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Abstract

Lipids have many critical biological functions 
in cancer. There are characteristic changes 
of lipid metabolism and metabolites in dif-
ferent physiological and pathological pro-
cesses. Lipidomics is an emerging discipline 
of metabolomics for systematic analysis of 
lipids in organisms, tissues, or cells and the 
molecules that interact with them. With the 
development of new analytical techniques, 
especially the application and development 
of mass spectrometry techniques, the deter-
mination of lipids can be carried out quickly 
and accurately and has a high throughput. 
A large number of studies have shown that 
abnormal lipid metabolism is closely related 
to the occurrence and development of tumors. 
The application of lipidomics technology can 
reveal changes in lipids and relative abnormal 
metabolic pathways associated with tumors. 
Moreover, it shows a wide range of applica-
tion prospects in the identification of tumor 
lipid biomarkers, early tumor diagnosis, and 
the discovery of antitumor drug targets. This 
chapter mainly introduces the application and 

development direction of lipidomics in the 
diagnosis and therapy of different tumors.

Keywords

Lipidomics · Lipid · Tumor · Diagnosis  
Therapy

Lipids are a class of essential biomolecules that 
are involved in many critical cellular processes. 
Because of their hydrophobicity, lipids are the 
main components of biofilms (Fig.  2.1). They 
are, therefore, the physical basis of all organ-
isms because they provide the ability to sepa-
rate organisms from the natural environment. 
Lipids not only provide energy for cells [1], but 
they are also involved in both extracellular and 
intracellular signaling processes in which lipids 
conduct signals and amplify regulatory cascade 
reactions.

Clinical lipidomics is a novel extension of lip-
idomics that investigates lipid profiles, pathways, 
and networks by characterizing and quantify-
ing complete lipid molecules in patient cells, 
biopsy tissues, or body fluids. It is expected to 
be more stable during treatment, more sensitive 
to changes, and targeted to disease and to enable 
more efficient data analysis and more standard-
ized measurements to meet clinical needs [2]. 
Lipidomics is projected to become a more critical 
method in clinical application and an important 

Y. Wang (*) 
Department of Gastroenterology, Key Laboratory  
for Gastrointestinal Diseases of Gansu Province,  
The First Hospital of Lanzhou University,  
Lanzhou, Gansu Province, China
e-mail: wangyuping@lzu.edu.cn

2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6785-2_2&domain=pdf
https://doi.org/10.1007/978-981-33-6785-2_2#DOI
mailto:wangyuping@lzu.edu.cn


26

tool for the early diagnosis and evaluation of dis-
ease progression of cancers (Fig. 2.2).

Because of the role of lipid molecules in cell 
structure, energy, and signal transduction, the 
characterization of cellular and extracellular 
lipid composition changes is critical for under-
standing cancer biology. Moreover, several mass 
spectrometry-based analyses and imaging stud-
ies have shown that lipid molecules may help 
enhance existing biochemical and histopatho-
logical approaches for cancer diagnosis, stag-
ing, and prognosis [3]. Therefore, the analysis of 
lipid metabolic changes associated with cancer 
cells and tumor tissues is useful for both basic 
and translational research. In the field of tumor 
lipidomics, scientists mainly focus on the appli-
cations in the diagnosis and treatment of tumors, 
which will be overviewed in this chapter.

2.1	 �Tumor Diagnosis

Lipids undergo subtle metabolic changes during 
the early stages of tumorigenesis. Accordingly, 
capturing the signals of the changes in these 

molecular profiles will greatly benefit the 
early diagnosis of cancer. Most clinical serum 
biomarkers for cancer detection were estab-
lished in the early 1980s when the Nobel Prize 
in Physiology or Medicine was awarded for “dis-
covering the principles of monoclonal antibody 
production.” Using this “Nobel” technique, vari-
ous monoclonal antibodies were developed, and 
the ligands on the surface of cancer cells were 
characterized. Abnormal sugar chain structures 
and abnormal sugar chain-associated glycopro-
teins have been identified as standard features 
of cancer cell surface through specific interac-
tions with monoclonal antibodies. Subsequently, 
sugar-related biomarkers were detected in the 
serum of cancer patients and developed into 
serum biomarkers such as CA125, CA153, 
CA195, CA199, CA242, and CA724, which are 
popular in clinical use today [4].

Lipid metabolic reprogramming is an essen-
tial marker of tumorigenesis and development. 
Alterations in the tumor metabolism, including 
the accumulation of metabolites, lead to local 
immunosuppression of the tumor microenviron-
ment. Hao et al. conducted a systematic analysis 

Fig. 2.1  Schematic representation of the cell membrane of phospholipids in the bilayer
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of The Cancer Genome Atlas (TCGA) multiple-
omics data and found that the most widely altered 
lipid metabolic pathways in pan-cancer are fatty 
acid metabolism, arachidonic acid metabolism, 
cholesterol metabolism, and PPAR signaling [5].

Recent reports about lipidomics in tumor 
diagnosis have covered most organs of the human 
body, which will be discussed below (Fig. 2.3).

2.1.1	 �Lung Cancer

Lung cancer is the leading cause of cancer death 
worldwide [6]. Therefore, lipidomics studies are 
relatively centered on the diagnosis of lung can-
cer. Small-cell lung cancer (SCLC) is a type of 
aggressive lung cancer with low survival rates. 
Although kinases commonly play a crucial role 

in tumorigenesis, very few kinases are currently 
known to promote SCLC development. Cristea 
et al. reported that MEK5 and ERK5 are neces-
sary for optimal survival and amplification of 
SCLC cell lines in vitro and in vivo. In-depth lip-
idomics analysis suggests that the loss of MEK5/
ERK5 disrupts several lipid metabolic pathways, 
including the mevalonate pathway that controls 
cholesterol synthesis [7].

Preliminary data from recent studies sug-
gest that lipid profiling has high specificity for 
evaluating the stage, severity, subtype, and drug 
response in lung cancer. The heterogeneity of 
lipid profiles and lipid metabolism may be part 
of the heterogeneity of lung cancer and leads 
to drug resistance [8]. Malignant pleural effu-
sion (MPE) is an essential marker of advanced 
metastasis of lung cancer. However, current 

Fig. 2.2  Clinical lipidomics workflow, including all basic steps from samples to biological results
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diagnostic methods entail a tedious process to 
distinguish between malignant pleural effusions 
and benign pleural effusions (BPE). Yang et  al. 
conducted a global metabolomics and lipidomics 
analysis based on liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) to character-
ize the metabolic characteristics of lung cancer 
MPE and identify the potential metabolite bio-
markers diagnostic of MPE.  During MPE, 25 
ether lipids, including phosphatidylcholine (PC), 
lysophosphatidylcholines (LPC), and phosphati-
dylethanolamine (PE), were significantly down-
regulated. This supported the diagnostic potential 
of the upregulated expression of oxidized poly-
unsaturated fatty acids (PUFAs) in MPE [9].

Noreldeen HAA et  al. reported other lipido-
mics methods based on ultrahigh-performance 
liquid chromatography other than intended targets 
plus quadrupole time-of-flight mass spectrome-
try (UHPLCQ-TOF/MS). Two machine learning 
methods (genetic algorithm and binary logical 
regression) were also used to screen candidates 
for different lipids and to establish a combined 
lipid biomarker to distinguish between women 
with non-small-cell lung cancer (NSCLC) and 
healthy controls. The results showed that fatty 

acids (FA) (20:4), FA (22:0), and LPE (204) 
could be used as a combination biomarker to 
distinguish NSCLC from healthy tissues in 
women, with excellent sensitivity and specificity 
[10]. Klupczynska et al. conducted targeted lipid 
group screening to select potential molecules for 
the early detection of lung cancer. Of the lipids 
tested, there were significant differences between 
the PC group and the lysophosphatidylcholines 
(lysoPC) group in NSCLC patients and healthy 
controls, especially a C26:0; lysoPC a C26:1; PC 
aa C42:4; and PC aa C34:4 [11].

Yu et al. used MS to analyze the lipids of 390 
individuals from 44 plasma samples obtained 
from the training lung cancer cohort. C18:2 cho-
lesterol ester and sphingomyelin 22:0 as lipid 
markers were identified to be useful for distin-
guishing between squamous cell lung carcinoma 
(SqCC) patients and high-risk individuals, with 
95.5% sensitivity, 90.9% specificity, and 95.2% 
accuracy [12]. Using UHPLCQ-TOF/MS through 
targeted lipid profiling, Chen et al. identified PCs 
and phosphatidylethanolamine (PEs) as biomark-
ers of early-stage NSCLC. The levels of PCs and 
PEs were abnormal during glycerophospholipid 
metabolism, which is the most altered pathway 
in early NSCLC [13].

2.1.2	 �Breast Cancer

Breast cancer (BC) is a heterogeneous malig-
nancy. It is the most frequent malignancy and the 
leading cause of cancer-related death in American 
women. Compared with other major BC sub-
types, triple-negative breast cancer has a lower 
survival rate and a higher metastasis rate, thus 
highlighting the need for more sensitive and spe-
cific methods for early-stage TNBC (ES-TNBC) 
detection. However, early diagnosis remains 
challenging because of the high pathological 
level, and thus the survival rate remains relatively 
low. Eghlimi et al. reported that LC-tandem MS 
can detect lipids with high specificity and sen-
sitivity. Two diagnostic biomarker panels were 
proposed for TNBC/ES-TNBC [14]. Terao et al. 
evaluated all-trans retinoic acid (ATRA)-treated 
BC cell lines and found that ATRA disrupted the 
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homeostasis of many lipids, the most significant 
of which was in the mitochondrial intima and 
those involved in the oxidative phosphorylation 
of cardiac phospholipids. ATRA can reduce the 
level of cardiac phospholipid, and this can inhibit 
the growth activity of retinoid. ATRA exerts its 
antiproliferative activity by reducing tumor cell 
respiration and energy balance, thus its important 
role in breast cancer [15].

Kang et al. investigated the role of lipid met-
abolic alterations in malignant phenotypes of 
BC.  They found significant homeostatic inter-
ference of various complex lipid substances 
(including ceramide, sphingomyelin, ether-
linked phosphatidylcholine, and ether-linked 
phosphatidylethanolamine) in the mesenchymal 
state of cancer cells. The polyunsaturated fatty 
acid composition in spherical cells was signifi-
cantly reduced, and SCD, ACOX3, and FADS1 
were upregulated. Meanwhile, PTPLB, PECR, 
and ELOVL2 were downregulated. The ratio 
of C226n3 (docosahexaenoic acid, DHA) to 
C225n3 was significantly reduced in globular 
cells, like ELOVL2 downregulation. ELOVL2 
expression is associated with a malignant phe-
notype and appears to be a novel prognostic 
biomarker in breast cancer [16]. Zhao et al. inves-
tigated the toxic effects of bisphenol F (bp F) in 
BC xenografts and the potential mechanisms for 
tumor metastasis-related tissues (e.g., in the liver 
and kidney). They found that BPF exposure dis-
rupts the metabolic and lipid groups in the liver 
and kidney. Exposure induces reprogramming 
of glutathione (GSH) biosynthesis and glycoly-
sis metabolism by activating glycine, serine, 
cysteine, glutamine, lactate, and pyruvate in the 
liver and kidney tissues. This also interferes with 
the biosynthesis and degradation of glycerol 
phospholipids (GPs) and glycerol phospholipids 
(GLs), resulting in abnormal renal tissue mem-
brane homeostasis and cellular function [17].

Reprogramming of lipid metabolism is a hall-
mark of many cancers and has been shown to 
promote BC progression. Purwaha et al. showed 
that higher sphingomyelin levels were signifi-
cantly associated with better disease-free sur-
vival in patients with TNBC [18]. LC-MS and 
environmental mass spectrometry imaging (MSI) 

have been shown to be robust and reproducible 
diagnostic techniques for BC. Silva et al. inves-
tigated whether the lipid features observed in 
cancer tissues via desorption electrospray ioniza-
tion (DESI)-MSI correspond to those detected 
in LC-MS plasma samples. A comparison of the 
plasma and tissue lipid profiles suggests that each 
matrix studied (e.g., blood or tumor) has its par-
ticular molecular characteristics [19]. Nishida-
Aoki et  al. performed an extensive targeted 
quantitative lipid group analysis of cells and 
extracellular vesicles (EV) from high-metastatic 
and low-metastatic TNBC cell lines using super-
critical fluid chromatography rapid scanning 
tripolar mass spectrometry. They confirmed that 
EV between different lipid components is associ-
ated not only with their origin cells but also with 
high- and low-metastatic cell lines. Moreover, 
compared with those of low-metastatic cells, 
the EV of high-metastatic BC cells accumu-
lated unsaturated diacylglycerol (DGs) and did 
not increase in the cells. DG enrichment of EVs 
activates protein kinase D signaling pathways in 
endothelial cells, leading to angiogenesis stimu-
lation [20].

2.1.3	 �Colorectal Cancer

Colorectal cancer (CRC) is the third leading cause 
of cancer-related death worldwide. Reliable bio-
markers for early CRC diagnosis are crucial for 
reducing mortality. Liu et al. used the combined 
lipid group method to study the differences in 
blood lipid profiles between 101 CRC patients 
and 52 healthy volunteers. A total of 11 lipid 
species, including glycerophosphoethanolamine, 
ethanolamine plasmalogens, plasmanyl glycero-
phosphatidylethanolamine, fatty acids, fatty acid 
ester of hydroxyl fatty acid, and diacylglycero-
phosphates, were identified to distinguish healthy 
controls at an early stage [21]. Bestard-Escalas 
et al. described the characteristics of membrane 
lipid groups and their EV in five commercial 
colonic cell lines. Moreover, the results showed 
that both cells and EV lipid groups could be sepa-
rated according to the degree of cell malignancy. 
Furthermore, the effects of all CRC lines on ether 
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lipids were specific and significantly homoge-
neous [22].

Solid tumors are characterized by overall met-
abolic alterations in their growth and progression. 
Wang et  al. measured the molar abundance of 
342 species of 20 lipids in biopsy-matched CRC 
and adjacent normal mucosa samples. Compared 
with the findings of previous reports, CRC sam-
ples showed a large amount of preserved lipid 
composition similar to that in the normal colonic 
mucosa samples. Significant exceptions include 
increased levels of phosphatidylinositol in CRC 
and decreased phosphatide abundance in late 
CRC [23]. Serafim et al. examined patients with 
stage I–III CRC, patients with adenomatous pol-
yps, and individuals who underwent routine colo-
noscopy. All patients underwent peripheral blood 
lipid extraction, and the lipids of the samples 
were identified via MALDI-MS technology. The 
polyketide group (810.1) is the lipid represented 
in the tumor, and the polyp and control group 
are mostly represented. We observed differences 
in the lipid profile between patients with lymph 
node invasion (N1–2) and those without lymph 
node infiltration (N) in CRC patients [24].

Kitamura et  al. studied the level of lyso-
phospholipids in colorectal cancer tissues and 
found that lysophosphatidylinositol and lyso-
phosphatidylserine levels were significantly 
higher than those in normal tissues. Meanwhile, 
lysophosphatidic acid levels were significantly 
lower than those in normal tissues. The fatty 
acid analysis showed that lysophospholip-
ids 18:0 and 18:0 were the dominant lipids 
in colon cancer [25]. Choi et  al. used MS to 
analyze the lipid groups of colon cancer stem 
cells (CSCs) and large cancer cells (BCCs) and 
reported that CSCs contain a unique lipid pro-
file. The free MUFA was higher in CSCs than 
that in BCCs, whereas the levels of free SFA 
were lower. In addition, all identified MUFAs 
containing phosphatidylethanolamine had high 
levels in CSCs. Interestingly, low phosphati-
dyl-serine (18:1/18:0), phosphatidyl-choline 
(PC; p-18:0/18:1), and sphingomyelin (SM; 
d18:1/20:0 or d16:1/22:0) levels in CSCs were 
observed. The specific PC, SM, and MUFAs in 

CSCs can be increased rapidly. Collectively, 
these results suggest that these specific lipid 
components are essential for the maintenance 
of CSCs [26].

2.1.4	 �Gastric Cancer

Malignant tumor growth is characterized by sig-
nificant changes in metabolites. Sun et al. found 
that palmitic acid (PA) was significantly down-
regulated in gastric carcinoma. Cell proliferation 
in gastric cancer (GC) cell lines, such as AGS, 
SGC-7901, and MGC-803, was inhibited by 
the high concentration of PA in vitro, impairing 
cell invasiveness and migration ability. In addi-
tion, sterol regulatory element-binding protein 1 
(SREBP-1c) is activated in human GC, promot-
ing the expression of various genes such as SCD1 
and FASN, which are associated with fatty acid 
synthesis. SREBP-1c downregulation rescued 
migration and invasion defects of AGS and SGC-
7901 GC cells [27]. Based on a breakthrough 
in genomics, TCGA recently proposed an inte-
grated genome analysis approach wherein GC is 
divided into four subtypes according to the chro-
mosomal instability (CIN) states. Hung et al. col-
lected GC tissue specimens and noncancer tissue 
specimens from cancer patients and conducted 
an analysis following TCGA classification. They 
identified 409 oncogene and tumor suppressor 
gene sequences, and the samples were divided 
into CIN and non-CIN types. Using LC-MS, the 
authors identified the lipid profiles of GC sam-
ples and adjacent noncancerous tissue samples. 
Compared with adjacent noncancerous tissues, 
gas chromatography samples showed distinct 
features of lysophospholipid, phosphocholine, 
phosphatidylethanolamine, phosphatidylinositol, 
phosphoserine, sphingomyelin, ceramide, and 
triglycerides. The levels of GPs (choline phos-
phate, phosphatidylethanolamine, and phospha-
tidylinositol) increased by 1.4–2.3 times in the 
CIN group compared with those in the non-CIN 
group (P < 0.05). These changes in the glycerol 
and glycerophospholipid pathways indicated GC 
progression to CIN [28].
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2.1.5	 �Prostate Cancer

EVs of non-tumorigenic cells in prostate can-
cer (PCa) patients are rich in fatty acids, gly-
colipids, and precursor oils. In contrast, EVs of 
tumorigenic or metastatic cells are abundant in 
glycolipids, sphingolipids, and glycerol phos-
pholipids [29]. Zhou et  al. compared PCa with 
benign prostate tissue (BPT). The results showed 
that the total fatty acid content, monounsatu-
rated fatty acid content, polyunsaturated fatty 
acid content, and n −  6 total fatty acid content 
of the PCa group were significantly higher than 
those of the BPT group. A significantly higher 
PCa n −  6FFA and n −  3FFA concentration of 
most fatty acid parameters was associated with 
Gleason grade and clinical stage [30]. However, 
the fatty acids associated with the occurrence, 
progression, and ethnic differences between 
African American (AA) and Caucasian American 
(CA) populations as well as the fatty acids that 
are differentially expressed remain unclear. 
Kregel et al. observed that both bromine-contain-
ing and external (BET) degraders inhibited PCa 
cell growth in vivo and in vitro. These drugs pref-
erentially affect AR-positive PCa cells (22 Rv1, 
LNCaP, VCaP) rather than AR-negative cells 
(PC3 and DU145). The increase in PUFAs and 
thioredoxin-interacting proteins (TXNIP) indi-
cate their potential as pharmacological biomark-
ers for targeting BET proteins [31].

2.1.6	 �Endometrial Carcinoma

In endometrial cancer, preoperative biomarkers 
for identifying patients with low risk of disease 
progression can help establish the appropriate 
degree of surgery required and avoid possible 
complications from radical surgery. Using elec-
trospray ionization tandem mass spectrometry, 
Knific et  al. conducted a quantitative analysis 
of 163 metabolites in 126 plasma samples from 
61 patients with endometrial cancer and 65 con-
trols. Three levels of single phosphatidylcholine 
decreased significantly in patients with endome-

trial cancer [32]. Cummings et al. discussed the 
changes of epithelial eicosane metabolism gene 
expression in endometrial carcinogenesis. These 
were combined with eicosane-like profiles in 
matched clinical specimens. The expression of 
candidate eicosane metabolic enzymes, that is, 
low HPGD combined with high ALOX5 expres-
sion, was associated with worse overall survival 
and progression-free survival, emphasizing that 
HPGD and ALOX5 are potential therapeutic tar-
gets for invasive EC subtypes [33].

2.1.7	 �Bladder Cancer

Bladder cancer is an elusive disease because of its 
rapid recurrence and drug resistance. The progno-
sis of BC patients with recurrence and hyperther-
mia is extremely poor. Lee et al. conducted a lipid 
group comparison analysis of two homogeneous 
human T24 bladder cancer cell lines. Ultrahigh-
performance liquid chromatography-mass spec-
trometry (UPLC-MS) analysis of 1864 lipids 
identified differentially expressed lipid levels sus-
pected to be associated with cisplatin resistance 
[34]. Vantaku et  al. used the NIST MS metabo-
lomics outline and lipid blast MS/MS library to 
identify 519 metabolites and 19 lipids differen-
tially expressed between low- and high-grade 
bladder cancer, respectively. They identified met-
abolic features of high-grade bladder cancer by 
integrating unbiased metabolomics, lipidomics, 
and transcriptomics to predict patient survival and 
identify novel therapeutic targets [35].

2.1.8	 �Ovarian Cancer

Cheng et al. reported the findings from the pro-
tein and lipid group analyses of exosomes from 
ovarian cancer cells (SKOV-3) and ovarian sur-
face epithelial cells (HOSEPiC). A total of 1433 
proteins and 1227 lipids were identified from the 
exocrine derived from both cell lines. The exo-
crine extracted from the SKOV-3 was more abun-
dant than the ChE and ZyE species extracted from 
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the HOSEPiC. V collagen chains (COL5A2) and 
lipoprotein lipase (LPL) in the exocrine from 
SKOV-3 sources were significantly higher [36]. 
Wefers et  al. analyzed 109 lipid mediators of 
ascites in patients with ovarian cancer and found 
that the lipid involved in ascites inhibition was 
different from that in normal peritoneal fluid. In 
addition, there were lipid intermediates in the 
ascites of ovarian cancer patients, which is con-
sistent with T cell dysfunction [37].

2.1.9	 �Pancreatic Cancer

Pancreatic cancer is one of the most aggressive 
malignancies. Early diagnosis of pancreatic cancer 
is difficult, leading to its poor prognosis. Tao et al. 
evaluated possible prognostic or diagnostic metab-
olite biomarkers in serum exocrine of pancreatic 
cancer patients and found that 270 of the 20 lip-
ids showed significant abnormalities. Of them, 61 
were verified in a larger sample size. LysoPC 22:0, 
PC (P-14:0/22:2), and PE (16:0/18:1) were associ-
ated with tumor stage, CA19–9 expression, CA242 
expression, and tumor diameter. PE (16:0/18:1) was 
also significantly correlated with overall survival 
[38]. Arnoletti et  al. collected portal vein plasma 
samples during the intraoperative period from 29 
patients undergoing pancreaticoduodenectomy and 
used multidimensional mass spectrometry-based 
shotgun lipid histology to analyze lipid changes. 
The unique characteristic analysis of 20 lipids and 
235 lipids was found to reliably identify PDAC 
(stage I–IV), intraductal papillary mucosa (IPMN), 
and nonmalignant pancreatitis [39].

The carnitine palmitoyltransferase (CPT) 
family is essential for fatty acid oxidation. Guan 
et al. found that carnitine palmitoyltransferase 1C 
(CPT1C), one of the subtypes, plays an essen-
tial role in the aging of tumor cells. However, 
whether other subtypes (CPT1A, CPT1B, and 
CPT2) have the same effect on cellular senes-
cence remains unclear [40]. CPT1C has the most 
significant effect on cell senescence. Using lipi-
domics analysis, we further found that the down-
regulation of CPTs alters lipid content involved 
in mitochondrial function and induces lipid 
accumulation.

2.1.10	 �Liver Cancer

The cellular heterogeneity of tumor tissue is one 
of the causes of tumor recurrence after chemo-
therapy. Thus, identification of specific tumor tis-
sue cell subtypes is critical for precision medicine 
and prognostic prediction. Lipids, as structural 
and functional components of cells, are closely 
related to the apparent morphology of cells. They 
are biomarkers of potential cancer species that 
can be used to classify different cancer cell types. 
Wang et  al. described a lipid spectrum analysis 
method based on nanostructured laser desorp-
tion/ionization mass spectrometry (NALDI-MS). 
This method can classify five HCC cell lines 
and distinguish the subtypes of mixed cells and 
tumor tissues. The molecular structures of these 
biomarkers were classified into two categories as 
phosphatidylcholine (i.e., PE, PI, PG, PA, and 
PS) and phospholipids (i.e., LacCer, ST) [41].

2.1.11	 �Glial Tumor

Isocitrate dehydrogenase (IDH)1 mutation is 
a highly frequent event in low-grade gliomas 
and secondary glioblastomas. Zhou et al. found 
marked changes in glycolysis and lipid metabo-
lism in IDH1 mutant glioma tissues compared 
with IDH1 wild-type glioma through comprehen-
sive metabolic studies on clinical IDH1 mutant 
glioma specimens. More pyruvate was found to 
enter the TCA cycle in IDH1 mutant gliomas 
presenting with reduced triglycerides and sphin-
golipids [42].

2.1.12	 �Thyroid Cancer

The difference between papillary thyroid 
carcinoma and benign thyroid lesions is of 
great significance for clinical management. 
Histopathological classification can be supported 
by molecular biomarkers, including lipid group 
features, identified using high-throughput mass 
spectrometry techniques. Wojakowska et  al. 
used a high-resolution MALDI-Q-Ion mobility-
TOF-MS technique to analyze lipid groups in 
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formalin-fixed thyroid tissue samples. Multiple 
phosphatidylcholine (32:0, 32:1, 34:1, and 36:3), 
sphingomyelin (34:1 and 36:1), and phosphatidic 
acid (36:2 and 36:3) were detected in cancer tis-
sues. Moreover, they were significantly more 
abundant in cancer tissue than in noncancerous 
tissue [43].

2.1.13	 �Head and Neck Cancer

Fanconi anemia (FA) gene mutations are com-
mon in sporadic head and neck squamous cell 
carcinoma (HNSCC). We have previously dem-
onstrated that FA pathway deletion stimulates 
invasion of HNSCC cell lines. Zhao et  al. used 
a systematic approach to define FA pathway-
dependent lipid metabolism and to extract lipid-
based features and invasive effectors in FA 
defective cells. The most notable element in the 
lipid profile results was the consistent elevation 
of glycolipid, especially ganglioside accumula-
tion. In contrast, such lipids were inhibited with 
genetic correction of HNSCC cells from FA 
patients [44].

2.1.14	 �Myeloma

Multiple myeloma (MM) is a blood malignancy 
characterized by clonal expansion of malignant 
plasma cells. Although long-term palliative treat-
ment is possible, MM is incurable and most 
patients develop recurrence. Mohamed et  al. 
evaluated the feasibility of simultaneous lipido-
mics and proteomics analysis of plasma cells. 
The results showed that PCs were significantly 
downregulated in recurrent MM. PC, ceramide, 
cardiac phospholipid, arachidonic acid, and cho-
lesterol metabolic pathways were significantly 
correlated only in patients with recurrence, but 
not in those who were newly diagnosed [45].

2.1.15	 �Oral Cancer

Metabolic recombination as one of the charac-
teristics of cancer is beneficial to rapid energy 

production, biosynthetic ability, and therapeu-
tic resistance. We previously found that balsam 
pear extract (BME) could prevent carcinogen-
induced oral cancer in mice. RNA sequence 
analysis of the mouse tongue showed that com-
pared with other cancers, BME significantly 
regulated the metabolic process by altering 
glycolysis and lipid metabolic pathways in oral 
cancer [46]. Bednarczyk et  al. compared the 
usefulness of proteome and lipidome compo-
nents to distinguish between oral cancer cells 
and normal mucosa. The tumor regions were 
more heterogenous than the normal epithelium, 
and the distribution of peptide components was 
more uneven than that of lipid components. 
Furthermore, there were significant differences 
in the abundance of peptide components and 
lipid components between the tumor and the 
normal epithelium (for peptide and lipid com-
ponents, the median effect of Cohen was 0.49 
and 0.31, respectively). In addition, compared 
to normal epithelial cells, a multicomponent 
cancer classifier was detected using tissue 
samples from three patients and then validated 
with tissue samples from the fourth patient. The 
weighted accuracy of cancer classification for 
peptide-based signature and lipid-based signa-
ture was 0.85 and 0.69, respectively. Although 
the molecular differences between cancerous 
and normal mucosa were higher in the proteome 
domain than in the analyzed lipidome subdo-
main, imaging of lipidome components can also 
distinguish between oral cancer and normal epi-
thelium. Therefore, both tumor proteome and 
lipidome are promising sources of biomarkers 
for oral malignancies [47].

2.1.16	 �Renal Carcinoma

The clear cell carcinoma (ccRCC) subtype of 
renal cell carcinoma (RCC) is characterized by 
lipid accumulation and metabolic alterations. 
However, data on ccRCC metabolic alterations 
are limited. Schaeffeler et  al. assessed meta-
bolic alterations and lipid composition of RCC 
subtypes and ccRCC-derived metastases. They 
found differences in lipid synergistic regulatory 
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networks between ccRCC and chromophobe 
RCC (chRCC) except for lysophospholipids and 
sphingolipids [48].

2.2	 �Tumor Therapy

The above content indicates that lipidomics and 
changes in lipid molecules have high potential for 
application in early tumor diagnosis. Tumor diag-
nosis is easier to establish through direct detec-
tion and analysis of clinical samples. However, 
owing to the standardized management of clini-
cal research and clinical observation of long-
term curative effects, there are fewer studies on 
the application of lipidomics in tumor treatment. 
Therefore, most tumor treatment-related research 
still stays at the stage of intervening tumor cells 
in the laboratory.

2.2.1	 �Lung Cancer

Zhang et  al. identified CCL3 metabolic-related 
genes or inflammation-related genes in lung 
adenocarcinoma and small lung cancer cells, 
respectively. Palmitic acid C16:0 or stearic acid 
C18:0 upregulated ACSL5 or CSF2 expression in 
a time- and dose-dependent manner. Deletion of 
both genes resulted in cell insensitivity. By alter-
ing intracellular energy, the target lipid increased 
the expression of PDK4 genes and inhibited cell 
proliferation [49]. Bergqvist et al. compared the 
effects of microsomal prostaglandin E synthase 
(mPGES)-1 inhibitor complex III (ciii) with those 
of cyclooxygenase (COX)-2 inhibitor NS-398 
on interleukin (IL)-1-induced cellular protein 
and lipid profiles in lung cancer. Compared to 
the NS-398 that activate these pathways, CIII 
downregulated eIF2, eIF4/P70S6K, and mTOR 
signals. There are nine phospholipid changes 
between the two inhibitors. Compared with CIII, 
NS-398 lysophospholipid (LPC) shows more 
profound changes in living cell imaging systems. 
We also found that CIII reduced cell proliferation 
and enhanced the cytotoxic effects of cisplatin, 
etoposide, and vincristine [50].

The recent introduction of targeted therapy 
and immunotherapy for NSCLC offers new 
hope for NSCLC patients. However, not all 
patients respond to these drugs, and the complete 
response is low. New therapeutic targets and 
novel antitumor drugs are still urgently needed 
in NSCLC.  Sphingomyelin kinase 2 (SphK2) 
is one of the critical enzymes in sphingomyelin 
metabolism. Positive SphK2 expression predicts 
poor survival in NSCLC patients and is associ-
ated with gefitinib resistance. Dai et al. explored 
the NSCLC activity of ABC294640, which is the 
only oral SphK2 inhibitor. The results showed 
that ABC294640 could induce NSCLC apopto-
sis, cell cycle arrest, and tumor growth inhibi-
tion both in vitro and in vivo [51]. Lipotoxicity, 
caused by intracellular lipid accumulation, 
accelerates the degenerative process of cellular 
senescence, which is crucial in cancer develop-
ment and treatment. CPT1C, a mitochondrial 
enzyme that catalyzes carnitinylation of fatty 
acids, has been found to be a key regulator of 
cancer cell senescence. Analysis of the LC/MS 
lipid groups of PANC-1, MDA-MB-231, HCT-
116, and A549 cancer cells after the deletion 
showed significant changes in lipid groups of 
cpt1c depleted cells, including fatty acids, dia-
cylglycerols, triacylglycerols, oxidized lipids, 
cardiac phospholipids, phosphatidylglycerols, 
phosphatidylcholine-phosphatidylethanolamine 
ratios, and sphingomyelins [52].

2.2.2	 �Prostate Cancer

Androgen deprivation therapy (ADT) is a primary 
treatment strategy in patients with metastatic 
PCa. ADT is associated with various metabolic 
disorders, including impaired glucose tolerance, 
insulin resistance, and weight gain, thus increas-
ing the risk of diabetes and cardiovascular death. 
ADT exerts its therapeutic effect through several 
mechanisms. First, ADT treatment reduces ste-
roid synthesis, which is reflected in lower andro-
gen sulfate and other steroid hormones. Second, 
ADT consistently reduces 3-hydroxybutyric acid 
and ketone formation. Third, ADT reduces many 
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acylcarnitines, thus affecting fatty acid metabo-
lism. Fourth, ADT is reduces 3-formylindole (also 
called indole-3-carboxaldehyde) [53]. Clendinen 
et  al. used multi-platform (NMR  +  LC-MS) 
metabolomics to study PCa recurrence and pre-
operative metabolic changes. Lipid histology 
experiments showed that many classes of lipids, 
including triglycerides, lysophosphatidylcholine, 
phosphatidylethanolamine, phosphatidylinosi-
tol, diglyceride, acylcarnitine, and ceramide, are 
highly abundant in patients with recurrence [54].

2.2.3	 �Ovarian Cancer

Lipidomics is a promising approach to identify 
lipid profiles in malignant phenotypic cells. 
Using MS, Cadoni et al. revealed quantitative dif-
ferences in phospholipid composition between 
cisplatin-resistant and cisplatin-sensitive model 
cancer cell lines. Further, in CCRF-CEM cispl-
atin-sensitive cells, phosphocholines PC P-34:0, 
PC 34:1, PC 20:2_16:0, LPC 18:1 and LPC 16:0 
PLs were found treated with 200-400 μM cis-
platin, but not in cisplatin-resistant A2780 cells. 
Similarly, the PC 34:1, LPC 18:1, and LPC 16:0 
of cisplatin-reactive A2780 increased in cells, 
whereas cisplatin-resistant A2780 cells PC 
20:2_16:0 downregulated. The development of 
lipid entities and therapeutic resistance shown 
in MS may be helpful for molecular diagnosis 
and provide a potential complementary cancer 
biomarker [55].

2.2.4	 �Colorectal Cancer

Lipidome technique is a promising antigen deliv-
ery technique in cancer immunotherapy. The 
phospholipid content of the lipid group may 
act as immunostimulatory molecules in tumor 
immunotherapy [56]. The DOTAP and DOPE 
lipid groups (F1 lipid groups) stimulated a mixed 
immune response in Th1 and Th2 colon cancer 
mice without tumor-specific antigens.

2.2.5	 �Bone Marrow Tumor

Although the proteasome inhibitor bortezo-
mib (BTZ) has shown excellent results in MM, 
a small number of patients experienced severe 
adverse events or did not respond to the drug. 
In addition, BTZ-induced peripheral neuropathy 
(BiPN) is a common side effect, thus limiting its 
application. Maekawa et  al. identified 385 lipid 
metabolites in patients’ serum and found that low 
levels of glycerophospholipids, sphingolipids, 
and cholesterol esters are associated with adverse 
therapeutic responses. Metabolites associated 
with platelet-activating factor biosynthesis and 
cholesterol metabolism appear to be particularly 
relevant. In addition, several lysophosphatidyl-
cholines, phosphatidylcholine, ceramide, neutral 
lipids, and oxidized fatty acids were significantly 
increased or decreased in BiPN patients with 
grade G0–G3 disease [57].

2.2.6	 �Lymphoma

Monocarboxylic acid transporter 1 (MCT1) is 
a regulator of cell metabolism and a therapeu-
tic target for cancer therapy. Beloueche-Babari 
et  al. evaluated the effects of MCT1 inhibitor 
AZD3965 critical determinant of tumor biologi-
cal function on tumor metabolism and immune 
cell infiltration in an MCT1-dependent model 
of lymphoma. Tumor growth was inhibited, and 
tumor choline was reduced in mice with severe 
combined immunodeficiency Raji xenograft 
tumors treated with AZD3965 [58].

2.2.7	 �Other

In the field of cancer treatment, lipid molecules 
are not only involved in antitumor effects through 
metabolism but can also affect the vitality of tumor 
cells through immune responses. Treatment with 
immune checkpoint inhibitors (ICI) requires the 
production of appropriate amounts of IL-6 and 
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TNF-cells to clear tumor cells. IL-6- and TNF-
activated phospholipases induce the release of 
PUFAs in cell membrane phospholipid pools. 
PUFAs as a precursor of pro-inflammatory and 
anti-inflammatory eicosane can inhibit excess 
production of IL-6 and TNF.  PUFAs can also 
selectively kill tumor cells by enhancing the pro-
duction of free radicals and the accumulation of 
toxic lipid peroxides in tumors rather than in nor-
mal cells [59].

Bone marrow-derived suppressor cells 
(MDSCs) play an essential role in tumorigenesis; 
accordingly, their inhibition is key to the success 
of tumor immunotherapy. MDSCs induce oxida-
tive phosphorylation resulting from glycolysis to 
fatty acid oxidation (FAO) and lipid accumula-
tion in tumors through metabolic reprogramming. 
The increased uptake of exogenous fatty acids by 
tumor MDSCs enhances its immunosuppressive 
activity against T cells, thereby promoting tumor 
progression [60].

2.3	 �Conclusion and Remarks

Traditional studies on cancer cell metabolism 
mostly focus on glutamine decomposition and 
glycolysis. However, in the past decade, with 
the continuous development of lipidomics tech-
nology, new knowledge and new theories have 
deepened the understanding of the relation-
ship between lipid metabolism and cancer biol-
ogy [61, 62]. Recent studies have shown that 
the reprogramming of cell lipid metabolism is 
directly involved in the malignant transformation 
and progression of cells [63, 64]. For example, 
lipids synthesized de novo can provide phos-
pholipid components for proliferation to form 
plasma membranes and organelle membranes of 
newly dividing cells [65]. In addition, the upregu-
lated expression of mitochondrial microglobulin 
helps tumor cells maintain energy metabolism 
and redox homeostasis. Lipid-derived messenger 
molecules can regulate related signal pathways 
and coordinate immune suppression [66, 67]. 
Therefore, lipid metabolism is involved in vari-
ous oncogenic processes, including proliferation, 
differentiation, migration, invasion, and drug 

resistance [68, 69]. However, whether we can 
safely and effectively regulate cancer treatment 
through lipid metabolism, the underlying mecha-
nism remains unclear [70].

In addition to peripheral blood as a commonly 
used sample for early tumor diagnosis, other 
easily accessible body fluids have also received 
increasing research attention. Human saliva as a 
biological fluid is increasingly used for diagnos-
ing diseases, monitoring systemic disease status, 
and predicting disease progression. The discovery 
of biomarkers in saliva provides a unique oppor-
tunity to assess patient health by using oral fluids, 
avoiding invasive blood collection. Salivary flu-
ids are clinically relevant because their compo-
nents can be found in plasma. Salivary lipids are 
one of the most important cellular components 
in human saliva, and thus they have high poten-
tial as biomarkers. Lipid components in cells and 
tissues change with physiological changes, and 
lipid components in normal tissues are different 
from those affected by disease. Lipid imbalance 
is strongly associated with many lifestyle-related 
diseases, such as atherosclerosis, diabetes, meta-
bolic syndrome, systemic cancer, neurodegenera-
tive diseases, and infectious diseases. Therefore, 
lipid biomarkers can be useful to diagnose dis-
ease and evaluate disease status and treatment 
response. However, whether saliva can be used as 
a substitute for serum lipid profiles requires fur-
ther investigation as developing reliable diagnos-
tic and salivary disease surveillance tests requires 
identifying saliva biomarkers using a high-sen-
sitivity method with low detection limits [71]. 
The continuous development of mass spectrom-
etry (MS) and the introduction of high-precision 
and high-resolution mass spectrometry detectors 
in recent years have also significantly improved 
lipidomics methods.

References

	 1.	Züllig T, Trötzmüller M, Köfeler HC.  Lipidomics 
from sample preparation to data analysis: a primer. 
Anal Bioanal Chem. 2020;412(10):2191–209.

	 2.	Zhang L, Han X, Wang X.  Is the clinical lipido-
mics a potential goldmine? Cell Biol Toxicol. 
2018;34(6):421–3.

Y. Wang



37

	 3.	 Islam SR, Manna SK.  Lipidomic analysis of can-
cer cell and tumor tissues. Methods Mol Biol. 
2019;1928:175–204.

	 4.	Tang Y, Cui Y, Zhang S, et  al. The sensitivity 
and specificity of serum glycan-based biomark-
ers for cancer detection. Prog Mol Biol Transl Sci. 
2019;162:121–40.

	 5.	Hao Y, Li D, Xu Y, et al. Investigation of lipid metabo-
lism dysregulation and the effects on immune micro-
environments in pan-cancer using multiple omics 
data. BMC Bioinformatics. 2019;20(Suppl 7):195.

	 6.	Siegel RL, Miller KD, Jemal A.  Cancer statistics, 
2020. CA Cancer J Clin. 2020;70(1):7–30.

	 7.	Cristea S, Coles GL, Hornburg D, et al. The MEK5-
ERK5 kinase axis controls lipid metabolism in small-
cell lung cancer. Cancer Res. 2020;80(6):1293–303.

	 8.	Zhang L, Zhu B, Zeng Y, et al. Clinical lipidomics in 
understanding of lung cancer: opportunity and chal-
lenge. Cancer Lett. 2020;470:75.

	 9.	Yang Z, Song Z, Chen Z, et  al. Metabolic and lipi-
domic characterization of malignant pleural effu-
sion in human lung cancer. J Pharm Biomed Anal. 
2020;180:113069.

	10.	Noreldeen HAA, Du L, Li W, et  al. Serum lipido-
mic biomarkers for non-small cell lung cancer in 
nonsmoking female patients. J Pharm Biomed Anal. 
2020;185:113220.

	11.	Klupczynska A, Plewa S, Kasprzyk M, et al. Serum 
lipidome screening in patients with stage I non-small 
cell lung cancer. Clin Exp Med. 2019;19(4):505–13.

	12.	Yu Z, Chen H, Zhu Y, et al. Global lipidomics reveals 
two plasma lipids as novel biomarkers for the detec-
tion of squamous cell lung cancer: a pilot study. Oncol 
Lett. 2018;16(1):761–8.

	13.	Chen Y, Ma Z, Shen X, et al. Serum lipidomics pro-
filing to identify biomarkers for non-small cell lung 
cancer. Biomed Res Int. 2018;2018:5276240.

	14.	Eghlimi R, Shi X, Hrovat J, et  al. Triple negative 
breast cancer detection using LC-MS/MS lipidomic 
profiling. J Proteome Res. 2020;19:2367.

	15.	Terao M, Goracci L, Celestini V, et al. Role of mito-
chondria and cardiolipins in growth inhibition of 
breast cancer cells by retinoic acid. J Exp Clin Cancer 
Res. 2019;38(1):436.

	16.	Kang YP, Yoon JH, Long NP, et al. Spheroid-induced 
epithelial-mesenchymal transition provokes global 
alterations of breast cancer lipidome: a multi-layered 
omics analysis. Front Oncol. 2019;9:145.

	17.	Zhao C, Xie P, Wang H, et al. Liquid chromatography-
mass spectrometry-based metabolomics and 
lipidomics reveal toxicological mechanisms of 
bisphenol F in breast cancer xenografts. J Hazard 
Mater. 2018;358:503.

	18.	Purwaha P, Gu F, Piyarathna DWB, et  al. Unbiased 
lipidomic profiling of triple-negative breast cancer tis-
sues reveals the association of sphingomyelin levels 
with patient disease-free survival. Meta. 2018;8(3):41.

	19.	Silva AAR, Cardoso MR, Rezende LM, et  al. 
Multiplatform investigation of plasma and tissue lipid 

signatures of breast cancer using mass spectrometry 
tools. Int J Mol Sci. 2020;21(10):3611.

	20.	Nishida-Aoki N, Izumi Y, Takeda H, et al. Lipidomic 
analysis of cells and extracellular vesicles from high- 
and low-metastatic triple-negative breast cancer. 
Meta. 2020;10(2):67.

	21.	Liu T, Tan Z, Yu J, et  al. A conjunctive lipidomic 
approach reveals plasma ethanolamine plasmalogens 
and fatty acids as early diagnostic biomarkers for 
colorectal cancer patients. Expert Rev Proteomics. 
2020;17(3):233–42.

	22.	Bestard-Escalas J, Maimó-Barceló A, Lopez DH, 
et al. Common and differential traits of the membrane 
lipidome of colon cancer cell lines and their secreted 
vesicles: impact on studies using cell lines. Cancers. 
2020;12(5):1293.

	23.	Wang Y, Hinz S, Uckermann O, et  al. Shotgun 
lipidomics-based characterization of the land-
scape of lipid metabolism in colorectal cancer. 
Biochim Biophys Acta Mol Cell Biol Lipids. 
1865;2020(3):158579.

	24.	Serafim PVP, Figueiredo AG Jr, Felipe AV, et  al. 
Study of lipid biomarkers of patients with pol-
yps and colorectal câncer. Arq Gastroenterol. 
2019;56(4):399–404.

	25.	Kitamura C, Sonoda H, Nozawa H, et  al. 
The component changes of lysophospholipid 
mediators in colorectal cancer. Tumour Biol. 
2019;41(5):1010428319848616.

	26.	Choi S, Yoo YJ, Kim H, et al. Clinical and biochemi-
cal relevance of monounsaturated fatty acid metabo-
lism targeting strategy for cancer stem cell elimination 
in colon cancer. Biochem Biophys Res Commun. 
2019;519(1):100–5.

	27.	Sun Q, Yu X, Peng C, et al. Activation of SREBP-1c 
alters lipogenesis and promotes tumor growth and 
metastasis in gastric cancer. Biomed Pharmacother. 
2020;128:110274.

	28.	Hung CY, Yeh TS, Tsai CK, et al. Glycerophospholipids 
pathways and chromosomal instability in gastric can-
cer: global lipidomics analysis. World J Gastrointest 
Oncol. 2019;11(3):181–94.

	29.	Brzozowski JS, Jankowski H, Bond DR, et  al. 
Lipidomic profiling of extracellular vesicles derived 
from prostate and prostate cancer cell lines. Lipids 
Health Dis. 2018;17(1):211.

	30.	Zhou X, Mei H, Agee J, et al. Racial differences in dis-
tribution of fatty acids in prostate cancer and benign 
prostatic tissues. Lipids Health Dis. 2019;18(1):189.

	31.	Kregel S, Malik R, Asangani IA, et  al. Functional 
and mechanistic interrogation of BET bromodo-
main degraders for the treatment of metastatic 
castration-resistant prostate cancer. Clin Cancer Res. 
2019;25(13):4038–48.

	32.	Knific T, Vouk K, Smrkolj Š, et  al. Models includ-
ing plasma levels of sphingomyelins and phosphati-
dylcholines as diagnostic and prognostic biomarkers 
of endometrial cancer. J Steroid Biochem Mol Biol. 
2018;178:312–21.

2  Applications of Lipidomics in Tumor Diagnosis and Therapy



38

	33.	Cummings M, Massey KA, Mappa G, et al. Integrated 
eicosanoid lipidomics and gene expression reveal 
decreased prostaglandin catabolism and increased 
5-lipoxygenase expression in aggressive subtypes of 
endometrial cancer. J Pathol. 2019;247(1):21–34.

	34.	Lee MY, Yeon A, Shahid M, et  al. Reprogrammed 
lipid metabolism in bladder cancer with cisplatin 
resistance. Oncotarget. 2018;9(17):13231–43.

	35.	Vantaku V, Dong J, Ambati CR, et  al. Multi-omics 
integration analysis robustly predicts high-grade 
patient survival and identifies CPT1B effect on fatty 
acid metabolism in bladder cancer. Clin Cancer Res. 
2019;25(12):3689–701.

	36.	Cheng L, Zhang K, Qing Y, et  al. Proteomic and 
lipidomic analysis of exosomes derived from ovar-
ian cancer cells and ovarian surface epithelial cells. J 
Ovarian Res. 2020;13(1):9.

	37.	Wefers C, Duiveman-de Boer T, Zusterzeel PLM, 
et  al. Different lipid regulation in ovarian cancer: 
inhibition of the immune system. Int J Mol Sci. 
2018;19(1):273.

	38.	Tao L, Zhou J, Yuan C, et al. Metabolomics identifies 
serum and exosomes metabolite markers of pancreatic 
cancer. Metabolomics. 2019;15(6):86.

	39.	Arnoletti P, Wang J, Litherland S, et  al. Lipidomics 
analysis of alterations in portal vein plasma lipids in 
pancreatic cancer patients. HPB. 2018;20:S537.

	40.	Guan L, Chen Y, Wang Y, et  al. Effects of carnitine 
palmitoyltransferases on cancer cellular senescence. J 
Cell Physiol. 2019;234(2):1707–19.

	41.	Wang T, Chen X, Luan C, et al. High throughput lipid 
profiling for subtype classification of hepatocellular 
carcinoma cell lines and tumor tissues. Anal Chim 
Acta. 2020;1107:92–100.

	42.	Zhou L, Wang Z, Hu C, et  al. Integrated metabolo-
mics and lipidomics analyses reveal metabolic repro-
gramming in human glioma with IDH1 mutation. J 
Proteome Res. 2019;18(3):960–9.

	43.	Wojakowska A, Cole LM, Chekan M, et  al. 
Discrimination of papillary thyroid cancer from 
non-cancerous thyroid tissue based on lipid profil-
ing by mass spectrometry imaging. Endokrynol Pol. 
2018;69(1):2–8.

	44.	Zhao X, Brusadelli MG, Sauter S, et  al. Lipidomic 
profiling links the Fanconi anemia pathway to gly-
cosphingolipid metabolism in head and neck cancer 
cells. Clin Cancer Res. 2018;24(11):2700–9.

	45.	Mohamed A, Collins J, Jiang H, et  al. Concurrent 
lipidomics and proteomics on malignant plasma cells 
from multiple myeloma patients: probing the lipid 
metabolome. PLoS One. 2020;15(1):e0227455.

	46.	Sur S, Nakanishi H, Flaveny C, et al. Inhibition of the 
key metabolic pathways, glycolysis and lipogenesis, 
of oral cancer by bitter melon extract. Cell Commun 
Signal. 2019;17(1):131.

	47.	Bednarczyk K, Gawin M, Chekan M, et  al. 
Discrimination of normal oral mucosa from oral can-
cer by mass spectrometry imaging of proteins and lip-
ids. J Mol Histol. 2019;50(1):1–10.

	48.	Schaeffeler E, Büttner F, Reustle A, et al. Metabolic 
and lipidomic reprogramming in renal cell carcinoma 
subtypes reflects regions of tumor origin. Eur Urol 
Focus. 2019;5(4):608–18.

	49.	Zhang L, Lv J, Chen C, et  al. Roles of acyl-CoA 
synthetase long-chain family member 5 and colony 
stimulating factor 2 in inhibition of palmitic or stearic 
acids in lung cancer cell proliferation and metabo-
lism. Cell Biol Toxicol. 2020; https://doi.org/10.1007/
s10565-020-09520-w.

	50.	Bergqvist F, Ossipova E, Idborg H, et  al. Inhibition 
of mPGES-1 or COX-2 results in different proteomic 
and lipidomic profiles in A549 lung cancer cells. 
Front Pharmacol. 2019;10:636.

	51.	Dai L, Smith CD, Foroozesh M, et al. The sphingo-
sine kinase 2 inhibitor ABC294640 displays anti-non-
small cell lung cancer activities in vitro and in vivo. 
Int J Cancer. 2018;142(10):2153–62.

	52.	Zhang H, Wang Y, Guan L, et al. Lipidomics reveals 
carnitine palmitoyltransferase 1C protects cancer 
cells from lipotoxicity and senescence. J Pharm Anal. 
2020; https://doi.org/10.1016/j.jpha.2020.04.004.

	53.	Chi JT, Lin PH, Tolstikov V, et  al. Metabolomic 
effects of androgen deprivation therapy treatment for 
prostate cancer. Cancer Med. 2020;9:3691.

	54.	Clendinen CS, Gaul DA, Monge ME, et  al. 
Preoperative metabolic signatures of prostate can-
cer recurrence following radical prostatectomy. J 
Proteome Res. 2019;18(3):1316–27.

	55.	Cadoni E, Vanhara P, Valletta E, et  al. Mass spec-
trometric discrimination of phospholipid patterns in 
cisplatin-resistant and -sensitive cancer cells. Rapid 
Commun Mass Spectrom. 2019;33(1):97–106.

	56.	Nikpoor AR, Jaafari MR, Zamani P, et al. Cell cyto-
toxicity, immunostimulatory and antitumor effects of 
lipid content of liposomal delivery platforms in can-
cer immunotherapies. A comprehensive in-vivo and 
in-vitro study. Int J Pharm. 2019;567:118492.

	57.	Maekawa K, Ri M, Nakajima M, et  al. Serum lipi-
domics for exploring biomarkers of bortezomib ther-
apy in patients with multiple myeloma. Cancer Sci. 
2019;110(10):3267–74.

	58.	Beloueche-Babari M, Casals Galobart T, Delgado-
Goni T, et al. Monocarboxylate transporter 1 block-
ade with AZD3965 inhibits lipid biosynthesis and 
increases tumour immune cell infiltration. Br J 
Cancer. 2020;122(6):895–903.

	59.	Das UN.  Can bioactive lipids augment anti-cancer 
action of immunotherapy and prevent cytokine storm? 
Arch Med Res. 2019;50(6):342–9.

	60.	Yan D, Adeshakin AO, Xu M, et al. Lipid metabolic 
pathways confer the immunosuppressive function 
of myeloid-derived suppressor cells in tumor. Front 
Immunol. 2019;10:1399.

	61.	Yang K, Han X. Lipidomics: techniques, applications, 
and outcomes related to biomedical sciences. Trends 
Biochem Sci. 2016;41(11):954–69.

	62.	Ma X, Chong L, Tian R, et al. Identification and quan-
titation of lipid C=C location isomers: a shotgun lipi-

Y. Wang

https://doi.org/10.1007/s10565-020-09520-w
https://doi.org/10.1007/s10565-020-09520-w
https://doi.org/10.1016/j.jpha.2020.04.004


39

domics approach enabled by photochemical reaction. 
Proc Natl Acad Sci U S A. 2016;113(10):2573–8.

	63.	De Berardinis RJ, Chandel NS. Fundamentals of can-
cer metabolism. Sci Adv. 2016;2(5):e1600200.

	64.	Beloribi-Djefaflia S, Vasseur S, Guillaumond 
F.  Lipid metabolic reprogramming in cancer cells. 
Oncogenesis. 2016;5:e189.

	65.	Zalba S, Ten Hagen TL.  Cell membrane modula-
tion as adjuvant in cancer therapy. Cancer Treat Rev. 
2017;52:48–57.

	66.	Keckesova Z, Donaher JL, De Cock J, et al. LACTB is 
a tumour suppressor that modulates lipid metabolism 
and cell state. Nature. 2017;543(7647):681–6.

	67.	Jeon SM, Chandel NS, Hay N.  AMPK regulates 
NADPH homeostasis to promote tumour cell survival 
during energy stress. Nature. 2012;485(7400):661–5.

	68.	Pascual G, Avgustinova A, Mejetta S, et al. Targeting 
metastasis-initiating cells through the fatty acid recep-
tor CD36. Nature. 2017;541(7635):41–5.

	69.	Viswanathan VS, Ryan MJ, Dhruv HD, et  al. 
Dependency of a therapy-resistant state of can-
cer cells on a lipid peroxidase pathway. Nature. 
2017;547(7664):453–7.

	70.	Park JK, Coffey NJ, Limoges A, et al. The heteroge-
neity of lipid metabolism in cancer. Adv Exp Med 
Biol. 2018;1063:33–55.

	71.	Agatonovic-Kustrin S, Morton DW, Smirnov V, 
et  al. Analytical strategies in lipidomics for discov-
ery of functional biomarkers from human saliva. Dis 
Markers. 2019;2019:6741518.

2  Applications of Lipidomics in Tumor Diagnosis and Therapy


	2: Applications of Lipidomics in Tumor Diagnosis and Therapy
	2.1	 Tumor Diagnosis
	2.1.1	 Lung Cancer
	2.1.2	 Breast Cancer
	2.1.3	 Colorectal Cancer
	2.1.4	 Gastric Cancer
	2.1.5	 Prostate Cancer
	2.1.6	 Endometrial Carcinoma
	2.1.7	 Bladder Cancer
	2.1.8	 Ovarian Cancer
	2.1.9	 Pancreatic Cancer
	2.1.10	 Liver Cancer
	2.1.11	 Glial Tumor
	2.1.12	 Thyroid Cancer
	2.1.13	 Head and Neck Cancer
	2.1.14	 Myeloma
	2.1.15	 Oral Cancer
	2.1.16	 Renal Carcinoma

	2.2	 Tumor Therapy
	2.2.1	 Lung Cancer
	2.2.2	 Prostate Cancer
	2.2.3	 Ovarian Cancer
	2.2.4	 Colorectal Cancer
	2.2.5	 Bone Marrow Tumor
	2.2.6	 Lymphoma
	2.2.7	 Other

	2.3	 Conclusion and Remarks
	References




