
Fusion-Based Multimodal Brain Tumor
Detection Using Convolution Neural
Network

Soumyabroto Banerjee, Sneha Roy, and Arpita Das

Abstract Early detection andproper treatment of brain tumor are essential to prevent
permanent damage of brain even patient death. Present study proposes an automatic,
effective approach to detect brain lesions in early stage including fusion of multi-
modal images to enrich the information content. As the convolution neural network
(CNN) extracts the required features, fused images improve the quality of the feature
bank which in turn enhances the classification accuracy. Present work also develops
the modified architecture of CNN that contains only few parameters compared to
the standard CNN model (VGG-16) available in Google Colab. Hence, the compu-
tation time is low, and this architecture is trainable on a local PC with standard
RAM. Experimental results show the assessment of classification accuracy in terms
of well-known receiver operating characteristic method, and the outcomes produce
satisfactory results.
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1 Introduction

Brain tumor classification is one of the most important and difficult tasks in many
medical-image applications because it usually involves a huge amount of data. Arti-
facts due to patient’s motion, limited acquisition time, and soft tissue boundaries are
usually not well defined. There are large class of tumor types which have variety of
shapes and sizes. They may appear indifferent sizes and types with different image
intensities. Some of them may also affect the surrounding structures that change the
image intensities around the tumor. Before the treatment of chemotherapy, radio-
therapy, or brain surgeries, there is a need for medical practitioners to confirm the
boundaries and regions of the brain tumor and determine where exactly it is located
and the exact affected area. Brain tumor classification acts as a pre-requisite stage
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for doctors to identify the tumor before performing surgeries to identify the exact
location of the tumor. A computer-aided diagnosis (CAD) system is designed to aid
the radiologist in the diagnosis of such tumors.

However, a single imaging procedure alone cannot provide all the necessary infor-
mation for medical diagnosis (Goyal and Wahla 2015). For example, in magnetic
resonance imaging (MRI), T1weighted scans, MRT1 imaging technique produces
the detailed anatomical structurewhile, T2-weighted scans,MRT2prominently high-
lights the differences between the normal andpathological structure of tissues.Hence,
the anatomical features like shrinking of gray matter, enlargement of ventricles,
etc., are visualized from MRI (Bhattacharya et al. 2012; Chang et al. 2002). On
the other hand, positron emitted computed tomography (PET) and single photon
emission computed tomography (SPECT) provide functional information like blood
flow, food activity, and metabolism of affected organs. The goal of image fusion
is to integrate complementary information from each images merged together to
form a superior quality resultant image than any of the input images (Bhattacharya
et al. 2012; Mukherjee and Das 2020; Horn et al. 2009). Hence, we have designed a
simple CNN model which is trainable in general computer using the fused MRI and
SPECT images. Proposed CNN model can extract the significant features of MRI
and SPECT and classify the tumors more accurately than the single modality images.
The schematic of the proposed work is described in Fig. 1.

The rest of the article is arranged as follows. Proposedmethodology is described in
Sect. 2. Section 3 gives the experimental results, and a comparative study between the
proposed architecture and the standard VGG-16 architecture. Finally, a conclusion
is drawn in Sect. 4.

Fig. 1 Entire algorithmic overview
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2 Methodology

2.1 Image Collection

The images were collected from the given website (https://www.med.harvard.edu/
aanlib/home). Two types of images were mainly collected—magnetic resonance
imaging (MRI) and single photon emission computed tomography (SPECT)
images. The images were collected by changing the time axis and taking different
slices along the axial plane and time axis.

2.2 Data Preparation

The final dataset was prepared using the following two steps:

1. Image fusion using Shift Invariant Wavelet Transform (SWT): The images
were fused using SWT in order to extract multimodal features. It is a type of
Discrete Wavelet Transform which omits both down sampling in the forward
and up sampling in the inverse transforms (Sari-Sarraf and Brzakovic 1997).
Primary advantages of SWT are it (a) produces less artifacts, (b) can better
preserve the information of source images.

Process: Each channel of the two RGB images (MR-T2 and SPECT-TC) to be
fused were first decomposed into approximate matrix and details matrix using SWT-
based decomposition as shown in Fig. 2. The approximation matrices of both the
images (MR-T2 and SPECT-TC)were linearly blended for each channel (RGB). The
details matrices of each channel (RGB) were combined using principal component
analysis (PCA) approach (Mishra et al. 2017) to integrate the information of three
channels (RGB). Finally, inverse SWT was performed to produce the fused image
containing information of all modality source images (MR-T2 and SPECT-TC).
Figure 3 describes that PCA-based blending contains better clarity than the simple
average blending.

2. Image Augmentation: Then, the number of collected images was not enough
for efficient training of the CNN architecture. So, the number of images was
increased with the help of image augmentation. Image data augmentation is a
technique that can be used to artificially expand the size of a training dataset by
creating modified versions of images in the dataset. Apart from creating more
number of samples, it also helps in preventing over fitting. Some of the image
augmentation techniques used for enhancing our dataset are mentioned as:

(a) Flipping: An image flip means reversing the rows or columns of pixels in
the case of a vertical or horizontal flip, respectively.

(b) Cropping: Cropping can be used as a processing step for image data with
mixed height and width dimensions of each image.

https://www.med.harvard.edu/aanlib/home
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Fig. 2 Process flow of input images

Fig. 3 (left)Auto-generated sameweighted (0.5) blend; (right) PCAweighted blend using proposed
algorithm

(c) Rotation: Rotation augmentations are done by rotating the image right or
left on an axis between 1° and 359°. After the final dataset was prepared,
it was divided into training, testing, and validation dataset—(80%–
15%–5%, respectively).
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Fig. 4 Proposed architecture

2.3 Classifier Building

We build our CNN model which is trainable on a local PC having negligible GPU-
CUDA support. We have built the proposed model as shown in Fig. 4 by keeping the
reference VGG16 architecture as baseline model. The architecture of the proposed
model is as follows:

• We use three CNN blocks of two CNN layers each.
• Each CNN block is followed by a MaxPool layer.
• Each MaxPool layer has a Dropout of 0.2.
• The CNN is translated into linear features using a global average pooling 2D layer

to average out the intensities along channels.
• The CNN features are mapped into a dense network of two layers.
• We use a softmax to output the probabilities of two classes as follows:

1: Presence of Tumor
0: Absence of Tumor

2.4 Training and Testing of the Proposed Model

2.4.1 Model Summarization

Themodel is written and compiled entirely using Tensor flow 2.2.0 and is compatible
with versions >2.0+. Epochs trained over: 500.

Optimizer: The model uses Adam optimizer (Kingma and Ba 2014). It uses a
decay hyperparameter to optimize the learning rate, β1 = 0.9 and β2 = 0.99. It
computes the first and second order moments in order to estimate the decay rate of
the steps. We use the Adam to back-propagate the gradients as well and optimize our
loss. The main advantages of usingAdam optimizer over other stochastic optimizers
are listed as:

(a) Adaptive Gradient Algorithm (AdaGrad) maintains per-parameter learning
rate that improves performance on problemswith sparse gradients (e.g., natural
language and computer vision problems).
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(b) Root Mean Square Propagation (RMSProp) also maintains per-parameter
learning rates that are adapted based on the average of recent magnitudes of
the gradients for the weight (e.g., how quickly it is changing). This means
the algorithm does well on online and non-stationary problems (e.g., noisy).
It basically computes the learning rate not only based on the first moment—
mean, but also based on the second moment—gradient. It uses an exponential
moving average of gradients and also squared gradients over the loss plane to
reach a much more global minima.

(c) Loss Function: Categorical cross entropy (Ho and Wookey 2020) is used to
compute the log loss.

CE = −
n∑

i=1

Y i log(
�

Y i)

where n = 2,
�

Y is the predicted label, and Y is the actual ground truth label.

2.4.2 Training Reports

The accuracy and loss of training process are shown in Figs. 5 and 6.

Fig. 5 Accuracy plot of the training process
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Fig. 6 Loss plot of the training process

Table 1 Comparison between the proposed architecture and the standard VGG-16

S. No. Proposed architecture VGG-16 (baseline architecture)

1 No. of trainable parameters: 418,978 No. of trainable parameters:138,000,000

2 No of layers: 9 No. of layers: 16

3 Training time: 5–9 h on CPUa Training time: 1 day on CPUa

4 Requirement fit: Fits to our problem Requirement fit: Over fits to our problem

aCPU in consideration is an Intel Core i3-6th Generation processor

2.5 Comparison of the Proposed Architecture

A comparison has been described in Table 1 between the proposed architecture and
the standard VGG-16 architecture. Figure 7 also shows that the proposed model
consists of less number of parameters compared to VGG-16 architecture.

3 Results

3.1 Firing Patterns at the Different Layers of the Proposed
Architecture

The main idea of using our CNN model is that we try to increase the number of
channels in the later layers and to reduce the individual image dimensions as it
progress through the network with less computation burden. As we do not intend to
reduce the image dimensions in the progressing convolutional layers, we use padded
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Fig. 7 (top) Proposed architecture (with much lesser parameters than VGG-16 architecture);
(bottom) Standard VGG-16 architecture

CNN blocks followed MaxPool block where the entire image dimension is reduced
but expanded on the channels. We use Relu Function as shown in Eq. (1) which an
activation function is used to map continuous values in positive range (Asadi and
Jiang 2020).

Relu Function: f (x) = max(0, x) (1)

The firing pattern of each layer of the proposed architecture has been shown in
detail in Fig. 8. The heat maps of the firings are clearly represented with alternating
blue and yellow indicators.

Fig. 8 Firing pattern of the first convolution layer of the first CNN block
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The first layer of theCNN learns the basic visual level details. The overall structure
of the image remains the same. The later layers use a fully connected dense network
which is used to translate the 3D image channel structure into a linear structure. The
dense network is used to feed into a Softmax Layer (Asadi and Hui 2020) as shown
in Eq. (2) for probabilistic output of the classes: (Goyal and Wahla 2015).

Softmax Layer: f (x)i = exi
∑K

j=1 e
x j

(2)

The layers learn more and more complex features as we move deeper into the
layers but as the layer increases, problem of vanishing gradients start to set in. Here,
the initial layers may learn the various edge features and recognize those edges. All
the convolutional layers use a 3 × 3 filter with stride = 1 and padding = same.

The following layers preserve/detectmore sophisticated features and edges. These
layers can understand featureswithmore ‘inner’meaning. Figure 9 describes the heat
map firings of the second convolution layer of the second CNN block which learns
more sophisticated features than the absolute initial layers but less sophisticated
features than the third CNN Block (Hochreiter 1998). The dimensions of image are
reduced, but the number of images is increased significantly.

As shown in Fig. 10, we use dropout (Srivastava et al. 2014) layer of 20% dropout
after each CNN block to prevent over fitting of the images. These dropout layers
are only used in training and do not contribute to model inference. The purpose
of the dropout layer is to randomly drop 20% of the connections defined during a
forward/backward pass through the network. Not only the nodes, but also the edges
are dropped during the pass. Dropout is essential because of the inter-neuron co-
dependencywhich exists during the training. It curbs the importance of the individual

Fig. 9 Firing pattern of the second convolution layer of the second CNN block
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Fig. 10 Firing pattern of the dropout layer (0.2 dropout)

neurons and prevents over fitting. Dropout also forces the neurons to learn more
robust features. It has been observed that dropout requires almost the double number
of epochs to converge.

3.2 ROC Comparison

A comparative study of ROC of the proposed architecture using fused images, single
modalityMRI, SPECT images, andROCofVGG-16 architecture is shown in Fig. 11.
Table 2 also describes the values of the outcomes.

In the proposed architecture, as the fused images contain information of both
modalities, number of significant features extracted from them is of better quality

Fig. 11 ROC analysis of the
proposed architecture
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Table 2 Values of the
outcomes

ROC analysis TPR FPR

Proposed architecture with fused image 0.980 0.040

Proposed architecture with MRI 0.500 0.502

Proposed architecture with SPECT 0.720 0.096

VGG-16 architecture with fused image 0.570 0.580

compared to the single modality. Hence, the classification accuracy of the fused
images is superior to individual MR-T2 and SPECT-TC images.

4 Conclusion

As the proposed architecture of CNN has much lesser parameters (418,978) than the
VGG-16 architecture (16,946,242), this model performs better as compared to the
standard VGG-16. The main advantage of this model is that it is trainable on a local
PC with standard RAM (about 8 GB) without any supporting GPUs (such as Google
Colab) which are required in the VGG-16 architecture.

The areas of future work are:

(1) Improving the existing dataset of images structure into 3D model view of the
brain without sampling through the layers.

(2) Developing U-Net like structures that can help build segmentation network to
segment out critical locations.

(3) Fine tune the parameters and hyperparameters even further to reduce training
and inference time.

(4) Extend the network as a generic network for various biomedical applications—
liver, lung, prostate, etc.
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