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Abstract Automation tools for circuit optimization have proven their usefulness
in solving design issues by considering the technological aspects of downscaling.
Recent advances have proven that the optimization method based on simulation is a
powerful and important solution for the optimal sizing of electronic circuits. In this
paper, we propose a simulation-basedmethodology for automatic optimization of the
multi-objective design of an analog/RF circuit. As applications, we use both analog
and RF circuits, respectively the LC tank Voltage Controlled Oscillator (VCO) and
the new Current-Feedback Operational Amplifier (CFOA). For the LC-VCO, we
optimize the power consumption and the phase noise. For the CFOA, we optimize
its important performances such as bandwidth and parasitic resistances, for low-
voltage, low-power applications. All simulations are performed by HSPICE using
0.13 μm RF CMOS and 0.18 μm CMOS technologies for the LC-VCO and the
CFOA, respectively.

Keywords Simulation-based method ·Multi-objective optimization ·
Optimization algorithms · Analog circuit · IC design · Voltage controlled
oscillator · CFOA · NSGA II ·MOPSO-CD

1 Introduction

The progressive trend of CMOS technology towards smaller sizes has made the inte-
gration of integrated systems possible for wireless communication implementations
[1]. Through the use of CMOS processes and technology development, the design

A. Lberni (B) · M. A. Marktani · A. Ahaitouf
Laboratory of Intelligent Systems, Georesources and Renewable Energies, Sidi Mohamed Ben
Abdellah University, Fez, Morocco
e-mail: abdelaziz.lberni@usmba.ac.ma

A. Sallem · N. Masmoudi
Laboratory of Electronics and Information Technologies, Sfax University, Sfax, Tunisia

A. Ahaitouf
Laboratory of Engineering Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco

© Springer Nature Singapore Pte Ltd. 2022
S. Bennani et al. (eds.), WITS 2020, Lecture Notes in Electrical Engineering 745,
https://doi.org/10.1007/978-981-33-6893-4_37

389

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6893-4_37&domain=pdf
mailto:abdelaziz.lberni@usmba.ac.ma
https://doi.org/10.1007/978-981-33-6893-4_37


390 A. Lberni et al.

of analogue/RF circuits is imposing more stringent requirements in terms of accu-
racy, speed and integration [2]. Thus, the design challenge today is to design circuits
meeting the required specifications with low noise and low consumption [3], despite
the presence of parasitic effects in the CMOS technology. To meet the demands of
low-power, low-cost wireless telecommunication technology, wireless devices must
be efficiently optimized.

For instance, the most common used oscillator architecture in transceivers is the
VCO. This circuit controls the oscillation frequency using a control signal. These
types of oscillators always need selective circuits, usually RC circuits, LC circuits,
switched capacitor, etc., which form a feedback for generating a sinusoidal output.
Due to its advantages inRF applications, the LC-VCO is themost frequently used [4].
The LC resonator is made up of a spiral inductor and a CMOS variable capacitance
(Varactor) which is controlled by a control signal voltage to change the oscillation
frequency. However, the use of integrated inductors causes many problems, such as
increased energy consumption and phase noise degradation [1].

Moreover, CFOA are among the more important integrated active elements.
Compared to the operational amplifier, the CFOA are preferred in signal processing
systems due to their essential advantages, namely, low power consumption, lower
sensitivity, ease of performing different functionalities with few passive components
and a closed-loop bandwidth that is independent of dc gain, eliminating the gain-
bandwidth product constraint [5]. In addition, they provide the best performance in
applications such as filters, integrators and oscillators, etc. [6].

In our previous work [7–10], we have studied the optimization of analog circuits
including CMOS current conveyors, a CFOA and a Butterworth active filter using the
model-based method. In this paper, we propose an efficient method based on multi-
objective simulation that uses both the circuit simulation to guarantee the accuracy of
the approach and the advantage of optimization algorithms to search for the optimal
solutions. We focus on optimizing the important performances of the LC-VCO and
theCFOA. The LC-VCOperformances are evaluated by the following specifications:
phase noise (PN ), oscillation frequency ( fosc) and power consumption (Pdiss). Thus,
the purpose is to perform a multi-objective optimization while minimizing the two
functions PN and Pdiss at a fixed oscillation frequency with a given control signal.
For the CFOA, the goal is to perform simultaneous optimization of four objectives
such as minimizing the two parasitic input resistances, as well as maximizing the
current cut-off frequency and voltage cut-off frequency.

The rest of the paper is structured as follows. In Sect. 2 presents the proposed
automated design approach. In Sect. 3 shows two application examples where the
automated design approach is applied to CFOA and LC-VCO. The conclusion is
drawn in Sect. 4.
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2 Simulation-Based Method to Analog Circuits Design

The simulation-based approach uses electrical simulations in order to evaluate the
performance of the circuit. It extracts the parameters of the circuits to be opti-
mized/sized which correspond to the results of the performed simulation. This
approach is seen as very flexible in comparison to other approaches (knowledge-
based, equation-based) since it adapts to any circuit topology and offers higher accu-
racy (depending on the simulator models) [11–13]. As long as the objective functions
are adapted, the circuit design can be optimized multiple times for various specifica-
tions. As a result, almost any kind of circuits can be designed with this method and
with a short set-up time. The basic diagram of the simulation-based method is shown
in Fig. 1. The main part of this approach is the optimization block which is built
by a meta-heuristic approach with the aim of finding the component values (transis-
tors, inductors, resistors, etc.) that will give the best performance of the circuit. The
evaluation block of this method is built with a circuit simulator.

This method works as follows: Once the Netlist file of the circuit is created, the
algorithm responsible for the optimization randomly generates the input parameter
vector in this netlist file, then, it calls the circuit simulator (HSPICE in this case)
to check the imposed constraints and evaluate the required performances. Once the
constraints are checked, the found performances are stored in an output file. After
this, the optimization process returns to the first step, in which it randomly generates
new values for the circuit parameters. Then, the circuit simulator is run to check the
imposed constraints and evaluate the performances. Once the constraints verified,
the new found performances are compared to the ones already saved in the output
file, if are better, they will be saved in the output file, if not they will be rejected and
the process will return to the first step. At each iteration, the best chosen solutions
from the output file are saved in an external archive using the dominance sorting
technique [14]. The optimization and evaluation cycle will be stopped when the stop
requirement is met, and the final external archive only contains the non-dominated
solutions. The proposed tool flowchart is given in Fig. 2.

Fig. 1 The simulation-based
approach
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Fig. 2 The proposed tool flowchart

3 Simulation-Based Method Applications

3.1 CMOS LC-VCO

Figure 3 shows the LC-VCO circuit. The transistors Mbias are responsible for the
polarization of the oscillator by Ibias . The inductor L and the capacitor Cvar constitute
the LC tank where, the variable capacitor Cvar is designed by the transistor Mvar as
shown in Fig. 3, while the inductance L is designed by the 2π -model shown in Fig. 4.
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Fig. 3 CMOS LC-VCO
topology
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The oscillation frequency is controlled by varying the capacitor Cvar by the voltage
Cctrl.

In an integrated spiral, the parasitic interferences occur between the metal tracks
of the spiral and the layers of oxide and substrate [12], these parasites are represented
by the resistances Ri , the capacitances Ci and the inductances Li , in the inductor
equivalent model given in Fig. 4.

The LC-VCO has several important performances, such as: the oscillation
frequency, the Phase Margin and the Power Consumption. Most oscillator designs
aim to achieve both minimum power consumption and phase noise at a given oscilla-
tion frequency. For example, if we aim for low power consumption, the bias current
of the circuit must be low. However, the parasitic effects caused by the low current
will have a major effect in the behaviour of the circuit, leading to the phase noise
degradation. But, if we aim for low phase noise, the bias current must be high, which
will lead to high power consumption. Therefore, the most appropriate objective for
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Table 1 LC-VCO encoding
variables and decision space

Variable Encoding Decision space

x1 fosc [1.5 GHz, 2.5 GHz]

x2 Mn, Mp, Mbias [0.4 μm, 1 μm]

x3 Mvar [0.4 μm, 10 μm]

x4 Mn [1 μm, 400 μm]

x5 Mp [1 μm, 400 μm]

x6 Mbias [1 μm, 400 μm]

x7 Mvar [1 μm, 400 μm]

x8 Cc,CS and Csi [0.1 pF, 20 pF]

x9 Cox [0.1 fF, 1 pF]

x10 Lo, L p [0.01 nH, 10 nH]

x11 Rs [0.01 �, 30 �]

x12 Rp [1 �, 1 k�]

x13 Rsc, Rsi [10 k�, 10 M�]

the oscillator design is to optimize simultaneously its phase noise and its power
consumption. In other words, the objective is to find a set of solutions with the best
trade-offs. There are thirteen design variables, their encoding and their decision space
are given in Table 1.

The optimization was performed to generate a set of oscillator designs for a
frequency band of 1.5–2.5 GHz using 0.13 μm RF CMOS technology with a power
supply of 1 V. Two different experiments were investigated, firstly, the inductance L
is considered to be ideal, secondly, the inductance is replaced by its equivalent 2π
model. The objective is to find a set of optimal parameter values of the LC-VCO that
correspond to the set of trade-offs between phase noise and power consumption for
an ideal and real inductance. In both experiments, the optimization results are given
in Fig. 5.

As can be seen, the optimization method offers the designer the best available
designs for the specific trade-off. As expected, given ideal inductors, optimization
results are quite better than those with real inductors. The values of the achieved
performance corresponding to the obtained Pareto front edges are shown in Table 2.

3.2 LV LP CFOA

Figure 6 shows a CMOS implementation of the CFOA, it is a current mode device
with 4-ports (X, Y, Z and W). The relationships between the CFOA ports can be, in
the ideal case, expressed as [15].

iy = 0, ix = iz = vx = vy s vw = vz (1)
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Fig. 5 The optimization
results of LC-VCO
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Table 2 The achieved performance values at Pareto front edges

Phase noise (dBc/Hz) Power (mW) Oscillation frequency
(GHz)

Inductor type Ideal Real Ideal Real Ideal Real

Low Pareto front
edge

−101.95 −109.23 0.0477 0.23 1.98 1.83

High Pareto front
edge

−136.16 −131.08 1.33 1.73 1.57 1.52
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Fig. 6 CMOS CFOA circuit
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Table 3 CFOA encoding
variables and decision space

Variable Encoding Decision space

L1 All NMOS transistors [0.18 μm, 0.54 μm]

L2 All PMOS transistors [0.18 μm, 0.54 μm]

W1 Mref,MB1-4 [1 μm, 100 μm]

W2 M3 [1 μm, 100 μm]

W3 M1 [1 μm, 100 μm]

W4 M2 [1 μm, 100 μm]

W5 M4 [1 μm, 100 μm]

W6 MA1-4 [1 μm, 100 μm]

W7 M5, M6, MB5, MB6 [1 μm, 100 μm]

W8 M7, M8, MB7, MB8 [1 μm, 100 μm]

Ibias Bias current [0.1 μA, 20 μA]

where ij and vj are respectively the current and voltage at port j.
The CFOA is biased with± 0.5 V and all simulations were done with the 0.18μm

CMOS process. All the CFOA transistors are encoded with Wi and Li , i denotes a
specific transistor or transistors sharing the same parameters. The variables encoding
and their boundaries for this circuit are listed in Table 3.

For this circuit, we show the application of the proposed approach using two
algorithms namelyMulti-Objective Particle SwarmOptimization based on crowding
distance (MOPSO-CD) [16] and multi-objective genetic algorithm (NSGA-II) [7,
17], to optimize the circuit performances. These algorithms have been programed in
C++ and the circuit simulations are performed by HSPICE. For all algorithms, we
use a population of 100 individuals and an iteration number of 200.

The objective is to find the optimal lengths and widths of the transistors that
correspond to all the trade-offs between the chosen performances. For this, three
different optimization experiments were performed using the proposed approach.

• First experiment:Minimizing theX-port resistance RX andmaximizing the Z-port
frequency, fci Z ,

• Second experiment: Minimizing the W-port resistance RW and maximizing the
Z-port frequency, fci Z ,

• Third experiment: Minimizing the X-port resistance RX and maximizing the W-
port frequency, fciW .

In each experiment, we aim to generate the Pareto front of the two various objec-
tives. The optimization results are given by Figs. 7, 8 and 9 for the first, second and
third experiments, respectively.

By a simple observation, it is easy to see that for a specific cut-off frequency,
the parasitic resistance obtained by MOPSO-CD is better than that generated by
NSGA II, which means that the obtained results with the proposed method using
MOPSO-CD are more improved (more optimistic).
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Fig. 7 Pareto front (RX , −
fci Z )
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Fig. 8 Pareto front (RW , −
fci Z )
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4 Conclusion

A simulation-based approach was used to optimize the performances of analog and
RF circuits. This approach uses meta-heuristics to search for feasible solutions and
HSPICE simulator to evaluate circuits performances. As a proof of concept, our work
is focused on the design of LC-VCOs and a CFOA for low-voltage, low-power appli-
cations as multi-objective optimization problems. The multi-objective optimization
choice allows us to deal with the various design trade-offs, i.e., phase noise and power
consumption for the oscillator and parasitic resistances and cut-off frequencies for
the CFOA. Based on the obtained results, the proposed approach provides very good
results. Moreover, the obtained results are more improved when using the MOPSO-
CD algorithm compared to the NSGA II. Our future work focuses on the integration
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Fig. 9 Pareto front (RX , −
fcvW )
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of new optimization algorithms in the proposed approach, to combine their benefits
in finding optimal solutions with the accuracy of the simulation-based method.
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