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Abstract

Myeloid-derived suppressor cells (MDSCs) 
are a heterogenous population of myeloid 
cells with immature phenotypes and immuno-
suppressive functions. This population of cells 
has been extensively studied over the past 
decade owing to an increasing recognition of 
their pivotal role in pathological conditions 
including cancers, infectious diseases, sep-
sis, and autoimmune diseases. Various treat-
ments targeting MDSCs are currently under 
development or in clinical trials with the aim 
to restore functional immunity against tumors 
or pathogens. Recent advances in immune 
metabolism demonstrate the role of meta-
bolic pathways, especially lipid metabolism, 
in the differentiation and function of MDSCs 
in tumor environments. Therefore, a compre-
hensive understanding of lipid metabolism in 
MDSCs would facilitate the development of 

novel therapies against tumors through meta-
bolic reprograming of MDSCs.
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7.1	 �Lipid Metabolism 
and the Origin of MDSCs

Lipid metabolism involves lipid catabolism and 
anabolism, providing energy and substrate to sus-
tain cellular activities. Lipid metabolism begins 
with food digestion to breakdown triglycerides into 
fatty acids, glycerol, and cholesterol by lipases. 
Small intestinal epithelial cells absorb fatty acids 
and monoglycerides to reassemble into triglycer-
ides. Subsequently, triglyceride and cholesterol are 
packed with lipoproteins to form lipid transport 
complexes like chylomicrons, which travel into the 
blood circulation [1]. When lipid transport com-
plexes move across tissues, capillary endothelial 
cells release and breakdown triglycerides into fatty 
acids and glycerol for consumption in metaboliz-
ing cells [2]. Glycerol participates in glycolysis or 
gluconeogenesis mostly in the cytosol of liver cells 
whereas fatty acids are stored mainly in the form of 
triglycerides or used through fatty acid beta-oxida-
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tion (FAO) for energy [3]. Long-chain fatty acids 
are transported via carnitine palmitoyltransferase 
system from cytosol to mitochondrial where the 
FAO takes place. The sequential removal of two 
carbon units from a beta position of fatty acyl-CoA 
molecules produces acetyl-CoA, a key intermedi-
ate for carbohydrate, protein, and lipid metabolism. 
Acetyl-CoA sustains tricarboxylic acid cycle (TCA) 
and oxidative phosphorylation (OXPHOS) [4]. 
If fatty acids are completely oxidized to CO2 and 
water, they yield the highest ATP on an energy per 
gram basis compared to carbohydrates and proteins. 
On the contrary to FAO, fatty acid synthesis com-
mences with carboxylation of acetyl-CoA derived 
from citrate in cytosol into malonyl CoA by acetyl 
CoA carboxylase 1 (ACC-1). Malonyl CoA in turn 
potently inhibits the carnitine palmitoyltransfer-
ase 1 (CPT-1) activity, the rate-limiting enzyme in 
FAO. Condensation of malonyl CoA to acetyl CoA 
and another seven cycles of reaction to produce a 
saturated long-chain fatty acid palmitate by fatty 
acid synthase. De novo synthesized fatty acids and 
intermediates of other metabolic pathways partici-
pate in the generation of other lipids or incorporated 
into triglycerides for lipid droplet formation.

Tissue-specific metabolic environment has a 
great influence on the hematopoiesis and periph-
eral immune homeostasis. Take bone marrow 
(BM) as an example (Fig. 7.1), adipocytes occupy 
up to 70% of adult BM cavity and thus make BM 
the third largest fat depot in the body behind sub-
cutaneous and visceral fat [5]. These cells are not 
just “space fillers” [6], but rather metabolically 
active and release fatty acids from triacylglycerol 
droplet into hematopoietic milieu, therefore cre-
ating a lipid rich microenvironment for hemato-
poietic cells [7]. While long-term hematopoietic 
stem cell (LT-HSC) relies on anaerobic glycoly-
sis for energy [8], short-term HSC (ST-HSC) 
and committed progenitors live on FAO for self-
renew and differentiation [9]. When LT-HSCs 
differentiate, the expression of genes related to 
lipid metabolism became increasingly vigorous. 
HSC numbers in BM of mice and human increase 
with age, partially due to loss of quiescence for 
LT-HSCs and enhanced proliferation of ST-HSCs 
[10, 11]. A similar observation was reported in 
diet-induced obesity mice [12]. Moreover, aged 

and obese mice manifest biased hematopoiesis 
toward myeloid lineages and reduced lymphoid 
progenitors [13, 14]. Excessive accumulation of 
fat content in the marrow with aging and obesity 
is thought to contribute to this altered hema-
topoiesis through lipolysis of triglycerides in 
adipocytes. Indeed, fatty acids released from BM 
adipocytes are utilized by leukemic blasts via 
fatty acid-binding protein (FABP)-4, supporting 
the survival and proliferation of acute myeloid 
leukemia blast cells [15]. As such, lipid-rich BM 
microenvironment may favor the hematopoiesis 
toward myelopoiesis through metabolic repro-
gramming of HSC for FAO.

Myeloid-derived suppressor cells (MDSCs) 
(mouse: CD11b+ Gr1+; human: CD11b+ CD33+ 
HLA−DR−/lo) are immunosuppressive myeloid 
cell populations first described in tumors, sub-
sequently identified in chronic inflammation, 
and recently in neonates [16–19]. Inhibition 
of MDSC mediated suppression of innate and 
adaptive immunity is crucial for effective immu-
notherapy against tumor and pathogens. Based 
on surface markers, MDSCs resemble neutro-
phils and monocytes with immature phenotypes, 
thus can be further divided into PMN-MDSCs 
(mouse: Ly6G+Ly6C−/lo; human: CD15+CD14−) 
and M-MDSCs (mouse: Ly6C+/hiLy6G−; human: 
CD14+CD15−) subpopulations, respectively 
[20]. The origin of MDSCs is still under debate. 
Initially, MDSCs are proposed as myeloid pre-
cursors blocked from differentiation in BM and 
recruited by chemokines secreted from tumor 
cells. This hypothesis is supported by in  vivo 
experiments that all-trans retinoic acid and 
vitamin D3 drive the immature myeloid cells 
in tumors into functional macrophages, granu-
locytes, and DCs [21, 22]. However, recent 
studies challenge this theory by demonstrating 
that monocytes and neutrophils are plastic and 
acquire immunosuppressive function within 
tumor microenvironment (TME) [23]. In any 
case, both hypotheses acknowledge the role of 
TME in the development of MDSCs. Although 
cytokines secreted by tumor cells have been indi-
cated in the manipulation of myelopoiesis in BM 
or TME [24, 25], accumulating evidence points 
that metabolic reprogramming of MDSCs from 
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glycolysis to FAO and OXPHOS by tumor cells 
play a pivotal role in the generation and function 
of MDSCs. Besides tumor tissues, MDSCs also 
accumulate in adipose tissue and bone marrow, 
two other lipid-rich environments. It has been 
reported that MDSCs are elevated in obese indi-

viduals, as well as in spleen and adipose tissue 
in obese mice. The level of MDSCs in adipose 
tissue of mice on a high-fat diet is 1.5–3 times 
higher than their lean counterparts [26]. As dis-
cussed above, bone marrow of obese and aged 
individuals also harbors a large reservoir of 
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Fig. 7.1  Lipid metabolism and the origin of MDSCs. (i) 
LT-HSC relies on anaerobic glycolysis for energy, while 
ST-HSC and committed progenitors live on FAO for 
energy. (ii) During LT-HSC differentiation, the expression 
of lipid metabolism-related genes increases, accompanied 
by a decrease in the expression of glycolysis-related 
genes. (iii) Aging or obesity would lead to an increase in 
adipocytes and fatty acids in BM, forming a lipid-rich 
microenvironment. In the BM of aged and obese human or 
mice: (iv) the quiescence of LT-HSC is disrupted and 

ST-HSCs prefer to differentiate into myeloid progenitors, 
accompanied by a metabolic switch from glycolysis to 
FAO and OXPHOS for energy supply. (v) Immature 
myeloid cells accumulate and generate immunosuppres-
sive MDSCs. MDSC Myeloid-derived suppressor cells, 
LT-HSCs Long-term hematopoietic stem cells, ST-HSCs 
Short-term hematopoietic stem cells, FAO Fatty acid beta 
oxidation, BM Bone marrow, OXPHOS Oxidative 
phosphorylation
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immature myeloid cells. These evidence together 
suggest that tissue-specific lipid microenviron-
ment greatly impacts MDSC generation.

7.2	 �Influence of TME on MDSC 
Energy Metabolism

Four distinct mechanisms are employed by 
MDSCs in TME to promote tumor growth and 
metastases: (a) suppression of tumor-specific 
immunity, (b) establishing a TME to benefit 
tumor growth, (c) facilitating tumor metastasis, 

(d) induction of tumor stem cell and promotion 
of epithelial-to-mesenchymal transition [27]. In 
TME, factors determining MDSC expansion, 
differentiation, migration, and immunosuppres-
sion, include cytokines and growth hormones 
(e.g., PGE2, TGF-β, GM-CSF, IL-6, and IFN-γ), 
low PH, hypoxia, and nutrient availability [28]. 
These triggers participate in shaping MDSC 
functions by exploiting their plasticity and 
reprogramming their metabolic fate [29]. Below, 
we discuss the key metabolic features in TME 
and its influence on the MDSC energy metabo-
lism (Fig. 7.2).
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Fig. 7.2  TME shapes the energy metabolism of MDSCs. 
(i) To meet the demand for rapid proliferation, tumor cells 
initiate a metabolic shift toward glycolysis, which is known 
as Warburg Effect. The high glycolytic rate in tumor cells 
results in massive lactate release, forming an acidulated 
microenvironment. Besides, uncontrolled proliferation of 
tumor cells and abnormal blood vessel formation cause 
hypoxia in TME. (ii) MDSCs reprogram their metabolic 
pathways toward glycolysis to compete with tumor cells for 
limited oxygen and glucose. (iii) Tumor cells enhance fatty 
acid uptake and synthesis and recruit adipocytes in TME to 
produce excessive exogenous fatty acids, which makes a 
lipid-rich environment for infiltrating MDSCs. MDSCs are 
then driven to adopt FAO as their primary energy source. 
(iv) The acidic and lipid-rich TME promotes the develop-

ment of MDSCs and enhances their immunosuppressive 
function. MDSCs consume amino acids in the TME 
through enzymes (Arg-1, IDO, iNOS, etc.) and transporters 
like Cat-2 and Xc, contributing to amino acid starvation in 
the TME, which in turn leads to inhibition of tumor anti-
gen-specific proliferation of T cells. (v) Toxic ROS/RNS 
and amino acid metabolites (polyamine and kynurenine) 
released by MDSCs induce apoptosis of T cells and pro-
mote the generation of Treg from naïve CD4 T cells. TME 
Tumor microenvironment, MDSC Myeloid-derived sup-
pressor cells, FAO Fatty acid beta oxidation, Arg-1 argi-
nase-1, iNOS induced nitric oxide synthase, IDO 
indoleamine 2,3 dioxygenase, Cat-2 amino acid transporter 
2B, Xc cysteine-glutamine antiporter, ROS reactive oxygen 
species, RNS reactive nitrogen species
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Rapid proliferation of tumor cells requires 
large amounts of ATPs and substrates to fulfill 
energetic and biosynthetic demands. As such, 
tumor cells rewire their metabolic pathway toward 
glycolysis even under aerobic condition, also 
known as Warburg Effect [30]. Although aerobic 
glycolysis is insufficient to generate ATP per unit 
of glucose compared to mitochondrial respiration, 
it generates a comparable amount of ATP within 
a given period of time [31]. Massive lactate secre-
tion from tumor glycolysis acidifies TME and 
altered the myelopoiesis to promote the genera-
tion of MDSCs [32]. Uncontrolled proliferation 
of tumor cells and abnormal blood vessel forma-
tion cause hypoxia in TME. Hypoxia stimulates 
the expression of HIF-1α in tumor-infiltrating 
immune cells, which is the downstream of PI3K-
AKT-mTOR pathway [33]. Activation of HIF-1α 
favors the glycolysis over OXPHOS by upregu-
lation of glucose and lactate transporters, along 
with glycolytic enzymes [34, 35]. This results 
in dampened lymphocyte activation and blocked 
maturation of myeloid subsets, which requires 
sufficient glucose for effector functions. Dynamic 
metabolic flux analysis (dMFA) study shows 
that MDSC maturation in TME correlates with 
a high glycolytic flux contributing to up to 95% 
of the global ATP turnover rate, demonstrating 
that developing MDSCs obtain energy primarily 
through glycolysis [36]. In addition, glycolysis 
activation by metformin or providing lactate pro-
motes the proliferation of MDSCs in TME [37]. 
Hence, MDSCs would compete with tumor cells 
for limited glucose and oxygen, but eventually 
acclimate its metabolic pathway to the available 
nutrients and hypoxia in TME.

Nitrogen metabolism of MDSCs has been 
extensively studied in the context of immunosup-
pression of T cell function in TME. Amino acids 
such as l-arginine, tryptophan, and cysteine are 
either depleted from TME by MDSCs expressed 
enzymes like Arginase-1 (Arg-1), iNOS, and 
indoleamine 2,3 dioxygenase (IDO), or seques-
tered by transporters like cationic amino acid 
transporter 2B (Cat-2) or cysteine-glutamine 
antiporter (Xc) in MDSCs [38–40]. Amino acid 
starvation leads to inhibition of tumor antigen-

specific proliferation of T cells through downreg-
ulation of CD3ζ and induction of cell cycle arrest 
at G0–G1 phase [41–43]. Moreover, products 
from amino acid metabolism such as polyamine, 
kynurenine, and toxic ROS/RNS (NO, O2−, 
H2O2, and PNT) can further induce apoptosis of 
cytotoxic CD8 T cells and promote conversion of 
naïve CD4 T cells into Tregs [43–46].

Aerobic glycolysis provides tumor cells with 
excessive carbon for de novo synthesis of nucleo-
tides, lipids, and proteins to support their uncon-
trolled proliferation. Of note, enhanced uptake 
of glucose promotes synthesis of reducing agent 
NADPH from oxidative branch of pentose phos-
phate pathway to participate in lipid synthesis [47, 
48]. As a result, reactivation of lipid biosynthesis 
and storage have been frequently reported in cancer 
tissues, especially when tumor cells outgrew tissue 
blood supply of nutrients and oxygen. Despite that 
tumor cells synthesize most fatty acids de novo 
[49], aggressive tumor cells often intermingle with 
adipocytes in TME to obtain exogenous fatty acids 
[50, 51]. Therefore, similar to BM and adipose tis-
sue microenvironment, TME is also a lipid-rich 
environment for infiltrating immune cells. We will 
discuss further on how this lipid-rich TME influ-
ences immunosuppressive function of MDSCs.

7.3	 �Lipid Metabolism 
and Immunosuppressive 
Function of MDSC

Recent studies on mouse models conclude that 
tumor-associated MDSCs upregulate FAO as a 
primary energy source as opposed to glycolysis 
to exert immunosuppressive functions, in com-
parison to peripheral myeloid cells and spleen 
MDSCs. This conclusion is supported by increased 
mitochondrial mass, fatty acid uptake via CD36, 
expression of key enzymes in FAO (CPT-1, 
acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA 
dehydrogenase), and oxygen consumption rate 
(OCR)/extracellular acidification rate (ECAR) 
ratio [52]. Of note, consistent with what has been 
observed in the mouse study, enhanced fatty 
acid uptake and increased level of FAO-related 
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enzymes in MDSCs were also detected in the 
blood and tumor from cancer patients. Along 
this line, lipid overload in MDSCs correlates 
with their suppressive function. Interestingly, 
most lipids in MDSCs are found to be oxidized 
via MPO and ROS, and the polyunsaturated 
fatty acids, which are more susceptible to oxida-
tion, could promote the suppressive function of 
MDSCs [29]. Importantly, pharmacologic inhi-
bition of FAO in mouse significantly alleviated 
tumor progression and improved antitumor out-
come of adoptive T-cell therapy. Mechanically, 
this is because pharmacologic inhibition of FAO 
decreased the production of inhibitory cytokines 
and prevented the immune inhibitory capability 
of MDSCs. Moreover, combining chemotherapy 
and pharmacologic FAO inhibition eliminated 
the immunosuppressive effects of MDSCs and 
consequently enhanced the therapeutic outcome 
[52]. Lysosomal acid lipase (LAL) is required 
for hydrolysis of cholesteryl and triglycerides in 
lysosomes to generate fatty acid for FAO. MDSCs 
in LAL-deficient mice switched from FAO to 
glucose-dependent oxidative pathway, with 
enhanced proliferation but compromised immu-
nosuppression [53]. Together, these results indi-
cate that modulating FAO activity may provide 
an interesting option to inhibit the immunosup-
pressive function of MDSCs and improve the 
outcome of clinical therapy [54].

Besides FAO for ATP supply, fatty acid syn-
thesis, lipogenesis, and lipid accumulation also 
link to suppressive function of MDSCs [55, 
56]. Gabrilovich et al. demonstrated that target-
ing key enzymes of lipid synthesis ACC-1 with 
5-tetradecycloxy-2 furoic acid (TOFA) to block 
fatty acid synthesis in MDSCs revert the suppres-
sion of T cell activation. Recently, Veglia, et al. 
identified MDSCs utilize fatty acid transport 
protein 2 (FATP-2) for transporting arachidonic 
acid and synthesizing prostaglandin E2 (PGE-2) 
to suppress T cell-mediated antitumor immunity. 
Selective inhibition of FATP2 abolished the sup-
pressive activity of PMN-MDSCs and substan-
tially delayed tumor progression in mice [57]. 
Interestingly, PGE2, a lipid mediator, generated 
by COX-2 from fatty acid arachidonic acid [58] 

was proved to promote MDSC generation in 
tumor-bearing mice [59]. And further research 
indicated that inhibiting PEG2 or COX2 could 
decrease MDSC generation and delay tumor 
progression [59, 60]. Prevention of lipid droplet 
formation in MDSC like cell line MSC-2 by dia-
cylglycerol acyltransferases impairs the immu-
nosuppression [61]. Therefore, although fatty 
acid synthesis and oxidation cannot occur under 
classical view, it appears that MDSCs adapt to 
hypoxic and nutrient-deprived TME to activate 
both metabolic pathways simultaneously to exert 
its suppressive function (Fig. 7.3).

7.4	 �Genetic and Epigenetic 
Pathways Involved in Lipid 
Metabolisms of MDSC

Although how lipid metabolism in MDSCs influ-
ences their immunosuppressive function is not 
fully understood, several signaling pathways 
have been implicated to play a role in this pro-
cess. For example, liver X receptors (LXR) are 
members of nuclear hormone receptor family 
that regulate lipid homeostasis. Their physiologi-
cal activators are oxysterols and intermediates in 
the cholesterol biosynthetic pathway. Under the 
administration of LXR agonist, PMN-MDSCs 
and M-MDSCs were effectively decreased in 
mouse models and cancer patients [62]. In addi-
tion, the LXR target gene ApoE triggers activa-
tion of cytotoxic T cells to enhance antitumor 
immune defenses [62]. Another known “lipid 
sensing” receptor is peroxisome proliferator-
activator receptors (PPARs), which are activated 
by free fatty acids, prostaglandins, and sterols. 
Several PPARs subtypes elicit the expression of 
FAO genes and coordinate cell fate and inflam-
mation. Cardiolipin, the main phospholipid in the 
inner mitochondrial membrane, promotes IL-10 
expression in MDSCs of tumor-bearing mice by 
activating PPARγ [63, 64], and the effect can be 
reversed by PPARγ inhibitor [65]. Moreover, 
PPARα agonist activated CPT and thereby 
enhanced fatty acid catabolism in melanoma-
specific CD8+ TILs, ultimately leading to delayed 
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tumor progression [66]. These studies indicate 
targeting PPAR pathways as a promising strat-
egy for rebalancing lipid metabolism in MDSCs. 
Further research supported cross-regulation 
between PPARs and LXRs pathways to increase 
atherosclerosis susceptibility and elucidated that 
activation of this regulatory network has additive 
effects in controlling ATP binding cassette trans-
porter A1 (ABCA1) expression, thereby revers-
ing cholesterol transport in macrophages [67, 
68].

Changes in lipid metabolism can also influ-
ence cell differentiation and functions by epigen-
etic modifications. For example, the phospholipid 
derivative lysophosphatidic acid (LPA) activates 
a family of GPCRs named LPAR1–6 and leads to 
recruitment of HDAC1 coincides with decreased 
histone acetylation in the TRAIL death receptors 
promoter, which ultimately promotes survival of 
cancer cells [69]. Moreover, many DNA/histone-
modifying enzymes often require cofactors and 

substrates that are also critical intermediate 
metabolites. For example, increased FAO leads 
to elevation of acetyl-CoA, which served as a 
carrier of acyl groups by histone acetyltransfer-
ases to promote open chromatin state and acti-
vate transcription. Compared with other immune 
cells, evidence to support the direct link between 
metabolites or cofactors and epigenetic regula-
tion in MDSCs is still lacking [70, 71].

Besides providing most of the acetyl groups 
on histones, fatty acids are also involved in 
another histone modification: histone acylation. 
Up till now, a variety of short and long-chain acyl 
groups have been identified covalently attached 
to a histone lysine residue, including propyl, 
butyryl, crotonyl, myristoyl, and palmitoyl. Each 
fatty acid modifying group confers distinct bio-
chemical properties that influence subcellular 
localization, intracellular trafficking, and pro-
tein–lipid interactions. A compelling study to link 
lysine fatty acylation to immune response shows 
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the role of HDAC11  in the regulation of serine 
hydroxymethyltransferase 2 (SHMT2) defatty-
acylation in type I IFN-mediated signaling [72]. 
HDAC11, the only class IV HDAC member, has 
been rediscovered as a highly potent and effi-
cient defatty-acylase of lysine as compared to 
its deacetylase activity [72]. Of note, HDAC11 
acts as a negative regulator of MDSCs expan-
sion and function [73]. A better understanding of 
the mechanisms and functional consequences of 
reversible lysine fatty acylation may provide new 
insights into regulating lipid metabolic homeo-
stasis. In the future, we expect to see the signal-
ing pathway inhibitors, epigenetic inhibitors, and 
metabolite antagonists that specifically interfere 
with the above mentioned regulatory process 
being applied in combination to manipulate the 
fate of MDSCs and its function.

7.5	 �Issues of Translating MDSC 
Knowledge from Bench 
to Bed

Although several key discoveries made in 
mouse studies have been validated on human, 
there are still differences between human and 
murine MDSCs. For example, LOX-1, a low-
density lipoprotein receptor, has been proposed 
as a candidate marker for human immunosup-
pressive PMN-MDSCs and numbers of LOX-1+ 
PMN-MDSCs correlate with cancer progres-
sion [74]. On the contrary, PMN-MDSCs from 
LOX-1 knockout mice did not exhibit differ-
ences in migration toward tumor tissue, nor in 
suppressive function against T cells compared 
to wild type PMN-MDSCs.  Moreover, Arg-1 
expression in M-MDSCs and TAMs are well 
documented in murine studies, whereas Arg-1 
is constitutively expressed in human neutrophils 
and inducible in other monocytic cells under 
disease setting [75]. Another example of these 
differences could be the fact that mice lacks 
cholesteryl ester transfer protein (CETP), which 
transferring CE from HDL toward ApoB con-
taining lipoproteins [76]. Consequently, mice 

and human display a substantially different 
plasma lipoprotein profile. These species bar-
riers might hinder the translation process from 
mouse studies to effective therapies targeting 
metabolisms of MDSCs.

Despite the success achieved in past years on 
studying lipid metabolism and mouse MDSCs, 
research on human MDSCs is still scarce and 
key questions regarding human MDSC biol-
ogy remain largely unexplored. How chronic 
tumor microenvironment influence the gen-
eration process of human MDSCs? Through 
which mechanism are they recruited to the 
tumor microenvironments? Would it be pos-
sible to manipulate human MDSC generation 
or migration toward tumor microenvironment 
through altering lipid metabolism? To address 
these questions, novel research models and tools 
are required. For instance, severe immune-defi-
cient mice engrafted with human CD34+ HSC 
develop multi-lineage human immune cells, 
which can serve as a unique platform to study 
human MDSC biology in  vivo [77, 78]. These 
humanized mouse models can be further trans-
planted with tumor cells or tissues to dissect the 
factors of TME on both the generation and the 
recruitment of MDSCs [79, 80]. Moreover, liver 
humanization protocol has succeeded in addition 
to human immune system reconstitution to create 
a double humanized mouse. These complex yet 
highly clinically relevant models would provide 
an in vivo platform to investigate the metabolic 
and immune cross-talk among human MDSCs, 
tumor, and liver (Fig. 7.4). On average, 95% of 
new cancer drug candidates failed during clini-
cal tests due to the inconsistency between murine 
and human immune systems [81] and lack of 
reliable preclinical animal models, which could 
accurately recapitulate patient tumor microen-
vironment [82]. Hence, it is critical to appreci-
ate the differences between human and murine 
MDSCs in order to accelerate therapeutic devel-
opment. With the advance of humanized mouse 
models, screening, and validation of MDSC tar-
geted therapeutics would be easier and faster in 
the future.
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