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Green Chemistry on C–H Activation

Vahid Khakyzadeh and Sahra Sheikhaleslami

1 Introduction

1.1 Green Chemistry and C–H Bond Activation

The origin of the most majority of organic molecules and compounds is natural gas
and petroleum-based unrenewable feedstocks; therefore, one of the most challenging
issues in chemistry is how to make these feedstocks useful by breaking and forming
the new C–C bonds and modifying the C–H bonds into other functional groups
[1]. On the other hand, synthetic chemistry continuously encounters challenges to
produce selectively and efficiently organic molecules, whether the synthesis of small
or complex structures [2] and also many strategies of organic synthesis are being
developed in order to extend the chemical toolbox [3].

The traditional procedures, known as the functional group interconversion strate-
gies [4], have achieved this aim by initial C–H bond functionalizationswhich are then
followed by a modifiable sequence of steps to introduce desired functional groups
or C–C bonds building the desired skeletons [5].

Notwithstanding its merited place in organic chemistry that the introductory
chapters of organic chemistry textbooks intensely concentrate on radical C–H bond
functionalizations (halogenations) which are followed by substitution and elimina-
tion reactions, it suffers from a perceptual disadvantage. For example, it leads to
profoundly futile processes by requiring several reaction steps from unfunctional-
ized feedstocks to functionalized products, during which undesired by-products are
unfortunately generated that leads to high E factors (kg waste/kg product) [6].
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Scheme 1 C–H bond
activation and
functionalization vs
traditional methods

R-H R-FG4

R-FG1 R-FG2

C-H activation

traditional methods

R-FG3

H

Ph

H H H
H HH

552.2 473.0 460.2 410.8 397.9 389.5 361.1BDE
(kJ/mol)

Scheme 2 Bond dissociation energies and pKa values of selected hydrocarbon C–H bonds

In contrast, a significantly greener and sustainable approach is represented by
the direct use of otherwise inert C–H bonds as latent functional groups. C–H bond
activations contribute a new path to introducing functional groups by preventing
lengthy synthetic operations and reducing the by-products and thereby blocking
waste production and facilitating direct access to desired target structures even at the
late stages of synthesis (Scheme 1) [7].

Synthetic C–H activation catalysts struggle to achieve similar selectivities as
remarkable chemoselectivity of enzymatic C–H oxidations. Some critical challenges
in catalyst development are considering the significant energies that are needed to
directly cleavage of C–H bond [8]. The bond dissociation energies (BDEs) and acidi-
ties of common C–H bonds in hydrocarbons are shown in Scheme 2. The quantities
of BDEs are very close to each other and are between 361.1 and 552.2 kJ/mol, which
are one of the most difficult bonds to cleave among other bonds. Furthermore, an
isolated C–H bond in a molecule has a very low reactivity owing to the large kinetic
barrier associated with the C–H bond cleavage and a polar nature of this bond which
do not possess suitable lone pairs to coordinate with a catalyst (Scheme 2) [9].

Considering all these critical challenges, the importance of site- and product-
selective transformation of unactivated C–H bonds into other functional groups and
especially catalytic ones is largely accepted bymodern chemists, and it is under active
study for several years and still regarded as the Holy Grail in chemistry for its step
efficiency, atom economy, and potential as a method for late-stage functionalization
of complex organic molecules [10].

2 Proposed Mechanisms for C–H Bond Activation

The promotion of technical facilities and laboratory proficiency has increased the
scientific abilities to explore the mechanistic foresight of a chemical reaction. During
the last decade, due to the prospering interest on catalytic C–H functionalization and
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owing to the deep understanding of the elementary steps in homogeneous catalysis
systems, many researchers have developed significant improvements in the activity
and performances in catalytic systems for C–H activation [11]. There are some well-
established mechanisms for C–H bond activation that mainly fall under these cate-
gories: (1) oxidative addition (OA); (2) electrophilic aromatic substitution (SE Ar);
(3) σ-bond metathesis (σBM); (4) single-electron transfer (SET); concerted metala-
tion deprotonation (CMD); and (5) base-assisted intramolecular electrophilic-type
substitution (BIES). Herein, we give a brief explanation for each one of them [12]:

Oxidative addition (OA): This is the most common mechanism by which a R-H
bond is cleaved and a M-R bond and a M-H bond are formed. It frequently occurs
by having an electron-rich and low-oxidation late transition metal centers (Re, Fe,
Ru, Os, Ir, Pt) interacting strongly with the C–H bond. The σ-C–H bond coordinates
to the metal and a dπ-back donates to the σ*-C–H orbital, lowering its bond order
and resulting in the bond cleavage and oxidizing the reaction center in two units.
Oxidative addition reaction leads to the creation of a reactive organometallic species
containing a hydride and alkyl/aryl ligands at the oxidized metal center (Scheme 3).

Electrophilic aromatic substitution (SEAr): This classification of electrophilic
substitution has emerged from the mechanistic pathway by which the hydrogen atom
of the substrate is replaced by a metal and thus it acts as a Lewis acid. This reaction
is based on the electronic interaction between the π-electronic cloud of the substrate
and the electrophilic metal center which acts as Lewis acid forming a new C(aryl)–M
bond. In contrast with the oxidative addition, metal oxidation state stays without any
changes (Scheme 4).

The vicinal C(aryl)–H bond could be easily lost as a proton by re-aromatization
or by the action of a base, as a result of the acidity enhancement on this bond. Under
circumstances in which the base is in the coordination area of the metal center, the
mechanism is acknowledged as a base-assisted intramolecular electrophilic-type
substitution (BIES) which has more recently been put forward to account for the
often-preferred reactivity of electron-rich arenes (Scheme 5).
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Scheme 5 Base-assisted intramolecular electrophilic substitution (BIES)

σ-Bond metathesis (σBM): This mechanism is favored for electron-poor metal
centers with a high oxidation state. Oxidative addition is not possible with tran-
sition metals having d0 electronic configuration (groups 3 and 4, lanthanides and
actinides) and thus preferred mechanism is σ-bond metathesis. Cleavage and forma-
tion of bonds go through a four-membered square transition state without changing
the oxidation state at the metal center (Scheme 6). This is usually common for late
or post-transition metals (Pd2+, Pt2+ or Pt4+, Hg2+) and the new C-M and C–H bonds
are made without containing any metal hydride species.

Single-electron transfer (SET): It contains two steps, that each step involves one
electron. Homolytic cleavage of the C–H bond conduce formation of the metal
hydride species and a carbon-centered radical (Scheme 7) and construction of
the alkyl/aryl-hydride metal oxidized species occurs after recombination reaction
between the radical and the metal center.

Concerted metalation deprotonation (CMD): Close contiguity of this bond to the
metal center that is usually promoted by a directing donor group is the key point
in this mechanism. At the same time, the metal center possesses a coordinated base
that promotes the deprotonation of the C–H bond in a concerted fashion while the
formation of the C–M bond is occurring (Scheme 8).
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3 Classification of Green C–H Activations

There are some circumstances that affect green principles of C–H activation such as
solvent, oxidant, metal catalysts, and so on. For many years, chemists are working
on these circumstances to make it greener and safer methodology. From this point
of view, we can classify green C–H activation from the traditional green methods to
the developed new methods:

• Green protocols for C–H bond activation:

a. Transition metal-catalyzed C–H activation
b. Transition metal-free C–H activation
c. Green solvent/solvent-free C–H activation
d. Green oxidant/oxidant-free C–H activation
e. Direct C–H functionalization

• Electrochemical C–H bond activation
• C–H bond activation under flow condition
• Electrochemical C–H bond activation under flow condition
• Photocatalytic C–H bond activation
• C–H bond activation using ball milling and transition metal catalysts

4 Green Protocols for C–H Bond Activation

Past decades have witnessed the emergence of C–H functionalizations as a particu-
larly powerful tool for molecular syntheses, [13] with enabling applications to mate-
rial sciences, late-stage diversification, natural product synthesis, and pharmaceu-
tical industries, among others [14]. However, most C–H functionalization protocols
suffer from stoichiometric amounts of costly and/or toxic transition metal oxidants
that make undesired metal-containing by-products [15]. Therefore, applying green
methods in C–H activation is highly desirable. In the next parts, we will introduce
some green protocols and methods for the aforesaid purpose.

4.1 Applicable Metals in C–H Activation

Metal-catalyzed C–H functionalization chemistry provides the step economical and
original construction of C–C, and C-X (X=N, O, etc.) bonds, commencing from
hydrocarbon fragments without the necessity of prior non-catalytic oxidation steps
and pre-functionalization of substrates [16]. Thus far, the vast majority of C–H func-
tionalization advances continue to heavily rely on precious 4d or 5d transition metal
catalysts such as Pd, Ir, Rh, and Ru [17]. Unfortunately, these 4d and 5d transition
metals are not only cost-intensive but are generally comparatively toxic. Given the
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cost-effective and sustainable nature of earth-abundant first row transition metal and
also less toxicity of these metals, the evolution of 3d metal catalysts such as Sc, V,
Mn, Fe, Ti, Cr, Co, Ni, Cu, Zn, for C–H activation has attained remarkable recent
momentum as green alternatives [18].

The C–H activation by 3d-based metals continues to largely undergo single-
electron transfer manifolds, setting the platform for more reactivities and selectivi-
ties [19]. More widespread applications of these 3d metal catalysts are moderately
disturbed by their substantial oxophilicity that leads to reducing chemo-selectivities
and functional group tolerance. Manganese-, cobalt-, and iron-catalyzed C– H acti-
vations emerged as potent systems for various C–H alkylations, alkenylations, and
arylations [20]. Besides, according to the d6-electron configuration of manganese
(I) and cobalt (III) complexes, these metals accomplish the C–H transformations,
in which the oxidation state of metal remains without changing during the entire
catalytic cycle [16]. In terms of versatility, Ni [21] and Cu [22] catalysis were
utilized in alkylation and arylation reactions under mild conditions. Furthermore,
the Ni and Cu catalysis regimes were not restricted to redox-neutral C–H transfor-
mations. Indeed, these manifolds proved particularly powerful for oxidative C–H
functionalizations.

The combinations of C–H activation and cross-coupling reactions give countless
opportunities to synthesize complex molecules via Mizoroki–Heck and Suzuki-type
cross-coupling C–H functionalization reactions [23].

There are many practical methods of metal-catalyzed C–H activation operated
in the synthesis of medicinally valuable molecules like lithospermic acid, pipera-
borenine B, losartan, valsartan, anacetrapib, and oxazolidinone antibacterial using
transition metals [24].

4.2 Transition Metal-Free C–H Activation

Most of the transitionmetal catalysts are normally very expensive, and the supporting
ligands are generally even more costly and sometimes there are obstacles in their
preparation. Also, as aforesaid, several transition metals are toxic. On the other
hand, various transition metal catalysts are normally sensitive to oxygen (O2) and
moisture.Moreover, in cases which high efficiency and selectivity of transformations
are challenging, it is essential to use special additives and co-catalysts. Consequently,
transition metal-free conditions becamemore attractive than classic transition metal-
catalyzed reactions [25]. The usage of hypervalent iodine reagents [26], diazonium
salts [27], or employing electrochemistry methods [28] are some of the interesting
examples of transition metal-free processes.

The mixture of electron-rich arenes and hypervalent iodine(III) reagents results
in radical cation as a selective and efficient SET oxidizing agent that provides a
series of direct C–H functionalization products under mild conditions [29]. In these
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reactions, the application of polar and low-nucleophilic protic solvent such as multi-
fluorosubstituted alcohol is crucial because it affects stabilizing the reactive cationic
intermediates and preventing other probable side-reactions (Scheme 9) [30].

Kita and co-workers made significant progress in hypervalent iodine(III)-
promoted metal-free C–H functionalization reactions on a variety of heteroaromatic
compounds such as thiophenes and pyrroles (Scheme 10) [31].

Direct fluorination to get the mono- and difluoromethylated arenes in the presence
of selectfluor and potassium persulfate was disclosed by Yi and co-workers [32]
(Scheme 11).

The ligand- and transition metal-free direct C–H functionalization of quinones
and naphthoquinones with diaryliodonium salts through the radical pathway which
led to the synthesis of aryl naphthoquinones as β-secretase inhibitors in moderate to
good yields was introduced by Wang et al. [33] (Scheme 12).
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Scheme 13 Transition
metal-free C3 arylation of
indoles with aryl halides
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In another example, a transition metal-free regio-selective coupling reaction of
indoles and aryl halides usingKOtBu and degassed solventwas reported (Scheme 13)
[34].

Recently, many chemists are working on expanding modern metal-free aerobic
C–H bond functionalization reactions which have utilized aldehydes, ethers, benzy-
lamines, and glycine derivatives [35].

4.3 Green Solvent/solvent-Free C–H Activation

It has been determined that most of the waste produced in the chemical synthesis
originates from the usage of solvents which are frequently used in large quantities in
comparisonwith the other reactants. Accordingly, it is not unexpected that significant
attention has been dedicated to the definition of “green solvents” [36]. In general, bio-
based solvents coming from the biomass feedstock can be recognized as “greener”
alternatives [37]. But none of the alternative solvents are as green as water. However,
there is still a gap between the use of water as a reaction medium and practical green
chemistry. Another alternative procedure is conducting reactions under solvent-free
conditions [38].

During the past five years, employing greener solvents such as water, dialkyl
carbonates, and PEGs in the ruthenium and palladium-catalyzed direct arylation of
aromatic heterocycles have increased significantly [39]. Using dialkyl carbonates
resulted in the facilitated work-up procedure and decreased the production of wastes
and PEGs as a solvent provided the recycling of the catalyst and using water led to
higher rates and cleaner reactions in several cases particularly with ruthenium. So
far, there are no examples of these reactions that have been described in other alter-
native media such as ionic liquids or supercritical CO2. Also, carbonates have been
determined as a suitable solvent for palladium-catalyzed direct arylation reactions
and the reaction was found to be more selective than in DMF, dioxane, and other
previously used toxic solvents since using this solvent resulted in fewer traces of side
products [40].

Wang and Wu developed a green step-economic and sustainable approach to
construct a C–C bond without any organic solvents or additives. They reported
the example of water-mediated C–H activation of arenes using sulfoxonium ylides
(Scheme 14) [41].

In the same year, Yao and co-workers developed amethod for C–Cbond formation
via a terminal alkyne C–H bond activation and synthesizing quinoline derivatives
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Scheme 14 Water-mediated
C–H activation DG
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Scheme 16 Catellani reaction catalyzed by palladium/Al2O3 in GVL

using stable and inexpensive Fe(OTf)3 as a catalyst under solvent-free condition
(Scheme 15) [42].

Recently, major advances have been represented in using biomass-derived
solvents such as; glycerol, 2-methyl tetrahydrofuran, ethyl lactate, and γ-
valerolactone (GVL), in transition metal-catalyzed couplings, including Suzuki–
Miyaura, Mizoroki–Heck, Sonogashira–Hagihara reactions, and C–H functional-
izations [37]. Ackermann, Vaccaro, and co-workers reported the first example of
a palladium-catalyzed Catellani reaction using GVL as a solvent instead of the
frequently employed DMF, DMA, or acetonitrile (Scheme 16) [43].

4.4 Green Oxidant/Oxidant-Free C–H Activation

One of the recognized and extremely attractive conversions from environmental
and economical viewpoints is the construction of C–C bonds from two C–H bonds
under oxidative conditions that reduced waste and reaction steps. Despite excellent
improvements being made, key difficulties remain [44]. Therefore, the development
of green and user-friendly C–H bond activation procedures in the lack of chemical
oxidants would be instantly desirable. Oxygen gas is well known for an ideal and
readily available green oxidant and its solo by-product is desired for cross-coupling
C–H activation but suffers from weak reactivity.



190 V. Khakyzadeh and S. Sheikhaleslami

The coupling reaction of 2,6-lutidine and internal alkynes which begun with
C(sp3)-H bond activation via σ-bond metathesis and then mediated by a non-
metallocene cationic alkylhafnium complex to give five-membered carbocyclic
compounds was firstly developed by Mashima and co-workers (Scheme 17) [45].

Four years later Hu and co-workers reported a palladium-catalyzed oxidative
Suzuki coupling reaction of 3-unsubstituted indolizines at the 3-position with aryl
boronic acids to produce 3-aryl-indolizine. The distinguished advantage of this
method was using O2 as a green oxidant (Scheme 18) [46].

Gong and Meggers have also introduced the first example of an asymmetric
photoredox dehydrogenative cross-coupling of two Csp3-H groups catalyzed by
a chiral rhodium complex and with molecular oxygen as the oxidant in 2015
(Scheme 19) [47].

The rhodium-catalyzed oxidative dehydrogenative cross-coupling of arylamines
with electron-rich arenes under mild aerobic conditions resulting in the synthesis of
non-symmetrical biaryl amines, in excellent yields and high selectivities, is another
example of using green oxidant (Scheme 20) [48].
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Scheme 20
Rhodium-catalyzed
synthesis of non-symmetrical
biaryl amines
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In 2018, Bhanage reported an effective protocol for the synthesis of valuable
p-hydroxybenzoates directly from phenols by palladium-catalyzed aerobic oxida-
tive carbonylation of phenolic C–H bond, proceeding through oxidative iodination.
Using O2, high selectivity, no co-catalyst, co-solvent, and external ligand are some
advantages of this method (Scheme 21) [49].

4.5 Direct C–H Functionalization

Owing to the complexity of organic substrates, several types of C–H bonds can
be found in their chemical skeletons. However, in terms of selectivity, controlling
reactivity on one single bond is very challenging. For this reason, the use of a donor
group (DG) as a directing group is a very broadly applied strategy to selectively
activate C–H bonds [50]. Direct C–H functionalization procedures are based on the
use of directing Lewis bases covalently linked to the substrate. Heteroatom-based
groups are the most used directing groups, although alkenes can also be effective.
This field has been much studied, especially for arene C–H activation [51]. For the
past fifty years, ortho-selectivity via cyclometalation is the most utilized way of C–H
activation; more recently devised special directing groups allow alsometa-selectivity
[52]. Prominently, directed C–H activation allows to activate unactivated C(sp3)-H
bonds, too [53].

5 Electrochemical C–H Bond Activation

Combining metal-catalyzed C–H activation with electrocatalysis, have resurfaced as
a viable platform for sustainable transformations due to its inherent advantages and
unique characters such as replacement of dangerous and toxic chemicals by electric
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current, less waste production, applying few amounts of chemicals, and affording
fewer reaction steps than traditionalmethods [54].Moreover, amajority of the prepar-
ative electrochemical reactions even with high activation energies, can be carried out
at ambient temperature since the energy of the electrochemical system is controlled
by the applied electrode potential [55]. There are two kinds of cell setups in electro-
chemistry systems: (1) divided cell, the anode and cathode are separated by a porous
and ion-exchange membrane; (2) undivided cell setup the anode and cathode are
being placed in the same cell in a significantly more user-friendly manner [56]. Also,
organic electrochemistry can be classified into two categories; direct electrolysis
without redox mediator and indirect electrolysis [57] with redox mediators.

Advantages of redox-mediated electrolysis are avoiding obstacles related to
heterogeneous electron transfer such as overpotentials and conducting electrolysis at
lower potentials which lead to accelerating the reaction rate and can feature benefi-
cial effects in terms of chemoselectivity and robustness with bypassing probable side
reactions [58]. The low atom economy for this strategy was the most important moti-
vation for applying directmetallaelectrocatalyticC–Hactivations.Recently the scope
of useful direct electrochemical ruthenium (II) catalysis was extended by Acker-
mann, Qiu, Mei and Xu [59]. Also, there is plenty of reported rhodium-catalyzed
oxidative C–H activation reaction with stoichiometric metal oxidants during the last
decades [60]. More recently Ackermann reported the novel rhodaelectro-catalyzed
C–H activation inwhich there was no need for stoichiometric chemical oxidants [61].
Mei and co-workers recently reported a notable palladaelectro-catalyzed C(sp3)-H
oxygenation of substituted oxime ethers [62]. Inspired from this approach, further
palladium-catalyzed electrochemical C(sp2)-H activations, including direct acetoxy-
lations [63], acylations [64],methylations, and alkylations [65] have been reported. In
2017, the Ackermann group [66] made a significant success in reaching full resource
economy through direct metallaelectrocatalytic C–H oxygenation using inexpensive
alcohols as a coupling partner with 3d transition metals and in undivided cell setups.
Significant progress was achieved by Ackermann [67], Lei [68], and Ye [69] in this
field (Scheme 22). Lately, there are a few reports of copper-catalyzed electrocatalytic
C–H amination [70] and also a new electrooxidative nickel catalysis without redox
mediators with a full resource economy [71].

6 C–H Bond Activation Under Flow Condition

Flow technologies are one of the most assuring tools for providing more extended
applicability of C–H bond functionalization reactions [72]. Some features of flow
condition are listed as follows: (a) more reliable and safer [73]; (b) easy temperature
controlling [74]; (c) efficient mixing of two phases and contacting between reagents
in different phases (mainly gases and liquids or solids and liquids) [75]; (d) the high
surface area-to-volume ratio of flow reactors [76]; (e) easier scale-up of the reaction;
and (f) simple separation of the catalyst from the reaction products [77].
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As an example, the ortho-selective C–H alkenylation of acetanilides in hetero-
geneous continuous flow conditions was discovered by Ackermann, Vaccaro, and
co-workers. The reaction was catalyzed by Pd/C, required benzoquinone (BQ) as
the terminal oxidant and a strong Brønsted acid as an additive in biomass-derived
γ -valerolactone (GVL). The advantages of performing this reaction in flow were the
shorter reaction times and improvement in the stability of the catalyst compared to
batch conditions (Scheme 23) [78].

7 Electrochemical C–H Bond Activation Under Flow
Condition

Very recently, there are some examples of merging organic electrochemistry with
flow technologies. For instance, Xu and co-workers reported an electrochemical
protocol to synthesize 4H-1,3-benzoxazines from the cyclization of readily avail-
able N-benzylamides. Most of the researches were conducted in batch, with only
a single reaction being conducted in an electrochemical microreactor. The reactor
was containing a platinum foil as the cathode and a graphite layer as the anode,
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Scheme 24 Electrochemical synthesis of a 4H-1,3-benzoxazine in flow

separated by a fluorinated ethylene propylene (FEP) membrane. Notably, the use of
flow conditions made it possible to reduce the amount of the supporting electrolyte,
to perform the reaction at ambient temperature and to scale-up the process in high
yields (Scheme 24) [79].

8 Photocatalytic C–H Bond Activation

Visible light photoredox catalysis has rebirthed due to the improvement of radical
chemistry in organic synthesis. The simplicity of reaction setups, as well as mild
reaction conditions, low price, green and clean energy sources, and the broad appli-
cability of them led to resolve some of the contemporary challenges and scarcities in
several synthetic methodologies using transition metals or strong oxidants. One of
the most influential accomplishments in photocatalysis was the activation of molec-
ular oxygen [80]. Despite its poor reactivity as a diradical, it can be transformed
into the superoxide radical anion upon single-electron transfer (SET), which can
undergo H-radical abstraction or lead to the in situ formation of hydrogen peroxide
(Scheme 25, top) [81].

Additionally, transitionmetal chromophores as photocatalysts [82] have sufficient
potential in their excited states and can induce C–H functionalization reactions by the
direct oxidation of the substrates to the corresponding radical or radical cationwithout
the necessity of a stoichiometric amount of an oxidant or a pre-functionalization of

H EWGEWG
photocatalyst
O2, visible light

via O2

photocatalyst
visible light

via PC*
PC*= excited state photocatalyst

H
R

H
R

Nu- Nu
R

Scheme 25 Photocatalytic C–H bond activation pathways
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the substrate (Scheme 25, bottom). Generally used photoorganocatalysts are mostly
heterocycles and organic dyes such as Eosin Y, methylene blue, and riboflavin [83].

Although most of the reported visible light-mediated catalytic C–H functional-
ization methods have been performed by expensive metal-based Ru or Ir photoredox
complexes but their mild reaction conditions and the use of stable and cheap organic
dyes could justify its green manner [84]. In 2019, an efficient photoredox-induced
decarboxylative C2-alkylation of benzothiazoles was produced by Wang and co-
workers [85]. The reaction was carried out by using a catalytic amount of 9-mesityl-
10-methyl acridinium perchlorate as photocatalyst and O2 as an oxidant with a blue
LED under transition metal free conditions at 25 °C. Broad scope, high yields, mild
reaction conditions, and easy work-up were its highlighted advantages (Scheme 26).

In 2017, the group of Nicewicz reported the direct C–H cyanation of electron-rich
arenes via visible light photoredox catalysis [86]. The authors applied an acridinium
salt derivative (NZ) as the photocatalyst for the single electron oxidation of aromatic
compounds into the radical cationic species, which were subsequently trapped by
TMSCN to produce nitrile. The employed oxygen atmosphere made the addition of
external oxidants unnecessary. Also, one year later, the same group, applied a similar
photocatalytic methodology for the visible light-mediated C–H bond azidation of
aliphatic compounds with acridinium (Scheme 27) [87].

9 C–H Bond Activation Using Ball Milling and Transition
Metal Catalysts

Mechanochemistry has attracted increasing attention from chemists. Mechanochem-
istry methods are applicable to distribute energy for chemical processes as efficient
as possible via grinding, ball milling, shearing, and kneading [88].
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Scheme 28 Mechanochemical Rh(III)-catalyzed C–H bond amidation of benzamides

Ball-milling-induced reactions are cost-effective, efficient, and green methods
which are typically operated in a stainless-steel jarwith plenty of balls rotating at high
speed (60–800 rpm). These reactions are performed under mild conditions, without
any organic solvents (or minimum amounts of solvent), at approximately ambient
temperature and in relatively short reaction times. The first mechanochemical C–H
functionalizationwas reported byBolm and co-workers [89]. Although the discovery
was remarkable, the solventless process was limited in terms of catalyst efficiency.
Since then chemists have been trying to expand the scope of mechanochemical C–
H functionalizations in the presence of transition metals such as Pd, Rh, Ru, Co,
and Ir and apply it for a variety of important functionalizations, including halogena-
tion, amidation, alkynylation, and dehydrogenative coupling and also utilize it for
other important organic reactions [90]. As a ball-milling reaction example, Bolm
and co-workers reported a procedure for the direct mechanochemical rhodium-(III)-
catalyzed C(sp2)-H bond amidation of the arenes using a 1,4,2-dioxazol-5-one as
the nitrogen source and amidating agent and using ball milling in a 25 mL ZrO2

milling jar with one ZrO2 ball of 15 mm diameter at 30 Hz. The reaction proceeds
in the presence of [Cp*RhCl2]2, AgSbF6, and AgOAc under solvent-free conditions
without additional heating. The ortho amidated products were formed in great yields
and in shorter reactions times (99 min.) in comparison with the solution and exhib-
ited benefits of mechanistic techniques to the standard solvent-mediated protocols
(Scheme 28) [91].

10 Conclusion

During the last decade, considerable advances in C–H functionalization reactions
have witnessed the importance of these transformations. These protocols give us
powerful tools to create organic building blocks of complex structures in molecular
science. On the other hand, their step- and atom-economic nature, are completely in
agreement with green chemistry protocols. The applicability of C–H bond activation
reactions is currently under remarkable investigation in related chemistries which
will be reported in due course.
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