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Abstract Forecasting the electrical appliance power consumption is a necessary
and important part of the management of electrical power system, in order to assess
people’s penchant for using electricity. Even though several studies are focused on
forecasting building consumption, less attention is given to forecasting the use of
single appliances. Indeed, some of the energy needs of consumers may be relatively
delayed or anticipated to obtain a better consumption profile while maintaining con-
sumer comfort. This paper focuses on forecasting appliance power consumption
using a non-linear autoregressive (NAR) neural network model. The results obtained
on the UK-DALE public dataset demonstrate that NAR models are suitable for fore-
casting of energy consumption with a good accuracy. The proposed model obtained
the best Mean Absolute Errors, compared with the LSTM, Autoencoder, Combina-
tory optimization, FHMM, and Seq2point techniques.
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1 Introduction

The largest consumer of electricity in theworld is the building sector, for example, the
US building’s primary and electrical energy consumption is more than 40 and 76%
respectively [1]. Indeed, reducing energy consumption is essential to meet national
energy and environmental challenges and reduce costs for building users. According
to the US department of energy (DOE), the possibilities for improving efficiency are
colossal. By 2030, the energy consumption of buildings could be reduced by more
than 20% by using technologies known to be profitable today, and by more than 35%
if the research objectives are met [2].

The main goal of a Home Energy Management System (HEMS) is to manage
efficiently the flow of electricity in the house so as to lower the price of the electric
bill, while maintaining the comfort of its occupants [3]. Monitoring the electricity
consumption of several devices is a first step of any HEMS and aims to perform
(1) detailed energy detection, (2) provide information on the distribution of energy
consumed, (3) profile energy-consuming devices to develop energy conservation
strategies, like reprogramming consumption of high power devices during off-peak
hours [3, 4].

In some cases, to minimize waste and improper use of energy, users must provide
a lot of configuration information, this collection of information generally involving
arduous measurement campaigns [5, 6]. Thus, forecasting electrical devices con-
sumption is a necessary and an important part of managing the power system in
order to forecast people’s penchant for using electricity [7]. Indeed, forecasting con-
sumer demand becomes very important as the non-urgent energy needs of users
(washing machines, air conditioning or refrigeration) can be relatively postponed or
anticipated to obtain a good adjustment of the production profile while maintaining
consumer comfort and the level of service [7, 8]. Moreover, most of the work in
the literature based on the forecasting of building consumption does not claim any
attention to the individual consumption of each appliance.

In this paper, we propose a non-linear autoregressive neural network (NAR)model
to predict the electrical consumption of the device in a house. Our objective is to
provide a methodological framework for analyzing the historical data of the time
series of device power consumption and to know if the forecasting of such energy
consumption can be performed with this type of model. Moreover, we will assess
the feasibility of the method using the UK-DALE public dataset and asses the model
performance using various delays as well as different model configurations.

The rest of paper is organized as follows: Sect. 2 reviews related works on the
prediction of electrical consumption in a house. Section 3 presents the proposed
methodology and the description of the NAR model. It also describes the public
dataset used, and the evaluation criteria employed. Section 4 shows the experimental
results of the proposed model and conclusions are drawn in Sect. 5.
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2 Related Work

Several works have been carried out in the literature to analyze, profile, classify
and/or predict the electrical consumption in a house. This information can be used
to plan energy-saving strategies, improve user behavior by helping them to change
their habits in the use of household appliances, improve the overall grid perfor-
mance and decrease the consumption of electricity [5]. Indeed, Ruiz et al. proposed
in [9] a method based on non-linear autoregressive neural networks method to fore-
cast energy consumption in public buildings. They compared the NAR model with
the NARX model and demonstrated that, if no external data is available, energy
consumption only can be used to obtain accurate forecasts. A method for building
energy consumption using weighted SVRs was developed by Zhang et al. in [10].
Good results were obtained, their results showing that using half-hourly data a higher
weight is given to nu-SVR , while, for daily data, a greater weight for epsilon SVR
is applied. In [11], Fumo et al. presented a method based on linear regression anal-
ysis to forecast energy consumption in an individual family household. They claim
that the future of residential energy prediction is going towards the development of
single model for each house, due to the accessibility of smart meters data. Deb et al.
[12] introduced a data-driven model to predict diurnal cooling load energy consump-
tion for institutional buildings. They demonstrated that the artificial neural network
is capable to predict the next day energy consumption based on 5 preceding days
data with a suitable accuracy. In [13], Gul et Patidar focused on understanding the
influence of occupancy of multi-purpose educational buildings in their energy con-
sumption. Thus, they noted that detailed information on occupancy preference could
help the management staff to rethink control policies for optimal energy manage-
ment of the building. A technique based on short term load prediction in distribution
systems using a neural network method was proposed by Ding et al. in [14]. They
performed feature selection in models for electrical load prediction to enforce an
optimal generalization capacity of the model. Motepe et al. presented a load pre-
diction process for the distribution of power utilizing deep learning and hybrid AI
algorithms [15]. They investigated the effect of the inclusion of loading cleaned data
and weather variables on the load prediction performance of an hybrid AI method.
In [16], Hong et al. developed a method for short-term residential load prediction
based on deep learning. The results showed that both the devices load data and the
proposed iterative ResBlocks can help to enhance the prediction performance.
All of these above studies, however, are focused on forecasting the building con-
sumption and no attention is paid to forecasting the use of a single appliance, thus
preventing their applicability to appliance scheduling. Several works have focused
on appliance disaggregation [17–22], Kelly et al. proposed a deep neural network
for energy disaggregation [35]. They obtained good performances and showed a
good capacity for generalization on unknown houses. A method based on sequence-
to-point learning with CNN for energy disaggregation was developed by Zhang et
al. in [24]. They showed that the CNN can inherently learn the features of the tar-
get devices, and their methods achieve state-of-the-art performance. Barbato et al.



762 I. H. Laouali et al.

focused on prediction the usage of household devices via power meter in [5]. They
showed the effectiveness of their model in predicting device usage through experi-
mental tests.

3 Methodology

A Non-linear autoregressive model (NAR) is a recurrent neural network model that
can accept dynamic inputs [9]. Indeed, the choice of NAR can be explained by the
fact that not only the power demand of electrical devices is a time series but also
the classic recurrent network encounters some difficulties in the face of long-term
dependence problems [25]. These difficulties have their origin in the problem of
gradient descent [26]. According to Lin et al. in [27] the exponential decrease in the
gradient means that the weights of the distant values do not change and, therefore,
the network cannot be trained effectively. All internal recurrent networks suffer of
this problem, which makes NARs models very adequate for use in forecasting and
modeling time series [25].

The NAR model is used to forecast the values of a time series y(t), using the d
past values of the series y(t). The NAR model has the following formula [9, 25]:

y(t) = F(y(t − 1), y(t − 2), ..., y(t − d))+ e(t) (1)

where the function F(·) is, in our case, a neural network. Therefore, the purpose is
to train the model in order to approximate the unknown function by optimizing the
network bias and weights. The term e(t) represents the approximation error at time
t. The d elements y (t − 1), y (t − 2), . . . , y (t − d), are called feedback delays. The
architecture used is aMulti-Layer Perceptron (MLP) composed of three layers: input
layer, hidden layer(s) and output layer. The number of neurons per layer and hidden
layers are utterly flexible and optimized via a trial and error procedure to obtain the
network topology that could give the best performance.

In the intended application, the NAR is used to predict the appliance’s power
consumption. The inputs are the delayed versions of the consumption power, and the
output the next value in the series y(t). In order to find the best delays, we trained a
model with a specific topology, varying the number of delays. As it will be explained
later on, we shall use power series of four different appliances: kettle, Fridge, Dish-
washer and Washing Machine. The RMSEs (Root Mean Square Error) that were
obtained in the test set are shown in Table 1.

As it can be seen, there is not a specific delay that obtained the best values for all
appliances. Using the average RMSE, the best value is obtained with 4 delays and
the worst performance was obtained with 10 delays. We shall use 4 delays in the
models from now on.

After the delays defined, the next step is to determine the number of hidden
neurons and number of hidden layers to be used in the model.
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Table 1 RMSE (W) with various delays

Delays Kettle Fridge Dishwasher Washing
machine

Mean

2 78.16 24.97 49.95 38.97 48.01

4 78.51 24.92 34.70 38.96 44.27

6 78.71 27.08 46.06 39.08 47.73

8 78.68 24.97 47.83 38.07 47.38

10 82.19 25.42 61.60 38.72 51.98

12 79.45 25.01 52.07 38.12 48.66

Table 2 Statistical indicators obtained with various number of hidden layers and hidden neurons:
RMSE (W) and MAE (W)

Topology Kettle Fridge Dishwasher Washing machine

Number
of
hidden
layer

Number
of
hidden
neurons

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 2 92.36 50.23 25.26 4.67 46.75 5.91 38.53 3.46

1 4 78.96 10.8 25.75 6.89 34.51 2.52 38.84 2.74

1 6 78.63 5.9 24.95 1.62 56.22 7.77 39.47 2.88

1 8 78.51 5.15 24.92 1.70 34.70 2.59 38.96 3.18

1 10 78.54 6.31 24.92 1.63 56.85 7.84 38.91 3.59

1 12 80.67 20.22 24.97 1.82 33.24 1.53 39.34 3.24

2 2–4 119.46 9.81 46.06 38.24 57.65 8.01 51.69 5.78

2 3–6 79.64 10.47 25.31 5.00 61.87 8.54 38.61 4.21

2 6–10 78.77 7.29 25.24 3.55 56.39 8.11 39.78 2.98

2 8–3 81.23 5.52 25.22 4.37 55.46 7.44 48.93 5.50

Several tests were performed in order to determine the number of hidden layers
and the number of hidden neurons in each layer. For that, the RMSE and the MAE
(Mean Absolute Error) criteria. were used. For the training of the network we used
the Levenberg-Marquardt algorithm as it is recognized to be the best method to train
static neural networks [28]. Some results are presented in Table 2. Note that all the
experimental results are obtained for the test dataset.

As before, there is not a single topology that obtains the best values for all cases.
Using again the average values of the RMSE we can conclude that the best configu-
ration contains 8 neurons in one hidden layer. The performance of this configuration
in terms of RMSE are: 78.51 W, 24.92 W, 34.70 W, and 38.96 W respectively for
Kettle, Fridge, Dishwasher, and Washing Machine.



764 I. H. Laouali et al.

3.1 Evaluation Criteria

To assess Artificial Neural Network forecasting performance, many prediction accu-
racy catalogs are proposed in the literature. We have selected among others the Root
Mean Square Error (RMSE), and the Mean Absolute Error (MAE), which seem to
be the most used metric in model assessment [16, 29–31].

RMSE =
√
√
√
√

1

N

N
∑

1

(y − p)2 (2)

MAE =
∑N

1 |y − p|
N

(3)

In (2) and (3) N is the number of patterns, y are the measured values and p the
predicted values

3.2 Dataset

Since the work of Kolter et al. [32] and the deployment of the smart meter, several
datasets containing data fromhouse-hold electrical consumption aswell as individual
appliance consumption have been made available for the public [23, 33, 34].

We used the UK-DALE (United Kingdom-Domestic Appliance Level) data set,
which regroups aggregated and disaggregated device data for five houses in London,
England, over several years. Aggregate data represents the power demand of all
devices in the house. The power data of each device was measured via smart sockets
on single devices which measured their individual energy demands. The individual
power of each appliance and the global aggregated power data are sampled every six
seconds (0.1667Hz). The labeledmeasurement data of each device are also available.

The dataset regroups the measurements of over 10 types of devices, however, we
used four devices in all our experiments: Kettle, fridge, dishwasher, and washing
machine which are popular appliances for evaluating energy disaggregation algo-
rithms [23, 24, 35, 36]. We selected these devices because all exist in at least 2
houses in the dataset. This means that, for each device, we can train our model in at
least 1 house and test on another house not seen during training.Moreover, these four
devices consume a considerable proportion of energy and expose a range of various
power features from the two-states on/off of the kettle to the complex characteristics
of the washing machine.
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4 Results

We trained ourANN-NARmodel on house 5 (Train dataset) of theUK-DALEdataset
and evaluated the testing performance on house 2. House 2 (Test dataset) contains
data for several months between 17-02-2013 and 10-10-2013 and house 5 (Train
dataset) contains data measurements from 29-06-2014 to 13-11-2014. The results in
terms of theMAE criterion in comparison with someworksmentioned on the state of
the art are presented in Table 3. We point out that all the 5 methods used techniques
to disaggregate the device data from the aggregate consumption data of the house
prior to predict the device power consumption. Here we only used the historical data
of each device to train our model. It should also be noted that the experiments were
carried out over the entire period that constitutes the test dataset (house 2 data).

Table 3 shows that the developed model has surpassed all the 5 other state of-
the-art methods, in terms of the MAE criterion, for every appliance. FHMM and CO
proposed by Batra et al. present the worst performance, followed by LSTM proposed
by Kelly et al., for Kettle and Fridge. The Seq2point proposed by Zhang et al. out-
performs LSTM, CO and FHMM on the four appliances but falls behind our NAR
model, where the MAE was reduced by 33%, 92%, 90% and 75% for the Kettle,
Fridge, Dishwasher and washing machine, respectively. The Autoencoder developed
by Kelly et al. outperforms Seq2point for the kettle and dishwasher, but is still worse
than our model, which obtains a reduction in MAE of 14% and 89% respectively.

To assess the performance of the proposed method, Figure 1 shows the measured
power and the predicted power, for the 4 different appliances and for short periods.
Notice, however, that the results shown in Table 3 are applicable to the whole test
set.

Table 3 Mean absolute error (MAE) (W) performance for UK-DALE dataset on a house not seen
during training. Best performances are shown in bold

MAE (W)

Methods Kettle Fridge Dishwasher Washing machine

LSTM (Kelly and
Knottenbelt [35])

16 36 168 109

Autoencoder
(Kelly and
Knottenbelt [35])

6 26 24 18

CO (Batra et al.
[36])

73 73 74 70

FHMM (Batra et
al. [36])

98 67 110 107

Seq2point (Zhang
et al. [24])

7.43 20.89 27.70 12.66

Our model (NAR
this paper)

5.15 1.70 2.59 3.18
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Fig. 1 Predicted versus measured appliance power consumption for a Kettle, b Fridge, c Dish-
washer and d Washing machine

5 Conclusion

In this study, we proposed a non-linear autoregressive neural network model for
forecasting appliance power consumption. We have considered four appliances that
consume an important proportion of energy and exhibit different operation patterns,
from two states tomore complex pattern.Wehave tested the impact of hidden neurons
and hidden layers, as well as number of delays on the performances of the model.
It has also been shown that the model is highly efficient, obtaining better prediction
performance than some state-of-the-art methods.

Our future research will focus on studying the effect of exogenous data on the
forecasting method and how data other than power could be used to improve the
accuracy of forecasting.

Acknowledgements The authors would like to acknowledge the support of Programa Opera-
cional Portugal 2020 and Operational Program CRESC Algarve 2020 grant 01/SAICT/2018.
Antonio Ruano also acknowledges the support of Fundação para a Ciência e Tecnologia grant
UID/EMS/50022/2020, through IDMEC, under LAETA



A Non Linear Autoregressive Neural Network Model . . . 767

References

1. USDepartment of Energy (DOE) (2015)AnAssessment of energy technologies and research—
Chapter 1. Enabling Mod Electr Power Syst Technol Rev September:99

2. USDepartment of Energy (DOE) (2015)AnAssessment of energy technologies and research—
Chapter 5. Enabling Mod Electr Power Syst Technol Rev

3. Ruano A, Hernandez A, Ureña J, Ruano M, Garcia J (2019) NILM techniques for intelligent
home energy management and ambient assisted living: a review. Energies 12(11):1–29

4. ZohaA,GluhakA, ImranMA,Rajasegarar S (2012) Non-intrusive loadmonitoring approaches
for disaggregated energy sensing: a survey. Sensors (Switzerland) 12(12):16838–16866

5. Barbato A, Capone A, Rodolfi M, Tagliaferri D (2011) Forecasting the usage of household
appliances through power meter sensors for demand management in the smart grid. In: 2011
IEEE international conference on smart grid communications, SmartGridComm 2011, pp 404–
409

6. Huber P, Gerber M, Rumsch A, Paice A (2018) Prediction of domestic appliances usage based
on electrical consumption. Energy Inf 1(S1):

7. Abera FZ, Khedkar V (2020) Machine learning approach electric appliance consumption and
peak demand forecasting of residential customers using smart meter data. Wirel Pers Commun
111(1):65–82

8. Hatami S, PedramM (2010) Minimizing the electricity bill of cooperative users under a quasi-
dynamic pricing model, pp 421–426

9. Ruiz L, Cuéllar M, Calvo-Flores M, Jiménez M (2016) An application of non-linear autore-
gressive neural networks to predict energy consumption in public buildings. Energies 9(9):684

10. Zhang F, Deb C, Lee SE, Yang J, Shah KW (2016) Time series forecasting for building energy
consumption using weighted Support Vector Regression with differential evolution optimiza-
tion technique. Energy Build 126:94–103

11. Fumo N, Rafe Biswas MA (2015) Regression analysis for prediction of residential energy
consumption. Renew Sustain Energy Rev 47:332–343

12. Deb C, Eang LS, Yang J, Santamouris M (2016) Forecasting diurnal cooling energy load for
institutional buildings using Artificial Neural Networks. Energy Build

13. Gul MS, Patidar S (2015) Understanding the energy consumption and occupancy of a multi-
purpose academic building. Energy Build

14. Ding N, Benoit C, Foggia G, Besanger Y, Wurtz F (2016) Neural network-based model design
for short-term load forecast in distribution systems. IEEE Trans Power Syst

15. Motepe S, Hasan AN, Stopforth R (2019) Improving load forecasting process for a power
distribution network using hybrid AI and deep learning algorithms. IEEE Access

16. HongY, ZhouY, LiQ,XuW,ZhengX (2020)A deep learningmethod for short-term residential
load forecasting in smart grid. IEEE Access 8:55785–55797

17. Jia Y, Wang H, Batra N, Whitehouse K (2019) A tree-structured neural network model for
household energy breakdown. In: Web Conference 2019—Proceedings of World Wide Web
Conference WWW 2019, pp. 2872–2878 (2019)

18. Welikala S, Thelasingha N, Akram M, Ekanayake PB, Godaliyadda RI, Ekanayake JB (2019)
Implementation of a robust real-time non-intrusive load monitoring solution. Appl Energy
238:1519–1529

19. Devlin MA, Hayes BP (2019) Non-intrusive load monitoring and classification of activities of
daily living using residential smart meter data. IEEE Trans Consum Electron 65(3):339–348

20. Çavdar IH, Faryad V (2019) New design of a supervised energy disaggregation model based
on the deep neural network for a smart grid. Energies 12(7):

21. Fagiani M, Bonfigli R, Principi E, Squartini S, Mandolini L (2019) A non-intrusive load
monitoring algorithm based on non-uniform sampling of power data and deep neural networks.
Energies 12(7):

22. Machlev R, Belikov J, Beck Y, Levron Y (2019) MO-NILM: A multi-objective evolutionary
algorithm for NILM classification. Energy Build



768 I. H. Laouali et al.

23. Kelly J, Knottenbelt W (2015) The UK-DALE dataset, domestic appliance-level electricity
demand and whole-house demand from five UK homes. Sci Data

24. Zhang C, Zhong M, Wang Z, Goddard N, Sutton C (2018) Sequence-to-point learning with
neural networks for non-intrusive load monitoring. In: 32nd AAAI conference on artificial
intelligence. AAAI 2018:2604–2611

25. Ibrahim M, Jemei S, Wimmer G, Hissel D (2016) Nonlinear autoregressive neural network
in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles. Electr
Power Syst Res

26. Bengio Y, Simard P (1994) Frasconi P (1994) Learning long-term dependencies with gradient
descent is difficult. IEEE Trans Neural Networks

27. Lin T, Horne BG, Giles CL (1998) How embedded memory in recurrent neural network archi-
tectures helps learning long-term temporal dependencies. Neural Netw

28. Ruano AEB, Jones DI, Fleming PJ (1991) A new formulation of the learning problem for a
neural network controller. In: 30th IEEE conference on decision and control, pp 865-866

29. Gao X, Li X, Zhao B, Ji W, Jing X, He Y (2019) Short-term electricity load forecasting model
based on EMD-GRU with feature selection. Energies 12(6):1–18

30. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—
Arguments against avoiding RMSE in the literature. Geosci Model Dev

31. Kim SH, Lee G, Kwon GY, Kim DI, Shin YJ (2018) Deep learning based on multi-
decomposition for short-term load forecasting. Energies

32. Zico Kolter J, Johnson MJ (2011) REDD: a public data set for energy disaggregation research.
In Proceedings of the SustKDD workshop on data mining applications in sustainability, San
Diego, CA, USA, 21 Aug 2011

33. Anderson, K, Ocneanu A, Benitez D, Carlson D, Rowe A, Berges M (2012) BLUED: a fully
labeled public dataset for event-based non-intrusive load monitoring research. In: Proceedings
of the 2nd workshop on data mining applications in sustainability, Beijing, China, 12 Aug 2012

34. Gao J, Giri S, Kara EC, Bergés M (2014) PLAID: A public dataset of high-resolution electrical
appliance measurements for load identification research. In: BuildSys 2014—Proceedings of
the 1st ACM conference on embedded systems for energy-efficient buildings

35. Kelly J, Knottenbelt W (2015) Neural NILM: Deep neural networks applied to energy disag-
gregation. In: Proceedings of the 2nd ACM international conference on embedded systems for
energy-efficient built environments, Seoul, Korea, pp 55–64, 4–5 November 2015

36. Batra N, Kelly J, Parson O, Dutta H, Knottenbelt W, Rogers A, Singh A, Srivastava M (2014)
NILMTK: an open source toolkit for non-intrusive load monitoring. In: e-Energy 2014—
Proceedings of the 5th ACM international conference on future energy systems


	A Non Linear Autoregressive Neural Network Model for Forecasting Appliance Power Consumption
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Evaluation Criteria
	3.2 Dataset

	4 Results
	5 Conclusion
	References




