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in Tumor- Associated B Cells

Fan Yang and Fang Wan

Abstract

Breakthroughs have been made in the cancer 
immunotherapy field focusing on utilizing T 
cells’ antitumor immunity, and the lipid 
metabolism of tumor-associated B cells is not 
well studied compared to T cells. Accumulating 
evidence suggested that B cells also play 
important roles in tumor biology and antitu-
mor immunity, especially the germinal center 
B cells that present in the tumor-related ter-
tiary lymphoid structures. Due to scarce stud-
ies on lipid metabolisms of tumor-associated 
B cells, this chapter mainly summarized find-
ings on B cell lipid metabolism and discussed 
B cell development and major transcription 
factors, tumor-associated B cell populations 
and their potential functions in antitumor 
immunity, fatty acid oxidation in germinal 
center B cells, and tumor microenvironment 
factors that potentially affect B cell lipid 
metabolism, focusing on hypoxia and nutri-
ents competition, as well as lipid metabolites 
that affect B cell function, including choles-
terol, geranylgeranyl pyrophosphate, oxyster-
ols, and short-chain fatty acids.
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9.1  B Cell Development

B cells, derived from bone marrow (BM) hema-
topoietic stem cells, undergo programmed devel-
opment firstly from lymphoid progenitors to 
pre-B cells, which express “B cell receptor 
(BCR)” composed of immunoglobulin (Ig)  
heavy chain and a surrogate light chain after Ig 
gene V(D)J recombination [1]. Then the pre- 
BCR signaling triggers proliferation and results 
in an increased amount of resting pre-B cells, 
among which Ig light-chain gene rearrangement 
is fulfilled and a functional BCR (IgM usually) 
presents, indicating development into immature 
B cells [1]. Accompanied by another kind of 
BCR (IgD) expression, mature B cells migrate to 
the periphery surveying for antigens (Ag). Ags 
and co-stimulatory molecules as toll-like recep-
tor ligands drive the subsequent B cell prolifera-
tion and differentiation into the antibody 
(Ab)-secreting cells. A cohort of B cells further 
differentiates to memory B cells or long- lived 
plasma cells [2, 3]. A summary of B cell develop-
ment is shown in Fig. 9.1.

To fulfill the energy and nutrient demands of 
humoral immunity, B cells adapt both non- 

F. Yang · F. Wan (*) 
Department of Pharmaceutical Engineering,  
College of Life Sciences, Inner Mongolia 
Agricultural University, Hohhot, China
e-mail: fwan@imau.edu.cn

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6785-2_9&domain=pdf
https://doi.org/10.1007/978-981-33-6785-2_9#DOI
mailto:fwan@imau.edu.cn


134

cycling resting state and rapid proliferation state. 
The metabolic requirements are high when B 
cells are the early proliferative progenitors in the 
BM and fall in the pre-B and immature B cells. 
For the resting naïve and memory B cells, energy 
demands are relatively low, but raised during 
antigen-stimulated proliferation and differentia-
tion, and remain high in the Ab-secreting plasma 
cells [4].

Glucose, glutamine, and fatty acids are the 
main carbon sources for B cell metabolism, 
among which glucose is the main carbon source 
for both the resting and activated B cells [5]. It is 
reported that resting B cells in murine spleen 
require glycolysis as well as oxidative phosphor-
ylation (OXPHOS) [6]. Meanwhile, for the 

peripheral naïve B cells, there exists a specific 
loss of mature B cells in response to the absence 
of glucose transporter GLUT1, indicating that 
glucose uptake plays an especially important role 
for peripheral resting B cell homeostasis [6]. On 
the other hand, the surface expression of GLUT1 
is raised after BCR engagement, and the subse-
quent upregulated glycolysis is PI3K-Akt- 
dependent [6–8]. BCR engagement also promotes 
OXPHOS, which is a significant difference 
between BCR-stimulated B cells and TCR/
CD28-stimulated T cells that prefer glycolysis 
only [6]. Besides, LPS treatment also promotes 
glycolysis and OXPHOS in naïve B cells, indi-
cated by increased GLUT1 expression and mito-
chondrial mass [6, 7].

Bone marrow development
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Fig. 9.1 B cell development. A schematic of B cell devel-
opment from the bone marrow to the periphery. (a) B cells 
in the bone marrow undergo early stage of differentiation 
from hematopoietic stem cell (HSC) to immature B cells, 
which transit to the periphery to develop to mature circu-
lating cells. (b) The naïve B cells are activated by antigen 

and co-stimulatory molecules and become antibody- 
secreting plasma cells after proliferation and differentia-
tion. A cohort of B cells undergo further differentiation in 
the germinal center to become memory B cells or long- 
lived plasmablasts
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For B cell proliferation and differentiation, 
glycolysis has been considered the primary driv-
ing power [5]. Per the increased energy needs 
after B cell activation, glucose uptake is elevated 
to enter glycolysis [6, 9, 10]. Consistently, 
GLUT1-deficient B cells are defective in Ab pro-
duction [6]. Similarly, 2-deoxyglucose (2-DG) 
treatment inhibits LPS-activated B cell prolifera-
tion as well as Ab production [8]. The resultant 
pyruvate derived from glycolysis then enters 
mitochondria and undergoes Krebs (TCA) cycle 
and OXPHOS not only to enhance energy pro-
duction as the form of ATP but also to provide a 
large pool of citrate for intrinsic lipogenesis cata-
lyzed by ATP citrate lyase (ACLY). The newly 
produced lipids contribute to membrane synthe-
sis during B cell growth and division [11].

Lipid and protein metabolism also fulfills 
energy supply and supports B cell function. Fatty 
acid oxidation also generates pyruvate, which 
enters the TCA cycle to feed OXPHOS and pro-
duce ATP [5]. Proteins can also function as a car-
bon source. The hydrolyzed individual amino 
acids participate in parts of the TCA cycle and 
generate ATP [5]. On the other hand, serine 
metabolism also contributes to lipid synthesis. 
Serine is generated from glucose-derived 
3- phosphoglyceric acid and enters the one- carbon 
metabolism pathway, which means a one-carbon 
unit from serine is processed through methionine 
and folate cycles to contribute to lipid, nucleo-
tide, and protein synthesis. This pathway also 
generates products that are crucial for methyla-
tion reactions as well as redox reactions. How 
serine and serine-derived one-carbon metabolism 
involves the regulation of tumor and immunity is 
investigated [12, 13].

B1 B cells, tissue-resident and innate-like, dis-
play distinct development and metabolic patterns 
from abovementioned B2 B cells [14], which is 
the center of humoral immunity and the main 
source of glycosylated Abs. B1 B cells exist from 
fetal and neonatal stages, and the subsequent 
expansion is mainly through self-renewal [15], 
although there is rare potential that B1 B cells 
originate from BM B1 progenitors [16]. Similar 
to B2 cells, B1 cells have a potent requirement 
for lipogenesis de novo, potentially from glyco-

lytic product citrate by ACLY. However, B1 cells 
exhibit higher levels of glycolysis as well as 
OXPHOS and the subsequent TCA cycle- coupled 
fatty acid synthesis compared to B2 cells [14].

9.1.1  Transcriptional Regulation 
of B Cell Metabolism

The transcriptional regulation for peripheral B 
cell destiny still needs further investigation, 
although for early-stage differentiation, it is rela-
tively well-known.

Among the critical B cell transcription factors, 
c-Myc plays an important role in B cell prolifera-
tion, clonal expansion, and fate determination 
[17, 18], contributing to an expression of effec-
tors involved in nutrient uptake and mTOR acti-
vation [19]. c-Myc is essential for B cell positive 
selection in the germinal center (GC). c-Myc is 
expressed in a small portion of B cells in the light 
zone of the GC [20], where mesenchyme- 
originated follicular dendritic cells capture 
immune-complex and facilitate B cell recogni-
tion of antigen by B cell receptor [21]. The 
c-Myc-expressing cells are characterized by 
upregulated genes critical to glycolysis and nutri-
ent sensing [22]. Also, c-Myc is modestly crucial 
for LPS-triggered glutamine oxidation increase 
while antagonizing LPS-mediated downregula-
tion of fatty acid oxidation and pyruvate oxida-
tion [6]. In addition, c-Myc induces transcription 
factor AP4, which is essential for T-B interaction 
in the light zone of GC through IL-21 signaling 
and for the subsequent GC B cell division in the 
dark zone of the GC [23].

Nuclear factor-κB (NF-κB), the key regulator 
of inflammatory immune response and cytokine 
production, is suggested to be involved in the regu-
lation of B cell metabolism and proliferation via a 
TRAF3-NIK-NF-κB axis [24]. Tumor necrosis 
factor (TNF) receptor-associated factor-3 
(TRAF3) plays a critical role in B cell metabolism. 
TRAF3-deficient B cells present unusually 
increased expression of key genes that are involved 
in the early phase of glycolysis, such as genes 
encoding GLUT1 and hexokinase-2. In addition, 
this kind of B cells increases mitochondrial respi-
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ration, but does not increase reactive oxygen spe-
cies generation [25]. B cell full activation demands 
co-stimulation through CD40-B-cell activating 
factor (BAFF) receptor pathway, which triggers 
the degradation of TRAF3 and the buildup of 
NF-κB-inducing kinase (NIK) [26]. The latter 
leads to translocation of NF-κB into the nucleus, 
where the transcription of target genes is activated. 
Double knockout of TRAF3 and NIK causes a low 
level of GLUT1 expression and reduced mature B 
cell counts [25]. Consistently, when activated by 
LPS, BAFF-exposed naïve B cells display 
increased glucose uptake as well as a relatively 
higher basal mitochondrial activity [6]. The above 
findings indicate that NF-κB is involved in the 
regulation of glucose uptake [25] and that B cell 
co-stimulation plays a role in B cell metabolic 
reprogramming [24].

The transcription factor Bcl6 is highly 
expressed in both GC B cells and follicular helper 
T (Tfh) cells, induced by multiple co-stimulatory 
molecules between B and T cells, including 
IL-21 [27–29]. It has been reported that Bcl6 
suppresses glycolysis in macrophages [30], 
therefore may have to be overcome by c-Myc 
[20, 22, 31] and hypoxia-inducible factor (HIF) 
in the GC.

The light zone of GC provides a hypoxic envi-
ronment, which is also related to B cell metabo-
lism [32]. HIF1 and HIF2 evoke glycolysis 
through aldolase A, M2 isoform of pyruvate 
kinase, and phosphoglycerate kinase 1 [33]. 
Although HIF and c-Myc both actuate glycolysis 
[34], HIF represses c-Myc activity [23, 35]. 
c-Myc promotes mitochondrial biogenesis [36], 
while HIF inhibits Krebs cycle and respiration 
[37]. Given that c-Myc evokes expression of 
effectors related to mTOR activation [19], HIF 
also suppresses mTOR1 activity [23, 35]. HIF-1α 
not only regulates expression of genes associated 
with glycolysis in response to limited oxygen 
environment but also controls B cell development 
and activity in a stage-specific pattern [38, 39]. It 
is reported that lack of HIF-1α results in decreased 
expression of phosphofructokinase (Pfkfb3) and 
glucose transporters, which obstructs the devel-
opment from pro- to pre-B cell stage in the BM 
[40]. Also, HIF-1α sustains the energy require-

ment of the Ag-exposed B cells in the GC [41]. In 
addition, hypoxia potentially promotes plasma 
cell fate determination [32], which may be due to 
the HIF-regulated lrf4 gene [42].

IRF4 is critical to plasma cell differentiation 
and GC response [43]. It is expressed in resting B 
cells at a low level to promote survival, and its 
expression is elevated inconsistent with the 
strength of activation signals stimulated by Ag, 
cytokines, or TLR ligands. The majority of IRF4- 
targeted genes may be co-regulated by c-Myc 
since they bear AP1-IRF4 composite sites [42]. A 
small amount of IRF4+c-Myc+ cells exist in the 
GC and may be the outcome of asymmetric divi-
sion to generate plasmablasts [20, 22, 44].

The c-Rel transcription factor is also expressed 
at a relatively high level upon B cell activation, 
inducing lrf4 expression [45]. It is involved in the 
metabolic regulation that fulfills the energy 
demands of proliferating GC B cells [46]. c-Rel 
translocation is PI3K-dependent and only hap-
pens in a small amount of GC B cells, which may 
be the ones facilitated by T cells [47].

Bach2, Foxo1, and Pax5 act similarly to Bcl6 
and inhibit plasma cell differentiation [48], while 
E2A and E2–2 are committed to GC response 
and plasma cell differentiation [49, 50]. In addi-
tion, Pax5 has been reported that it inhibits 
metabolism in early B cells [51]. The combined 
findings indicate that the transcription factors 
regulating B cell metabolism remain to be 
revealed.

B1 B cells exhibit significantly higher gene 
expression associated with glycolysis and lipid 
metabolism as well as lipid storage, compared to 
B2 B cells [14].

9.2  Tumor-Associated B Cell 
Populations

B cells are commonly found in tumor-draining 
lymph nodes, and less commonly at the invasive 
margin of tumors, or infiltrated into the tumor 
mass. A closer look at tumor-related B cells 
revealed that B cells exist in different forms, from 
nonstructured immune cell aggregates to struc-
tured ones, i.e., tertiary lymphoid structures 
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(TLS). TLS is induced in chronic inflammations 
including cancer, autoimmunity, and organ trans-
plant and resembles follicles of the second lym-
phoid organs. In cancer, TLS localizes at the 
tumor periphery and, less frequently, inside the 
tumor.

9.2.1  B Cells with Antitumor 
Function

The presence of certain B cells in the tumor has 
been associated with a better prognosis. Earlier 
studies found that in some breast or ovarian can-
cer patients, tumor infiltrated B cells were associ-
ated with a good prognosis [52]. Later, TLS that 
contains a GC was found to be correlated with 
improved survival in multiple cancer types. The 
prognostic significance of the tumor-related TLS 
was reviewed in depth by Sautès-Fridman et al. 
[53]. Originally discovered in hepatocellular car-
cinoma, numerous studies found that B cells/
GCs’ presence in the TLS correlated with pro-
longed survival in other types of cancers, includ-

ing non-small cell lung cancer, colorectal cancer, 
pancreatic cancer, oral squamous cell carcinoma, 
invasive breast cancer, etc. Since B cells initiate 
TLS formation, these discoveries highlighted B 
cell roles in patients’ survival. The two scenarios 
of tumor-associated B cells are summarized in 
Fig.  9.2: presence of B cells with mature TLS 
containing GC, or with less organized cell aggre-
gates without GC (immature TLS). It should be 
noted that the broad classification of TLS pre-
sented here is an oversimplified model, as there 
are immune “cold” tumors and more variety of 
tumor-associated B cells.

Very recently, the presence of B cells in the 
TLS has been found to correlate with immuno-
therapy success [54–56], indicating that B cells 
play a critical role in immunotherapy success. In 
searching for predictors for patients’ outcome 
after immune checkpoint blockade (ICB), the B 
lineage signature has been found to be the stron-
gest predictor for survival in a cohort of sarcoma 
patients [56]. Corroborating this finding, in 
another cohort of melanoma patients treated with 
ICB, a TLS associated gene signature predicted 
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Fig. 9.2 Mature or immature TLS and tumor-associated 
B cells. A schematic of various tumor-associated B cell 
populations and TLS. The existence of mature B cells in 
tumors featuring germinal centers is associated with better 
prognosis, where B cells are selected and differentiated 

and correlated with better prognosis in multiple cancers. 
Immature TLS are unstructured cell aggregates. B cells 
and TLS signature are more prominent in responders ver-
sus nonresponders of immunotherapy. Memory B cells 
and regulatory B cells are associated with tumor, too
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patients’ survival [54]. Furthermore, the B cells 
and TLS signatures are more prominent than T 
cell signatures for discerning between the 
responders and the nonresponders to neoadjuvant 
ICB for melanoma [55]. These findings confirm 
the critical roles played by B cells/TLS in antitu-
mor immunity and immunotherapy.

Circulating plasmablasts, a type of mature B 
cells that circulate back to the BM or reside in the 
chronic inflammation sites, were found increased  
in patients with metastatic but non-progressing 
melanoma, lung adenocarcinoma, or renal cell 
carcinoma. In these non- progressing cancer 
cases, clonal affinity matured B cells exhibited 
progressive class switch, and recombinant anti-
bodies from clonal families were able to bind 
non-autologous tumor tissue/cell lines and caused 
tumor regression in syngeneic mouse tumor 
models [57], indicating that B cells contributed to 
control the disease progression in these patients.

B1a cells, an innate-like B cell population, 
were essential for protection induced by toll-like 
receptor and C-type lectin receptor agonist pair-
ing of monophosphoryl lipid A (MPL) and 
trehalose-6,6′-dicorynomycolate (TDCM) treat-
ment in a mouse model. MPL/TDCM treatment 
effectively inhibited tumor growth and ascites 
development in this mouse model of aggressive 
mammary cancer-induced peritoneal carcinoma-
tosis. B1a cells were enriched in the peritoneal 
cavity and deficient in mice lacking CD19. MPL/
TDCM treatment effects were not observed in 
mice lacking CD19, and adoptive transfer of B1a 
cells restored the protective effects [58].

Atypical B cell populations with protective 
effects are found in breast cancers, too. ICOSL+B 
cells (ICOSL + CR2highIL – 10 – CD20 + CD38 
+ CD27 + IgA – IgD-) emerged after chemother-
apy in breast cancer patients and correlated with 
better therapeutic effect and prognosis [59]. 
CD40 signals in GC B cells upregulated ICOSL 
in these cells, which in turn promoted interaction 
with follicular T cells and the GC selection pro-
cess, forming a feed-forward loop [60].

All the abovementioned pieces of evidence 
point to certain B cell function in antitumor 
immunity. Producing antibodies, secreting anti-

tumor cytokines, and serving as antigen- 
presenting cells are examples of how B cells can 
help to improve antitumor immunity. Moreover, 
B cells can secrete granzyme and directly kill 
tumor cells. The field of B cells’ role in antitumor 
immunity is wide open and booming, and more 
findings on B cells’ function are sure to be 
revealed.

9.2.2  B Cells with Pro-tumor or 
Unknown Function

Regulatory B cells expressing IgA and IL-10 
were discovered in certain mouse cancer mod-
els. Liver-resident cells producing IgA, express-
ing IL-10, and PD-L1 directly suppressed CD8+ 
T cell activity [61]. Plasmocytes accumulation 
in this model depended on PD-L1-PD1 interac-
tion, indicating that follicular T cells were 
involved, probably in TLS GC. B cells express-
ing IgA, IL-10, PD-L1, and FasL have been 
shown to suppress antitumor immunity induced 
by the chemotherapy drug oxaliplatin in mouse 
prostate cancer models with large tumors, and 
removal of these cells restores oxaliplatin’s 
activity [62].

B cells accumulated in tumor-draining lymph 
nodes in a mouse breast cancer model and facili-
tated tumor metastasis to the lymph nodes. In this 
spontaneous metastasis model, these B cells pro-
duced IgG specifically targeting glycosylated 
membrane protein HSPA4. This IgG bound to 
HSPA4 and activated the HSPA4-binding protein 
ITGB5, which in turn evoked downstream Src/
NF-κB pathway in tumor cells, promoting 
CXCR4/SDF1α-axis-mediated metastasis. High 
serum anti-HSPA4 IgG correlated with high 
tumor HSPA4 expression and poor prognosis of 
breast cancer subjects [63].

How B cell populations affected antitumor 
immunity varies in different types of cancers. 
Analysis of the RNA sequencing data from The 
Cancer Genome Atlas database revealed that 
gene expression signatures of B cells correlated 
with good prognosis in melanoma, lung adeno-
carcinoma, pancreatic adenocarcinoma, and head 
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and neck squamous cell carcinoma patients, but 
with poorer survival in renal tumor patients [64]. 
A recent review on B cells, plasma cells, and can-
cer was published by Sharonov et  al. and pro-
vided a comprehensive summary of B cell 
involvement in cancers [65].

In the complex tumor microenvironment 
(TME), B cell populations with unknown func-
tions have been discovered. Mature CD27−IgG+ 
memory B cells were found in human ovarian 
and liver cancer samples, expressing antigen- 
presenting cells surface markers (MHC Class 
II, CD40, CD80, and CD86), and cooperated or 
co-localized with CD8+ T cells [66, 67]). 
Circulating memory B cells significantly 
increased in breast cancer patients [68], with 
unknown prognostic significance. In glioblas-
toma, lymphocytes with both T and B markers 
were detected [69], corroborating that the tumor 
microenvironment promoted aberrant immune 
cell development.

9.3  Fatty Acid Oxidation 
in Germinal Center B Cells

Just as our understanding of B cells’ function in 
tumors is limited, our knowledge of their lipid 
metabolism is even scarce. Lipid metabolism in 
tumor-related B cells is an ongoing research topic 
with few published studies. To provide the read-
ers with some clues in this subject, here we sum-
marized mainly discoveries on normal B cell 
lipid metabolism, focusing on fatty acid oxida-
tion in germinal center B cells. Cautions shall be 
taken when postulates from observations made in 
normal B cells, as tumor microenvironment poses 
unique challenges for B cells, including but not 
limited to hypoxia, possible acidosis, limited 
nutrients, etc. [70].

In healthy people, B cells can be activated in 
the secondary lymphoid organs including the 
spleen, lymph node, Peyer’s patches, mucosal- 
associated lymphoid tissue, etc. In these organs, 
B cells are activated upon antigen binding in the 
primary follicles; start to proliferate, forming a 
secondary follicle; and then become a GC.

Quiescent B cells (Naive B, memory B, and 
long-lived plasma B cells) have a low energy 
demand and mainly adopt OXPHOS. Once acti-
vated, B cells start proliferation and greatly 
increase their energy demand. Glucose uptake is 
increased and mainly used for the synthesis of 
ribonucleotides. Glutamine contributes to the 
TCA cycle and subsequently provides building 
blocks by connecting to the pentose phosphate 
pathway. An earlier study has discovered that in 
the terminal differentiation phase, murine B cells 
express CD36, a fatty acid importer under control 
of the transcription factor Oct2, indicating the 
importing of fatty acids at the final stage of B cell 
differentiation [71].

The GC is a microstructure found in all sec-
ondary lymphoid organs, composed of the light 
zone and dark zone. In the light zone, B cells 
encounter the follicular dendritic cells that cap-
ture immune-complex associated antigen and 
compete for antigen stimulation based on their 
BCR affinity, followed by a competition for a 
limited pool of follicular T cells. B cells success-
fully passing the light zone selection move into 
the dark zone, proliferate, and induce the enzyme 
activation-induced cytosine deaminase (AID), 
and the BCR locus undergoes a high rate of 
somatic mutation (SHM). B cell clones with a 
high affinity for antigens emerge and further 
mature into plasmablasts or memory B cells.

Previously GC B cells have been thought to 
mainly adopt glycolysis pathway to fulfill their 
energy needs; however, a recent discovery identi-
fied fatty acids as the major fuel for GC B cells 
[72]. GC B cells adopted fatty acid oxidation for 
energy and minimally glucose uptake compared 
to activated splenic B cells, GC follicular T cells, 
and activated CD4+ T cells. When palmitate was 
supplied in the culture medium, GC B cells pro-
duced a large amount of acetyl-CoA with little 
lactate. Cancer GC B cells are associated with 
better prognosis and immunotherapy success, 
and whether they rely on fatty acid oxidation 
warrants further investigation.

As introduced in Sect. 10.1, GC can be divided 
into the more hypoxia light zone and the less 
hypoxia dark zone. It’s reported that FOXO1 
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plays a critical role in the formation and/or main-
tenance of the dark zone where B cells proliferate 
and undergo somatic hypermutation [2]. FOXO1 
promotes fatty acid oxidation in cells, and 
whether FOXO1 also exerts similar effects in GC 
B cells warrants further investigation.

9.4  Factors that May Affect 
Tumor-Associated B Cell 
Lipid Metabolism

B cells adapt to the environment by responding to 
various factors, such as direct interaction with 
other immune cells, cytokines, hypoxia, and sig-
naling molecules like oxysterols, just to name a 
few. Tumor microenvironment challenges B cells 
to differentiate and function normally: hypoxia 
and local deprivation of nutrients like glutamine, 
glucose, tryptophan, arginine, etc. could interfere 
with B cell maturation.

9.4.1  Hypoxia

Hypoxic gradients in GC are important for nor-
mal B cell maturation, and accumulating evi-
dence indicate the Goldilocks conditions applied 
to GC B cell requirement of hypoxia: the hypoxia 
gradient in the GC has to be “just right” for suc-
cessful B cell maturation. The main hypoxia sen-
sors in the cell are transcription factors named 
hypoxia-inducible factors (HIFs). HIFs regulate 
multiple cellular pathways including cellular 
metabolisms to adapt to hypoxia stress. It’s 
known that consistent HIF1α stabilization by B 
cell-specific VHL deletion results in B cell prolif-
eration, decreased antigen-specific GC B cells, 
and impaired the generation of high- affinity IgG 
antibodies [73]. Whether/how the “right” GC 
hypoxia gradient is achieved in the tumor micro-
environment is unknown.

HIF1α is known to induce glycolysis; increase 
fatty acid uptake, lipogenesis, and storage; and 
reduce its oxidation in cells. In the hypoxia 
tumor microenvironment, sustained activation of 

HIF1α in cancer cells inhibits fatty acid oxida-
tion [74]. It has been reported that GC B cells 
increase glycolysis and mitochondria biogenesis 
via HIF and GSK3B, respectively [32]. The very 
recent discovery of fatty acid oxidation as the 
major energy fuel in GC B cells indicated that 
other transcription factors regulated the meta-
bolic reprogramming. Both FOXO1 and Bcl6 
could regulate this metabolic reprogramming, 
for FOXO1 is known to activate fatty acid oxida-
tion, while Bcl6 is known to repress glycolysis 
in other cell types [30].

9.4.2  Nutrients Competition

Fatty acids in the tumor microenvironment are 
taken up by cells expressing fatty acid importers, 
for example, B cells and cancer cells with metas-
tasis potential. Metabolic symbiosis exists in 
colon-rectal cancer regarding fatty acids: cancer- 
associated fibroblast stock up fatty acids and 
release them into the extracellular space, which 
are then taken up by cancer cells [75]. For GC B 
cells, a possible source of fatty acids is for the B 
cells, which undergo apoptosis due to insufficient 
receptor affinity. The relatively enclosed GC 
environment might provide some insulation for 
GC B cells against the metabolic competition in 
the tumor microenvironment. In contrast, tumor 
infiltrated T cells could face bigger metabolic 
challenges as activated T cells rely on glycolysis 
and must compete for glucose in the tumor 
microenvironment.

As an integral part of the metabolism network, 
fatty acid oxidation is affected by other metabo-
lism pathways, and one of them is glutamine 
deficiency. Regional glutamine deficiency often 
occurs in tumor core and leads to a lack of 
α- ketoglutarate, which in turn leads to hyper-
methylation of histones in cancer cells, because 
histone demethylase JMJD3 requires 
α- ketoglutarate as a cofactor for removing methyl 
groups on H3k27 [76]. Whether this glutamine 
deficiency impairs the fatty acid oxidation in B 
cells is unknown.
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9.5  Lipid Metabolites that Affect 
B Cell Function

9.5.1  Cholesterol

Cholesterol is synthesized in the liver and trans-
ported to other tissues as low-density lipopro-
tein, taken up by the cells via lipoprotein 
receptors. Cholesterol can be synthesized from 
HMG-CoA derived from acetyl-CoA, via the 
cholesterol biosynthesis pathway. Mevalonate 
is synthesized from HMG-CoA, and then farne-
syl pyrophosphate (FPP) is synthesized and fur-
ther converted into different signaling 
metabolites: (1) FPP is converted into geranyl-
geranyl pyrophosphate (GGPP), which prenyl-
ates important protein targets including small 
GTPase Rac, Rho, Rab, etc. (2) FPP is further 
metabolized to cholesterol and eventually gen-
erates either steroids or oxysterols, both are 
important signaling molecules. A summary of 
cholesterol metabolism and related B cell func-
tions is shown in Fig. 9.3.

9.5.2  Geranylgeranyl 
Pyrophosphate

GGPP regulates cellular processes via posttrans-
lational modification of important protein targets 
in B cells. GGPP drives the IL-10 production of 
regulatory B cells via PI3K-Akt signaling, reveal-
ing the critical roles played by cholesterol metab-
olism in regulatory B cells [77]. On the contrary, 
in autoimmunity-related disease and graft- 
versus- host disease, GGPP is important for 
CD40-mediated B cell activation [78]. How 
GGPP regulates tumor-associated B cells is an 
intriguing question, especially when considering 
potential cancer therapy with mevalonate path-
way inhibition.

Mevalonate pathway is an important cancer 
therapy target as cancer cells rely on it for sur-
vival (reviewed by [79, 80]). Very recently, it’s 
found that PTEN mutates cancer cells and 
t(4;14)-positive multiple myeloma cells generate 

GGPP via the mevalonate pathway, and statin 
kills these cells by decreasing GGPP [81, 82].

While statin starves cancer cells by decreas-
ing GGPP, it also interferes with B cell activa-
tion [83]. Given that B cell expresses increased 
cholesterol biosynthesis enzymes upon activa-
tion by CD40-CD40L, and the important role 
of GGPP in CD40-mediated cell activation, 
statin’s inhibitory effects in B cells might not 
be a direct consequence of reduced cellular 
cholesterol level, but of reduced GGPP. 
Treatment schemes have to be carefully 
designed to avoid statins’ immune-suppressive 
effects when combining statin and immuno-
therapy in cancer treatment.

9.5.3  Oxysterol

Oxysterols are oxygenated derivatives of choles-
terol and can be generated by cholesterol metabo-
lism pathway or ingested from the diet. Oxysterols 
affect many cellular functions by binding to dif-
ferent proteins such as liver X receptors, oxys-
terol-binding proteins, ATP- binding cassette, etc. 
Accumulating evidence suggests that oxysterols 
play roles in cancers, including breast, prostate, 
colon, and bile duct cancers, which is nicely 
reviewed by Kloudova et al. [84].

Two oxysterols, 7α,25-dihydroxycholesterol 
(7a,25-HC) and 7α,27-dihydroxycholesterol 
(7a,27-HC), are ligands for a G protein-coupled 
receptor EBI2, also named as GPR183. Various 
immune cells express EBI2, including B cells. 
Oxysterols direct B cell migration via binding 
to EBI2 [85], and the oxysterol gradient gener-
ated by lymphoid stromal cells guides activated 
B cell migration [86]. EBI2 and 7α,25-HC defi-
ciency both cause defective antibody responses. 
The function of the oxysterol-EBI2 axis in 
immune cells is comprehensively reviewed by 
Cyster et al. [87].

Recently, it’s found that the EBI2-oxysterol 
axis promotes the development of intestinal lym-
phoid structures and colitis [88]. Since TLS 
resemble follicles of secondary lymphoid organs, 
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the control of TLS development in cancer could 
be affected by oxysterols, too.

9.5.4  Short-Chain Fatty Acids

Butyrate and propionate are short-chain fatty 
acids generated by gut microbiota when ferment-
ing dietary fibers, and both serve as histone 
deacetylase inhibitors. Previously it’s reported 
that short-chain fatty acids increase acetyl-CoA 
production, glycolysis, mitochondrial respira-
tion, and the production of lipid droplets in pri-
mary mouse B cells, indicating that these 
metabolic changes may aid in antibody produc-
tion [89]. Recently, it’s reported that by acting as 
HDAC inhibitors, butyrate and propionate can 
enhance or impair B cell antibody responses [90] 
in human and mouse B cells, depending on the 
doses. Low-dosage short-chain fatty acids mod-
erately enhance class-switch DNA recombina-
tion (CSR), while higher doses of SCFAs 
decrease AID and Blimp1 expression, CSR, 
somatic hypermutation, and plasma cell 
differentiation.

9.6  Future Directions

Contrary to T cells, researches on the function 
and metabolisms of tumor-associated B cells 
only now start to gather momentum. Many ques-
tions remain open. What are the regulatory mech-
anisms controlling GC initiation/development in 
the tumor? How does the immune checkpoint 
blockade therapy affect tumor-associated B cells 
in metabolism reprogramming? In the often 
nutrient-depleted tumor microenvironment, how 
does TLS secure enough substrate to sustain its 
energy symbiosis? Do tumor-associated GC B 
cells utilize fatty acid oxidation to fulfill their 
energy needs? If so, how does it maintain redox 
balance and prevent lipid peroxidation/
ferroptosis?

Technology advances have paved the way for 
answering these questions. Single-cell mass 
spectrometry (SCMS) can be applied for detect-

ing lipid metabolites in a minimal amount of tis-
sue/cell samples. For measuring metabolites in 
tumor-associated B cells, it’s crucial to main the 
target cells in its native environment, i.e., tumor- 
associated GC/TLS, and quenching of the fresh 
cancer samples followed by mass imaging is an 
option. For peripheral B cells in cancer patients, 
MS methods established for circulating tumor 
cells shall be easily adopted [91]. Emphasis 
should be put on the metabolic symbiosis of the 
tumor-associated GC/TLS, as these microstruc-
tures determine immunotherapy success.
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