error.

This necessitates updating the arc weights {wé" _1)}aE , to obtain the arc weights
{ wl(ll) }aEA :

The goal of the updation procedure is to minimise the training error. Doing this
in an absolute sense would require knowledge of the entire error surface. Since the
error surface can be complex, it is not feasible to minimise over the entire surface.
Instead, the updation procedure attempts to minimise the error using a procedure
called gradient descent. This results in local minima which may be different from
the global minima. The algorithm resulting from the application of gradient descent
to update the arc weights is called the back propagation algorithm.

Let us now consider whether a neural network provides a formal justification of
inductive inference. It indeed provides a formal description of a method for obtaining
a general rule from available information. One may argue that since the prediction
of a neural network is not guaranteed to be correct, this itself shows that it is not a
reliable induction. A response to this argument would be that being able to predict an
outcome with a guaranteed bound on error itself counts as knowledge; i.e., knowledge
may be probabilistic in nature.

We do, however, think that the neural network methodology does not provide
a justification for the method of induction. For the sake of concreteness, we focus
on the multi-layer feed forward network with weights computed using the back
propagation algorithm as outlined above. The back propagation algorithm is one
particular embodiedment of the gradient descent methodology. So, one may question
the justification for using gradient descent to minimise error. As mentioned above, this
does not guarantee that the error obtained is the global minimum. It only guarantees
that the error is locally minimum. So, even assuming knowledge to be probabilistic in
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nature, how does one become sure that the correct probabilistic knowledge has been
attained? The justification provided in [10] is that ‘the algorithm has been found to
work well in practice and is the most widely used training algorithm for multilayer
networks’. So, the argument being made here is that the algorithm has worked well
on previous occasions and hence is expected to work well in the future. This, of
course, is an inductive inference. So, if we consider multilayer neural network as a
method for induction, then to justify it we need to take recourse to induction, leading
to circularity in argument.

Support Vector Machines

We consider the support vector machine (SVM) method for the classification
problem. Our discussion is based on the description given in [10]. There are two
key ideas in SVM. The first is that of using a linear separator with the maximum
margin, and the second is that of mapping the feature space to a high-dimensional
space and using a linear separator in the high-dimensional space.

Suppose the training data (X, y;), ..., (X, y») is linearly separable. If the data
is not linearly separable, then the idea mentioned below is augmented using the
notion of slack variables. Linear separability of the training data means that there
is a hyperplane such that all training data having label O falls on one side of the
hyperplane while all training data having label 1 falls on the other side. There is no
unique hyperplane which separates the data. In fact, there will be inifinitely many
hyperplanes any of which can act as a separator for the data. The first key idea of
SVM is to choose a hyperplane having the maximum margin. Given a hyperplane
h, let d; be the minimum distance of 4 from all points labelled i, for i = 0, 1. Then,
the margin of % is dy + d;. The goal of SVM is to choose 4 such that dy + d; is
maximised. The maximisation problem is formulated in terms of the training data
and the solution to the maximisation problem constitutes the learning phase of the
method.

The second key idea is to map to a high-dimensional space and apply the maximum
margin separation in that space. This is done by applying a nonlinear function to the
feature vector. The actual mappings that are used are in terms of the so-called kernel
functions. The optimisation problem in the high-dimensional space can be expressed
in terms of the kernel functions. There are several possibilities for choosing the kernel
function. Each choice gives rise to one particular SVM method.

From the point of view of induction, one would look for justifications of two issues.
First would be the rationale for obtaining a maximum margin linear separator. While
the idea is intuitively appealing, it is not clear that such a separator is necessary
for achieving minimum error. Like other inductive methods, justification for using a
maximum margin separator is based on the idea being useful in previous cases and
from that inferring that it is likely to be useful for future applications. This is again an
inductive inference in itself. The other issue would be the choice of kernel function.
Since there is no clear cut choice of a particular kernel, any justification for choosing
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a kernel would be based on appeal to other successful applications sharing similar
characteristics and inferring that it is likely to be useful for the application at hand.
Once again, this is an inductive inference.

Concluding Remarks

In the preceding sections, we have tried to make explicit certain inductive inferences
which are implicit in various statistical and machine learning methods. The problem
of induction or, more specifically, the problem of justifying inductive inferences is
a question of major philosophical interest. As mentioned earlier, it may appear that
the formalism introduced by statistics and machine learning provides justification
for inductive inference.

This idea has been explicitly mentioned on Page 7 by Kulkarni and Harman [10]
where they comment: °... statistical learning theory provides partial deductive math-
ematical justifications for certain inductive methods, given certain assumptions’.
This is a carefully crafted sentence which suggests that specific inductive inferences
can be justified by statistical learning theory, but also adds the safeguard of ‘given
certain assumptions’. In the previous section, we have argued that neural networks
and support vector machines are inductive inference mechanisms which cannot be
justified without getting into a circular argument. If one were to question the ‘given
certain assumptions’ clause in the assertion by Kulkarni and Harman, then we would
be led to ask for justifications of such assumptions. It is very likely that such justifica-
tions will involve employing an inductive inference, so that we get back to a circular
reasoning. Since, Kulkarni and Harman do not specify assumptions for particular
learning methods, we are unable to pinpoint the circularity that would arise from
such reasoning.

So, it is our case that looking at some specific examples of the use of inductive
inference in statistics and machine learning, we are emboldened to state that almost
all of statistics and machine learning essentially consist of inductive inference. A
discerning reader may immediately note that in making such an assertion, we have
ourselves made an inductive inference. So, whether our inference is justified is a
specific case of the problem of induction. Consequently, this leaves open the possi-
bility that there is indeed some statistical and/or machine learning method which
justifies induction. At present, all we can say is that we are unaware of any such
method.

We have repeatedly mentioned that trying to justify induction leads to a circular
argument. In other words, if one tries to justify a particular inductive inference, then
one is led to assuming that another inductive inference is valid, leading to a circularity
of reasoning. Let us look a little more closely at this. Suppose, we are looking for
a justification of a particular inductive inference, say /;. In the process, suppose we
are led to assuming the validity of a certain other inductive inference, say I,. So, if
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I, is valid, then so is I;. In other words, we have reduced the problem of justifying
I, to that of justifying I,. If we denote the problem of ‘justifying I;’ by P; and that
of ‘justifying /,’ by P,, then we have been able to reduce problem P; to problem P,.

The notion of reducing one problem to another is present in mathematics and many
areas of computer science. Since computer science deals with problems of varying
complexity, it is of interest to identify classes of problems of similar complexity
and study separation between such complexity classes. The fundamental technique
in such study is that of reduction. In fact, for each class, one tries to identify one
problem (or a set of problems) which capture the complexity of the class in the sense
that being able to solve this problem will lead to a solution to all problems in the
class. Such a problem is called complete for the class.

With this background in mind, it may be of interest to form classes of inductive
inferences, where all inductive inferences in a particular class have similar charac-
teristics. The problem of justifying an inductive inference can then be reduced to
one inference (or a set of inferences) in the class. The ultimate aim of such an exer-
cise would be to try and identify one or more inductive inferences such that if it is
possible to find justifications for such inductive inferences, then the entire problem
of justifying inductive inference would be solved. This would not solve the problem
of inductive per se, but it would focus attention on a few kinds of inferences which
are of some fundamental nature. Hopefully, this would lead to a better understanding
of the problem of induction.

References

1. Bandyopadhyay, P. S., & Forster, M. R. (eds.). (2011). Philosophy of statistics. Elsevier.
2. Chakrabarti, K. K. (2010). Classical Indian philosophy of induction: The Nyaya viewpoint.
Lexington Books.
3. Chatterjee, K. S. (2012). Statistical thought: A perspective and history. Oxford University
Press.
4. Douven, . (2017). Abduction. Stanford Encyclopedia of Philosophy (Summer 2017 edition),
Edward
5. Fisher, R. (1922). On the mathematical foundations of theoretical statistics. Philosophical
Transactions of the Royal Society, A, CCXXII, 309-368.
6. Fisher, R. (1955). Statistical methods and scientific induction. Journal of the Royal Statistical
Society, Series B (Methodological), 17(1), 69-78.
7. Harman, G., & Kulkarni, S. (2007). Reliable reasoning: Induction and statistical learning
theory. MIT Press.
8. Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning: Data mining,
inference, and prediction, 2nd Edn. Springer.
9. Henderson, L. The problem of induction. The Stanford Encyclopedia of Philosophy (Winter
2019 Edition), Edward N. Zalta (ed.), archives/win2019/entries/induction-problem/.
10. Kulkarni, S., & Harman, G. (2011). An elementary introduction to statistical learning theory,
Wiley.
11. Rao, C. R. (1997). Statistics and truth: Putting chance to work, 2nd Edn. World Scientific.
12. Sarkar, P. (2018). Carvakism Redivivus. Newsletter of the American Philosophical Asso-
ciation on Asian and Asian-American Philosophers and Philosophies, pages 26-31,



Aspects of Inductive Inference in Statistics and Machine Learning 91

Fall, 2018. https://cdn.ymaws.com/www.apaonline.org/resource/collection/2EAF6689-4B0D-
4CCB-9DC6-FB926D8FF530/AsianV 18n1.pdf.

13. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory
to algorithms. Cambridge University Press.


https://cdn.ymaws.com/www.apaonline.org/resource/collection/2EAF6689-4B0D-4CCB-9DC6-FB926D8FF530/AsianV18n1.pdf

	 Aspects of Inductive Inference in Statistics and Machine Learning
	Introduction
	Inductive Inference
	The Problem of Induction
	The Principle of Simplicity
	Inference to the Best Explanation
	Pragmatism
	Features of Inductive Inference

	Statistical Methods and Inductive Inference
	Machine Learning and Inductive Inference
	Neural Networks
	Support Vector Machines

	Concluding Remarks
	References




