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Abstract Nowadays, many research works that associate real-time data widely use
an unsupervised artificial intelligence (AI) technique, namely reinforcement learning
(RL). Its fast adaptiveness to the dynamicity drags the attention of researchers who
works in real-time traffic signal control systems. The scope of RL in most of the
research problems remains remarkable with its peculiar characteristics. This paper
reviews the basic concepts of RL, along with RL algorithms and models with an
emphasis on traffic signal control (TSC). TSC is one among the trending applications
of RL. Traffic congestion control with less human intervention is a challenging task
of the intelligent transportation system (ITS). It not only helps traffic managers to
get a grip over the traffic operation situation and analyze congestion, but also assists
travelers to avoid congestion.Considering its significance,we have chosenTSCas the
basis to explain the RL algorithms and models presented in this paper. In addition to
such a comprehensive review, we have also provided a list of open challenges which
when addressed can take the research in this area to considerable heights.

Keywords Traffic signal control · Reinforcement learning · Intelligent
transportation system · Artificial intelligence · Supervised learning

1 Introduction

Traffic congestion has become an annoying and a complicated issue in most of the
urban areas. A smart and efficient traffic controlling mechanism is the solution to this
problem. Moreover, such a system can provide abundant advantages such as smooth
traffic flow, and reducing unwanted waiting time in traffic junctions. Better managing
of traffic at bottleneck junctions is essential as the traffic demands rise, failure in
which is sure to cause congestions. Congestion canmostly occur in a junction if most
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of the vehicles are waiting for the signal to turn green. Unfortunately, the current
traffic systems fail to consider real-time parameters that affect traffic congestion.

Thus, many research works are ongoing in traffic regulatory systems to avoid the
challenge of traffic congestion. The automation of traffic regulatory systems is related
to many fields such as image processing (IP), machine learning (ML), and Internet
of things (IoT). Previously, traffic signal control (TSC) models did not significantly
address the inconveniences caused by over-saturation, delays due to unexpected
events, and climate change. Data collected from traffic networks at different times
were used to control green signals based on the Webster formula [1]. However, they
were not adequate to control the fast-moving traffic. Scientific and technical studies
that are consistent with the fact that queue size plays a vital role in traffic control [2–4]
have also failed to address green-signal vegetate, cross-blocking, and occlusion.

Nowadays, the world is witnessing a few exciting research pieces that strive to
automate an optimized traffic signal that overcomes the shortcoming of existing
ones by considering all the real-time facts learned from the system’s surroundings,
including the driver behavior [5]. The research in traffic automation is fastened right
from the introduction of Reinforcement Learning (RL). However, utilizing RL, the
traffic regulatory system can be modified in an effective way such as the green
light duration is shortened or lengthened, or even skipped according to the dynamic
traffic conditions [6]. RL is highly adaptable to the dynamicity of traffic conditions
irrespective of the time. This peculiar property increases the possibility of producing
such a system in real.

Figure1 shows the typical framework of an RL scenario. Here, an agent takes
action (say A) in an environment. This action is interpreted into a reward (say R)
and a representation of the state (say S). The result is fed back into the agent. The
main problem arises in deciding an algorithm that suits the current situation. One
must have a clear idea of the algorithms to select an appropriate one for the case
under study. Also, when RL algorithms utilize the advantages of other techniques,
the results obtained are mindblowing.

This paper focuses on different RL algorithms. The discussion introduces some of
thewell-known algorithms and familiarizes the environmentswhere these algorithms
can be used. The paper also addresses the advantages and disadvantages of algorithms
under consideration.

The study is organized as follows. Section2 focuses on the preliminary knowledge
of the RL algorithms. Section3 provides a foundation to lay a better understanding
of the existing systems, which will act as the basis for this paper. A detailed anal-
ysis of RL models (RLMs) is presented in Sect. 4. Section5 gives an overview of
datasets, simulation platforms and performance metrics used in RL-based vehicular
traffic control models (RL-VTCMs). The open challenges and recommendations of
the system and the conclusion are given in Sects. 6 and 7, respectively.
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Fig. 1 Framework of the RL
scenario

2 Reinforcement Learning

Reinforcement learning (RL) refers to a kind of ML method which analyzes how
the software agents are ought to take actions in their environments to maximize the
cumulative reward. Nowadays, it is used in various software and machines to find
the most suitable path or state it should take while considering the present scenario.
This section provides the preliminaries regarding RL.

The environmentmeans the object onwhich the agent is acting. The agent is theRL
algorithm. Initially, without any prior knowledge of how to behave, the agent starts
interacting with its environment. The input is sent to the agent by the environment.
The input is a state. Then, the agent takes action based on the knowledge it gained
as a response to the received state. Via an interpreter, the environment sends a pair
of next state and reward back to the agent. The reward, which is either positive or
negative, solemnly depends on the agent’s action. The negative reward is usually
referred to as punishment to the agent. Also, to evaluate its last action, the agent
updates its knowledge using the reward obtained. The agent iteratively learns and
reaches the optimal condition.

Even now, few are confused with Supervised Learning (SL) and RL. Table1 gives
a comparison between RL and SL to bring in more clarity.

The sequential nature of RL can be explained as follows. The output depends on
the state of current input, which depends on the previous output. i.e., the input at a
particular time always considers the output of the previous cycle. Thus, a chain is
formed. To predict future output, the SL algorithms apply the knowledge gained to
the new data as labeled examples.
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Table 1 Reinforced learning versus supervised learning

Reinforced learning Supervised learning

Makes decisions sequentially Decision entirely depends on the initial input

Trial and error search method and delayed
reward

Starts functioning by analyzing a known
training dataset

The learning algorithm interacts with its
environment

The learning algorithm produces an inferred
function

Labeling of the sequence of dependent
decisions

Labeling of each decision since they are
independent

Example: Games Example: Object recognition

The continuous interaction with the environment benefits software agents and the
machines to automatically determine the specific context’s quintessential behavior
to maximize its performance. After sufficient training, the ideal output is attained for
any new input if the system is provided with a suitable dataset.

RL requires a reward feedback method known as the reinforcement signal. The
agent learns using this reinforcement signal. The action corresponding to each reward
is analyzed to find the best. The learning algorithm compares its obtained output
with the correct, intended output and thereby calculate the error. Accordingly, the
necessary modifications are made in the model.

2.1 Classification of Reinforcement Learning Algorithms

The RL algorithms can be classified based on different factors such as the reward,
model, action space, policy. These classifications are explained below:

Based on Reward The reward-based classification mainly depends on the nature of
the reward. In practical cases, RL is categorized into positive RL and negative RL. An
RLalgorithm is said to be positive reinforcementwhen an event increases the strength
of the behavior; i.e., an event occurs because of a particular behavior of the agent.
A reward is assigned to the agent. If that reward helps to maximize performance,
then it is positive reinforcement. Alternatively, in other words, in positive RL, the
reward said to be a positive effect on the behavior. In negative RL, the system is
trained to stop or avoid unfavorable conditions, which reduces strength. Such an
action strengthens behavior. It resists the minimum standard of performance.

Based on Model Model-free and model-based are the two classifications of RL
algorithms based on the model. The transition probability distribution (TPD) is also
known as the transition model. The model of the environment contains both TPD and
Reward Function (RF). In the model-free algorithm, the TPD and the RF associated
with the environment are not utilized.

Let the current state be s0 and action be a. Performing a, the model reaches s1
from s0. The model analyzes and learns the transition probability function T . In
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this case, T (s1|(s0, a)). By successfully analyzing, the agent determines the chance
to enter into a particular state from the current state by taking a specific action. In
model-free algorithms, the peculiar trial-and-error method of RL algorithms is used.
In each trial, the model gains some knowledge. Correct action helps the model to
optimize the output. The wrong action helps the model to update itself to stay away
from entering into unfavorable states. Because the model earns some knowledge
from all its trials, there is no need to store the transitions.

The absence of state space and action space makes the model-free RL algorithms
more demanding than model-based. The cases where the transitions have to be saved
uses model-based RL algorithms. As the state-space and action-space grow, the
effective utilizationof storage spacebecame impractical.Model-basedRLalgorithms
are preferred in scenarios where the system could decide the next move based on
a trained model, without interacting with the current environment. Conversely, if
the system decision needs a continuous interaction with the environment, such as a
real-time traffic regulation system, model-free RL algorithms will perform well.

Based on Action Space Based on the action space, RL agents can have two cate-
gories of action spaces, namely discrete and continuous action space. If the agent
decides the next action from a finite action set, it is called discrete action space
algorithms. Instead, in the continuous action space, a single real-value vector is used
to represent the entire action space. The difference in actions cannot be expressed
because of the single vector representation. In discrete action space, the fine-tuning
of action selection is done. Also, discrete action space is more suited for value-based
approaches. Further, a discrete action space approach is engaged in caseswhere small
action space is required. The continuous action space is required when the size of
action space grows to infinity.

BasedonPolicy In the policy-basedRLalgorithms, themain objective is tomaximize
the reward. The policy defines the behavior of an agent at a particular time. In other
words, it is a mapping from learned states to actions to be taken when the agent
reaches those states. These algorithms try to determine the action to be taken at a
state to attain the maximum reward in the forthcoming steps.

The algorithm fine-tunes a vector of parameters to attain the objective. For exam-
ple, to select the best action to be taken under the policy π , a vector of parameters
say θ is adjusted. This example is mathematically represented as follows:

π(a|s, θ) = Pr {At = a|St = s, θt = θ} (1)

Right-hand side (RHS) of Eq.1 means that, at time interval t, the best action to
be taken is a from state s by tuning the parameter θ . Left-hand side (LHS) implies
that the agent learns this knowledge. The entire learning or training phase follows
the same policy.

The two types of policy-based RL algorithms are on-policy and off-policy algo-
rithms. The agent learns the Q-function so that the probability of goodness of each
action is determined. Among the results, the best one selected stochastically. Such
a learning approach is known as on-policy RL algorithms. On the other hand, a
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Table 2 Reinforced learning algorithms: comparison

Algorithm Model Policy Action space State space

Q-learning Model-Free Off-policy Discrete Discrete

SARSA Model-Free On-policy Discrete Discrete

Q-learning-λ Model-Free Off-policy Discrete Discrete

SARSA-λ Model-Free On-policy Discrete Discrete

DQN Model-Free Off-policy Discrete Continuous

DDPG Model-Free Off-policy Continuous Continuous

Actor-critic Model-Free On-policy Continuous Continuous

A3C Model-Free On-policy Continuous Continuous

NAF Model-Free Off-policy Continuous Continuous

TRPO Model-Free On-policy Continuous Continuous

PPO Model-Free On-policy Continuous Continuous

TD3 Model-Free Off-policy Continuous Continuous

SAC Model-Free Off-policy Continuous Continuous

greedy decision is taken to take action with the best Q-value. The Q-value is learned
by using other different algorithms. Such algorithms are called off-policy RL algo-
rithms. Based on their nature, these kinds of reinforcement algorithms are sometimes
referred to as stochastic and deterministic reinforcement algorithms, respectively.

Policy-based algorithms can exhibit better convergence. These algorithms are suit-
able even in higher-dimensional action spaces. The more attractive characteristics of
these algorithms are their stochastic nature. Though the policy-based algorithms have
many advantages, they still possess some disadvantages. Rather than converging into
the global optimum, these algorithms converge to the local optimum. In mathematics
and computer science, global optimum gives the optimal solution among every pos-
sibility. Local optimum is not preferred because it is the best solution to a problem
only within a small neighborhood of possible solutions.

Also, the policy-based algorithms have higher variance. But a small variance
characterizes an efficient estimation. The important reinforcement algorithms with
the properties mentioned above have been compared. The main traits of them are
given in Table2.

3 Related Work

Researchers have proposed several solutions to solve conventional TSC problems.
This section discusses the important among such solutions put forward by the
researchers.

An RLM that uses the Q-learning algorithm with action-value approximation has
been used to build an onlinemodel-free traffic signal controller [7]. Thiswork focuses
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on both average delay and queue length, rather than considering only the average
delay. Also, it utilized the advantage of ANN to train the model according to the
temporal difference. However, [7] failed to consider unexpected dynamic scenarios
in real time.

The model-free RL algorithm can contribute highly to the traffic signal control
problem by combining the prior traffic knowledge with a deep RL approach, which
is shown in [8]. Here, Q-learning is used to train another approach namedMixed Q-
network (MQN). Amodel can learn traffic patterns and then find out themost suitable
agent. The biggest failure of such a system is finding a suitable traffic pattern detector
according to the dynamic traffic structures.

Most of the earlier studies have succeeded in developing traffic signal controllers
(with restricted action selection) with the help of peculiar properties of basic RL
algorithms. Two RL adaptive traffic signal controllers were designed to analyze their
learned policies and compare them to a Webster’s controller [9]. The controllers
were implemented by using asynchronous Q-learning and advanced adaptive actor-
critic algorithms. The neural network function approximation has also been added
to the design. Interval became constant due to the fixed green signal duration for
the scenario under observation. If the action selection is made dynamic, the agent
could control the environment better. Also, in the testing scenario, each intersection
was controlled by an isolated RL agent. Hence, the model cannot be considered as a
multiagent RL system.

Q-learning techniques maximize the number of vehicles passing a junction and
adjust the roads’ signals by observing the variation of queue lengths and throughput
as the key parameters [10]. However, this system fails to evaluate the accuracy of
the model in multiple intersection roads. Also, the data transfer between the traffic
island have not been considered in this study.

The time delay, the number of idle vehicles, and the combined saturation were
estimated from the experience to learn and determine the optimal actions preserving
the traffic signal timing efficiently [11]. The work modularized the actual continuous
traffic states for simplification purposes.

The spectacular properties of Deep Q-Network (DQN) have a lot to help with
TSC models [12]. Further, DQN is used in learning models in modern ride-sharing
platforms [13]. The model-free DQN learns the optimal vehicle dispatch policies
from its interaction with the environment. However, some crucial detailing is missing
in this study. Scalability, fault tolerance, reliability, and availability of shared data
also have to be considered.

European countries are well versed with the advantage of group-based signal con-
trol that provides flexible phase structures. Most of the existing systems used simple
timing logic in implementation. Jin and Ma [14] try to formulate the existing system
as an adaptive multi-agent system by incorporating Q-learning and SARSA. Never-
theless, the work lacks the handling of real-time scenarios and the issues associated.

R-Markovaverage reward technique (RMART) is suited for an environment among
signal controllers in a connected vehicle environment [15]. The research took eigh-
teen signalized intersections to implement the idea in a hypothetical network by
assuming the learning parameter and discount factor to be arbitrary. Aragon-Gómez
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and Clempner [16] address a multiagent continuous-time schedule problem and pro-
poses a learning scheme for it. Thus introduced an RLM (based on the temporal
difference method) by observing traffic signal control problems as continuous-time
Markov games (CTMG). Transition rates and reward points are calculated accord-
ingly. However, some shortcomings in this work include the lack of incorporation of
a collaborative approach and the method’s robustness when exposed to a real-time
environment.

Vehicles are used not only for travel. They are also used for goods transportation.
Therefore, traffic control is one of the primary demands for manufacturing compa-
nies too. In the future, more emphasis will be given on automation. Therefore, the
product’s timely delivery to the consumer is also a factor that affects the product’s
quality and production cost. The deep reinforcement learning (DRL) model paves
a solution to this via dynamic routing strategy [17]. The traffic states and actions
can be predicted using DRL combined with a Q-learning step and a recurrent neural
network (RNN). Hence by reducing the delivery time and delay, the different com-
binations of states, actions, rewards are utilized for the modeling. Still, the model
failed to consider a few other dependent factors/causes of traffic congestion.

Lack of proper traffic control not only creates traffic congestion but also adversely
affects safety, time, efficiency, and energy. These problems are also heating up with
the advent of autonomous cars and electric cars. Therefore, ongoing research work
has begun using RL techniques to address these issues [18–20]. RL techniques can
also be used intelligently and appropriately to facilitate learning and problem-solving
in many other traffic-related areas [21, 22].

4 RL Models in Vehicular Traffic

This section presents some of the RLMs that are used in vehicular traffic for traffic
automation purposes. A review of RLMs and their strengths to address traffic control
challenges is given in Table3. Also, Table4 reports RLMs and the attributes for the
vehicular traffic regulation system.

4.1 Multiagent Reinforcement Learning

Most intelligent systems nowadays highly depend onmultiple agents competingwith
each other to improve the system’s overall behavior. Such a process that incorporates
RL algorithms is known as multiagent reinforcement learning (MARL) Algorithm.
The combinational availability of state-action pairs (SAPs) increases exponentially
with the number of agents. In other words, the number of agents is directly propor-
tional to the number of SAPs. In MARL, the agents exchange information. Based
on all the available and received data, the agents coordinate their actions to achieve
global Q-value optimization. The most attractive feature of MARL is its scalability
(i.e., adding new agents quickly) [12, 23–25].
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Table 3 Summary of RL models

RLM Strengths Challenges

MARL Highly scalable, inherently robust,
follows top-down approach

Exponential complexity, curse of
dimensionality, difficult to state the
learning goal

MBRL Heeds the longer-term effects of an action
under a state

Exponential decay in eligibility trace due
to trace decay parameter

MPRL Follows top-down approach, addresses
the curse of dimensionality

The algorithms converge to a point after a
finite number of iterations

RLFA Addresses the curse of dimensionality,
saves computation time and memory
space

May produce an inconvenient result,
adjustable weights oscillate within a
region

Table 4 Summary of RL models for vehicular traffic regulation systems

Representation Attributes MARL [2] MBRL [27] MPRL [3] RLFA [4]

Agent Traffic signal
control

Yes No Yes Yes

Traffic
movement

No Yes No No

State Queue size Yes No Yes Yes

Current traffic
phase

No Yes Yes No

Traffic phase
split

No Yes Yes No

Action Traffic phase
type

Yes Yes Yes Yes

Traffic phase
split

No Yes No No

Reward Variation of
vehicular delay

No Yes No No

Waiting time Yes No No Yes

Variation of
queue size

Yes No Yes Yes

Themain challenge for the agents in a shared dynamic environment lies in learning
the situation and making a better decision. The same is the case with traffic also. In
vehicular traffic scenario, the action of an agent at an intersection point can affect
and vary with the agent’s decision at the neighboring intersection point, which may
also affect the agent’s self-performance. In case of a wrong decision, there is a high
probability of having high congestion in the nearby intersections. Hence, each agent
should take and communicate optimal actions and coordinatewith each other.MARL
is a helpful model in such cases [2, 26]. MARL that tries to optimize the global Q-
value is used for the traffic regulation system [2]. The inappropriateness of the traffic
phase is tackled using a distributed model [26].
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4.2 Multistep Backup Reinforcement Learning

The optimal action decided by a typical RL algorithm highly depends on the present
state. Usually, an action affects a consecutive series of states. In multistep backup
reinforcement learning (MBRL), the average outcomes of the temporal differences
are calculated inside an episode (a series of time instants). Based on this data, the
agent updates the Q-values. MBRL focuses on the long-term payoff for an action
related to a state. The average effects of temporal difference are attained using most
fitting traces.

The MBRL model cut down the average hold-up time by considering the phase
sequence and phase split of traffic in an intersection with a single lane traffic network
[27]. Traffic phases with grouped individual traffic give the traffic phase split for
processing. An episode is a duration between activation and termination of the green
signals with the combination of traffic movements. Each time a SAP is visited, its
value is set to one. This value gets updated for all the visits, and the eligibility
trace adds more credit to recent SAPs. The temporal difference is being weighted
using the eligibility traces. The Q-value of an episode is updated using this temporal
difference. A trace decay parameter exponentially decays the eligibility trace of an
unvisited SAP.

4.3 Max-Plus Reinforcement Learning

Agents in a coordination graph are interconnected. A max-plus algorithm calculates
and exchanges the local and global payoffs among these agents. As part of the
optimal joint action, agents use the payoff values to determine their corresponding
action. A max-plus reinforcement learning (MPRL) follows a top-down approach.
This modularization helps them to confront the challenge of dimensionality. The
probability of better results in an oversaturated network is calculated by incorporating
MRPL in the reward structure of Q-learning agent in the design of a traffic signal
control [3].

The agent i sends locally optimized payoffs to its neighbor j via the edges connect-
ing them. The action taken by j determines the payoff. After a finite number of itera-
tions, the algorithm converges to a fixed point. It is possible to increase the throughput
of traffic signal and reduce the number of stops per vehicle to some extent [3].

4.4 Reinforcement Learning with Function Approximation

Commonly, in a shared dynamic space, the number of SAPs can be huge in number.
The SAPs increase exponentially when the number of agents increases, leading to a
diminishing scalability scope. Thus, RL faces the challenge of dimensionality. This
issue can be solved to some extend by introducing function approximation (FA) logic



Intelligent Transportation System: The Applicability … 567

in RL. Instead of many SAPs, FA stores and pays attention to an appreciably smaller
amount of features. Thus reduces memory/storage capacity, improve scalability, and
reduce learning time. In RL with FA (RLFA), Q-values are represented using tunable
weight vectors and feature vectors [1, 4, 28, 29].

Consider a real-world traffic network based on Bangalore, 2× 2 and 3× 3 grids,
and sixteen trivial streets traffic network using a centralized model. Here, the RLFA
approach addresses the challenge in traffic phase sequence in a two-way intersection
by optimizing the global system performance. RLFA helps to increase throughput
and reduce waiting time [4, 28].

5 Datasets, Simulation Platforms, and Performance
Metrics Analysis of RL-VTCMs

This section includes analyzing performance metrics used in traffic-related research
and simulation platforms used in such studies. Also, it investigates the datasets used
in RL-VTCMs. Table5 gives a summary of the performance metrics.

5.1 Benchmarked Datasets for RL-VTCMs

Someof the benchmarked datasets that focus on autonomous navigation areADE20K
[30], Berkeley Deep Drive (BDD) [31], Cityscapes [32], Camvid [33], Daimler [34],
IDD [35], KITTI [36], Leuven [37], andMapillary Vistas [38]. The different lighting
circumstances and the multiple cameras and sensors in the cities help the Cityscapes
provide a large amount of data. The Mapillary Vistas Dataset creates the imagery of
street scenes. Images fromdifferent angles of the road and its surroundings are present

Table 5 Summary of performance measures

Performance
measures

MARL [25] MBRL [27] MPRL [3] RLFA [4]

Lower average
waiting time

� �

Lower average
delay

� �

Lower number of
stops per vehicle

�

Smaller queue
size

�

Higher
throughput

� � �
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in this dataset, irrespective of the cameras that captured them. They have no video
data. The Berkeley Deep Drive Dataset concentrates on autonomous navigation. For
ADE20K, the general locale parsing issue is the main area of interest. Dashboard
cameras are used on the BDD100K to capture images. The glass in front of the
cameras adversely affects the image quality. It can get worse in rainy conditions.
IDD can be used to ensure security and reliability in unusual and extreme cases.

5.2 Simulation Platforms

Some discrete-event simulators are developed using programming languages such
as C/C++ and tools such as MATLAB. There exist macroscopic and microscopic
approaches for traffic simulators with a graphical user interface (GUI). Most traffic
simulators embrace the microscopic approach, including VISSIM, SUMO, TSIS,
and ITSUMO.

5.3 Performance Measures

Appropriate performance measures are required to assess the merits of any traffic
control system. These parameters are essential in RL based TSC; because an agent
needs to assess his own performance to learn from experience. Some of the perfor-
mancemeasures used in vehicular traffic are reduction of fuel consumption, reduction
of emissions, the number of stops in a journey, percentage of stopped vehicles, aver-
age delay, average trip waiting time (ATWT), vehicle density at different parts of
the network, queue length, and average vehicle speed. Table5 reports some of the
performance measures accomplished by the RLMs and algorithms.

6 Open Challenges and Recommendations

After discussing the major algorithms and models in RL, here we examine various
challenges that need to be addressed during their usage. This section throws light
into the important hurdles in using RLMs and algorithms in ITS. It also includes
suggestions for handling these challenges.

• Injecting RL in unfitting circumstances- RL is propitious and fastly advancing
technique in a variety of fields such asResourcesmanagement in computer clusters,
Traffic Light Control, Robotics, Games, and Chemistry. Too much reinforcement
leads to states overload, followed by the diminishment of results. The inappropriate
parameters and assemblage of payoff messages lead to poor system performance,
even during the initial learning phase.
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• Availability of data When enough data are available, SL methods are preferred.
This is due to the fact that when action space is large enough, the RL algorithm
becomes time-consuming.

• Real-time environment In a shared and dynamic environment like traffic regu-
lation, RL algorithms and models have to include the recent advances in ITS to
exhibit their full strength. A better traffic regulatory system comprises almost all
the dynamic parameters such as traffic density, road utilization, and vehicles.

• Self adaptiveness Aim of the current researches is to build an automated traffic
regulatory system that performs self-configuration of the dependent parameters
to adapt with the dynamicity of traffic. The interoperability is usually affected by
the communication overhead. Hence, the exchange of control messages needs a
limit by eliminating unwanted control messages, by which the learning rate of the
system also improves. The agent is expected to learn new and unexpected actions
and states in the operating environment.

• External impediments The weather conditions such as rain, flood, fog are the
factors that pull down the hope of a fully automated self-paced traffic regulatory
system. Not only this, but also the traffic flow(in and out) and the disturbance in
traffic flow make the problem worse. In upcoming traffic regulation proposals, all
such situations have to be taken care of.

RL enhances system performance in scenarios with fewer data, such as in traffic
regulatory systems. Hence, in developing countries with very few publicly available
traffic datasets, RL has a huge impact in developing better VTCMs. Integrating RL
with advanced technologies such as fuzzy logic, game theory, and AI; fastens the
ride towards an extremely self-paced traffic regulatory system. These technologies
help to include prior knowledge and obtain optimal actions. The analysis of prior
traffic data, gained knowledge, approximation, and conventional control systems
are required for a better traffic control model. Agents in the model use the traffic
observer’s information for increasing the learning rate in the (re)learning phase to
achieve enhanced system performance.

7 Conclusion

In this paper, we have reviewed the RLMs and algorithms with an emphasis on the
applicability in traffic regulation systems. The ability of RL algorithms to determine
actions that yield highest rewards can be regarded as the prime reason for their wide
acceptability. Consequently, a study on the RL algorithms can reveal the intrinsic
features which in turn can be utilized effectively for handling traffic regulation issues.
The paper provides such a detailed review of the RL algorithms, but it is not limited
to that.
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In addition to providing an in-depth analysis of various RL algorithms, the paper
also discusses the issues that need to be rectified for its hurdle-free application in
traffic regulation systems. These issues demand immediate attention of researchers,
especially considering the fact that we are fast progressing towards a world which is
’smart’ in all aspects.
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