
Generalization of Lattice-Based
Cryptography on Hypercomplex
Algebras

Sonika Singh, Sahadeo Padhye , and Ankal Pal

1 Introduction

Quantum computing is not a far-fetched reality. Themathematical model of quantum
computing was first proposed by Feynman [18], but the practical implementation
has still engineering limitations pertaining to cryogenics. IBM has come up with
its small quantum computers, which can solve hard optimization problems [20].
In the post-quantum era, computational capabilities would increase exponentially.
By Shor’s algorithm [17], the discrete logarithm problem (DLP) and factorization
problems can be solved efficiently. It poses a direct threat to the security of the
elliptic curve discrete logarithm problem (ECDLP) and RSA cryptosystems. The
national institute of standards and technologies (NIST) has emphasized the efficacy
of quantum-resistant algorithms to be used in the future. In 2019, NIST already
announced the second round of candidates for post-quantum cryptography [21].
Lattice-based schemes are inherently quantum-resistant for higher dimensions (n ≥
100). The recent implementation of the “NewHope” [19] software has shown that it is
possible to have a hardware implementation of lattice-based protocols with memory
and speed constraints. This provides us with new hope that similar implementations
are possible for our proposed scheme, STRU cryptosystem, based on the shortest

S. Singh (B)
Department of Mathematics, CMP Degree College, University of Allahabad, Pryagraj, India
e-mail: sonikasinghcool10@gmail.com

S. Padhye
Department of Mathematics, Motilal Nehru National Institute of
Technology Allahabad, Pryagraj, India
e-mail: sahadeomathrsu@gmail.com

A. Pal
Department of Mathematics, University of L’Aquila, L’Aquila, Italy
e-mail: ankanpal100@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
P. Stǎnicǎ et al. (eds.), Security and Privacy, Lecture Notes in Electrical Engineering 744,
https://doi.org/10.1007/978-981-33-6781-4_6

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6781-4_6&domain=pdf
http://orcid.org/0000-0002-6863-6123
mailto:sonikasinghcool10@gmail.com
mailto:sahadeomathrsu@gmail.com
mailto:ankanpal100@gmail.com
https://doi.org/10.1007/978-981-33-6781-4_6

68 S. Singh et al.

vector problem (SVP) on sedenion algebra obtained through the Cayley–Dickson
process.

A sequence of algebras was constructed by A. Cayley and L. E. Dickson over the
field of real numbers by defining specific/compatible multiplication and conjugation
rules in such a way that each algebra has twice the dimension of the previous algebra.

In this construction, we keep losing some important properties of the algebras
at each step. The gradual loss of properties manifests in the depletion in the alge-
braic structure of the higher dimensional algebras. When we double R, we get C.
The ordering property of R is lost. Similarly, when we construct quaternions (H)
(Dimension 4), the commutative property is lost. Continuing the CD process, we
arrive at octonions (O) from quaternions; the associative property is lost. Continuing
this process, we proceed further and construct the sedenions S, and we observe that
it is non-alternative. We can continue this process and attain the concept of general-
ized 2n-ions. The power associativity remains intact for 2n-ions, which gives us the
freedom to construct and manipulate polynomials [3, 14, 16].

The question is “Why should one use these algebras for Cryptography?” The
pivotalmotivation is that a set of hierarchies can be developed.Moreover, the algebras
provide a way for using obfuscation techniques as the number of bases in the higher
dimensional algebra aremore.Hence, heuristicallywe can safely assume that itmight
provide more security and interesting application scenarios. During the instantiation
of this type of framework, we define a new property “inverse associative property
(IAP)” for the composition of the basis elements.

The remaining parts are given as follows: in Sect. 2, we discuss cryptographic hier-
archies. In Sect. 3, we discuss the algebraic structure of the sedenion algebra for the
proposed STRU scheme. In the next section, we present our desired as well as antici-
pated inverse associative property. We propose the STRU scheme and its decryption
verification in Sect. efsec5. Consequently, we analyze the proposed scheme in the
context of different attacks in Sect. 6. In Sect. 7, we provide a comparative analysis
of the generalized structure. After that, we conclude the article in the last section.

2 Cryptographic Hierarchies

The aim of the cryptographic hierarchy is to create different security levels using the
same protocol [10]. It is an attempt to vary the security levels by keeping the same
encryption–decryption process but changing the base algebraic configuration.

As the SVP is implemented over the quaternions, we notice that although it is
four times slower than NTRU [7], QTRU [11] is much more secure to lattice-based
attacks than NTRU. Hence, one can easily compensate for speed loss by reducing
the dimension of the three parameters (N , p, q) and still gaining the same level of
security. Similar arguments can be made for the non-associative counterpart OTRU
[2]. The way forward from OTRU needs a structured framework as they are no more
division algebras. We have implemented SVP on sedenions, and we call it STRU
cryptosystem. A detailed explanation of the proposed scheme is provided in Sect. 7.

Generalization of Lattice-Based Cryptography … 69

Table 1 A general hierarchy

Cryptosystem Underlying hard lattice
problem

Dimension

GTRU SVP 2n

(Power associative (Shortest Vector Problem) (n = 5, 6, . . .)

but other properties lost)

STRU SVP 24

(Non-alternative)

OTRU [12] SVP 23

(Non-associative)

QTRU [11] SVP 22

(Non-commutative)

G-NTRU [9] SVP 21

(Non-ordered)

NTRU [7] SVP 20

3 Sedenion Algebra

As we have discussed earlier that if we apply the CD construction to the octonions
(an eight-dimensional non-commutative and non-associative algebra over the reals)
[1], then we can obtain a 16-dimensional non-commutative, non-associative, and
non-alternative algebra over the reals. This algebra is called sedenion algebra. We
denote the set of sedenions by S. The addition and the subtraction of sedenions are
coefficient-wise, and the multiplication of sedenions is non-commutative and non-
associative. Sedenions are power associative and flexible. Since sedenions have zero
divisors, they are not division algebra [8]. For more details for sedenion algebra,
please refer to Imaeda’s work [8] or [13].

Sedenions: The real sedenions denoted byS can be viewed as an algebra of dimension
16 over real number field R. We define S by

S = {y0 + Σ15
i=1yi ki : y0, . . . , y15 ∈ R},

where yi ’s are the real scalar values and the set {1, k1, . . . , k15} are the basis elements
(unit sedenions, we are using k0 = 1). For our implementation, we consider only
integer coefficients because of the modularity restrictions.

We elaborate the structure of A,Ap, and Aq sets which contains the desired
polynomials of integer coefficients. Considering the convolution polynomial rings
R = Z [x]

xN−1 ,Rp = Z p[x]
xN−1 , andRq = Zq [x]

xN−1 , the structures of A,Ap, and Aq are given
by

70 S. Singh et al.

A = {a0 + Σ15
i=1ai (x)ki : a0(x), ..., a15(x) ∈ R},

Ap = {a0 + Σ15
i=1ai (x)ki : a0(x), ..., a15(x) ∈ Rp},

Aq = {a0 + Σ15
i=1ai (x)ki : a0(x), ..., a15(x) ∈ Rq}.

4 Inverse Associative Property in the Basis Elements of
Sedenions

We assume that ki are basis elements where 1 ≤ i ≤ 15 and i ∈ N and ◦ denotes
the sedenionic multiplication. We recall some properties of the basis elements which
would be necessary to verify the inverse associativity property in the basis elements
of S:

Property-1 [8] (Anti-Commutativity):

−ki ◦ k j = k j ◦ ki
ki ◦ (−k j) = k j ◦ ki .

Property-2 [8]:
ki ◦ ki = −k0.

The second property is a particularly nice property because from it we can deduce
that

−ki = ki
−1.

Types of Inverse Associativity Property: We assume that f, g, h ∈ {ki | 1 ≤ i ≤
15} and f �= k0, g �= k0, h �= k0. We did the computations and found out that there
are two types of inverse associativity that is followed by the basis elements:

1. Elements which satisfy Inverse Associativity-D (Desired) (IAP-D): f ◦ ((g ◦
f) ◦ h) = (g ◦ h).

2. Elements which satisfy Inverse Associativity-A (Anticipated) (IAP-A): f ◦ ((g ◦
f) ◦ h) = (h ◦ g).

We elaborate some of the algebraic manipulations here to show that the above prop-
erties which are the results of the computations can have many forms. We start from
the following assumptions and analyze how Property-1 and Property-2 can be used
to do the manipulations. We assume the following:

f ◦ ((f −1 ◦ g) ◦ h) = (f ◦ f −1) ◦ (g ◦ h) = (g ◦ h).

By using Property-2, it can be rewritten as

Generalization of Lattice-Based Cryptography … 71

f ◦ ((f −1 ◦ g) ◦ h) = (f ◦ f −1) ◦ (g ◦ h) = k0 ◦ (g ◦ h).

Again, using Property-1, we can rewrite it as

f ◦ ((f −1 ◦ g) ◦ h) = (f ◦ f −1) ◦ (g ◦ h) = (h ◦ g).

We again use Property-2 to deduce that f −1 = − f :

f ◦ ((− f ◦ g) ◦ h) = (h ◦ g).

We again use Property-1 to deduce that

f ◦ ((g ◦ f) ◦ h) = (h ◦ g) (InverseAssociativityProperty − A).

We also define (Inverse Associativity Property-D):

f ◦ ((g ◦ f) ◦ h) = (g ◦ h).

Interestingly, we see that actually all the basis elements satisfy either of the two
properties.

Extending the Property to Polynomials: We impose a condition that this property
to be checked while constructing A. Every polynomial in S will have a form:

p(x) =
N−1∑

i=0

ai x
i ,

where a′
i s are the sedenionic coefficients. Every a

′
i s can be written in the form of the

basis elements as

ai =
15∑

j=0

yi j k j

, i.e., our p(x) will be of the form:

p(x) =
N−1∑

i=0

(

15∑

j=0

yi j k j)x
i .

Hence, we need to multiply the basis elements and then do an iterative process. In
this way, all the elements of A will follow either of the two properties. This is an
additional computational task which needs to be performed for sedenions.

72 S. Singh et al.

5 Proposed Scheme: STRU

There is an article, namely, “STRU:ANon-Alternative andMulti-dimensional Public
Key Cryptosystem” given by Thakur and Tripathi in 2017 [15]. They proposed an
STRU cryptosystem based on sedenions, but in the decryption process, they used
associativity directly. Since we know that sedenions are non-associative, we cannot
use associativity directly, as Thakur et al. did. So, their scheme does not follow the
sedenionic requirements.

Here, we propose a cryptographic scheme based on sedenion algebra and over-
come the flaw of Thakur et al. scheme. We use the inverse associative property in
the decryption phase of the system. In our proposed scheme, the elements of A are
taken and called sedenion polynomial for brevity. The encryption and decryption
in STRU are done in a multi-dimensional space as in OTRU cryptosystem [12].
This cryptosystem has parameters (N , p, q) and four subsets L f , Lg, Lφ , and Lm

ofA. N , p, q, d f , dg, dφ all are constant parameters and perform a similar role as in
NTRU. The scheme of STRU cryptosystem is as follows.

Key-Generation: For generating key pairs, two random sedenion polynomials F ∈
L f and G ∈ Lg are generated, where

F = f0(x) + f1(x)k1 + · · · + f15(x)k15 : f0, f1, . . . , f15 ∈ L f ,

G = g0(x) + g1(x)k1 + · · · + g15(x)k15 : g0, g1, . . . , g15 ∈ Lg.

The sedenion polynomial F should have an inverse over Aq and Ap. If the inverses
do not exist, then a new sedenion polynomial F will be generated. The inverse of F
overAp is denoted by F−1

p and overAq is by F−1
q . Then, a new sedenion polynomial

H is computed by
H = F−1

q ◦ G ∈ Aq .

This sedenion polynomial H acts as the public key, and the sedenion polynomial pair
(F, F−1

p) is kept secret. When the same parameters are used in both cryptosystems,
then the key-creation process in STRU is 256 times slower in comparison to NTRU.

Encryption: For the encryption process, firstly, a random sedenion polynomial φ ∈
Lφ is generated. The message M , which is to be encrypted, is first expressed in terms
of a sedenion polynomial. Consequently, the ciphertext E is obtained by

E = pH ◦ φ + M ∈ Aq ,

where, φ = φ0(x) + φ1(x)k1 + · · · + φ15(x)k15 : φ0, φ1, . . . , φ15 ∈ Lφ and M =
m0(x) + m1(x)k1 + · · · + m15(x)k15 : m0,m1, · · · ,m15 ∈ Lm .
The encryption requires one sedenionic multiplication involving 256 convolution
multiplications and 16 polynomial additions having complexity O(N 2) and O(N),

Generalization of Lattice-Based Cryptography … 73

respectively. Each encryption round takes a total of 16 data vectors.

Decryption: For decryption, we compute

B =(F ◦ E)modq = F ◦ (pH ◦ φ + M)mod q

= pF ◦ (H ◦ φ) + F ◦ Mmod q

= pF ◦ ((F−1
q ◦ G) ◦ φ) + F ◦ Mmod q.

Now we use IAP-D to get

B = pG ◦ φ + F ◦ M mod q.

If we select advisable parameters, the coefficients of the 16 polynomials in pG ◦
φ + F ◦ M ∈ Aq will fall into the range (−q/2,+q/2] so that the last reduction
modulo q will not be required. So, we can proceed to the next step. B ∈ Aq should
be analyzed with its corresponding candidate in (−q/2,+q/2] and all coefficients in
16 polynomials should be reduced mod p. Thus, we get (B mod p) = F ◦ M ∈ Ap.
To obtain the actual plaintext M , we multiply B on the left by Fp

−1.
The encryption and decryption algorithms in this cryptosystem are about 16 and

32 times slower than NTRU for similar dimension N . However, in STRU, we can
deal with a lesser dimension N , without compromising security of the cryptosystem.
Also, as in NTRU, the efficiency of STRU encryption/decryption may be optimized
using various optimizationmethods [6] under appropriate assumptions. Additionally,
a message of size 16N can be encrypted/decrypted in a single encryption/decryption
process, whereas in NTRU the message of size 16N can be encrypted/decrypted
using 16 times of encryption/decryption process.

5.1 Successful Decryption

We calculated the successful decryption probability in STRU cryptosystem as like
as in the NTRU cryptosystem and by taking similar assumptions as in the standard
version [9]. The decryption will be successful in STRU if all coefficients of pG ◦
φ + F ◦ M lie in (

−q+1
2 ,

+q−1
2). So, we have

B = F ◦ E = F ◦ (pH ◦ φ) + F ◦ M = r0 + Σ15
i=1ri (y)ki ,

where, for instance, r0, a degree N polynomial is computed as

74 S. Singh et al.

r0 = [r0,0, r0,1, ..., r0,N−1],
r1 = [r1,0, r1,1, ..., r1,N−1],

...

...

...

r15 = [r15,0, r15,1, ..., r15,N−1].

If we consider all NTRU assumptions, then one can easily estimate the expected
values for all coefficients of r0, r1, ..., r15 in B will remain zero and their variances
are 16 tuples.We assume that the coefficients of fi , gi , andφi are random independent
variables and take one of the values from {1, 0,−1}. Then we can easily deduce

fi = [fi,0, fi,1, ..., fi,N−1], i = 0, 1, ..., 15,

gi = [gi,0, gi,1, ..., gi,N−1], i = 0, 1, ..., 15,

φ0 = [φi,0, φi,1, ..., φi,N−1], i = 0, 1, ..., 15.

Pr(fi, j = 1)= d f

N , Pr(fi, j = −1)= d f −1
N ≈ d f

N , Pr(fi, j = 0)= N−2d f

N ,

Pr(gi, j = 1)= dg
N , Pr(gi, j = −1)= dg

N , Pr(gi, j = 0)= N−2dg
N ,

Pr(φi, j = 1)= dφ

N , Pr(φi, j = −1)= dφ

N , Pr(φi, j = 0)= N−2dφ

N ,

Pr(mi, j = j)= 1
p where i = 0, 1, ..., 15 and j = −(p−1)

2 , ...,
−(p+1)

2 .

Considering the above assumptions, expected values are E(fi, j) ≈ 0, E(gi, j) = 0,
E(ri, j) = 0, and E(mi, j) = 0. Thus, E(ri, j) = 0, i = 0, 1, ..., 15.

The variances are calculated as in NTRU, i.e., Var [gi,lφ j,t] = 4dgdφ

N 2 , i, l = 0, 1, ...,
15, j, t = 0, 1, ..., N − 1,
Var [fi,lm j,t] = d f (p−1)(p+1)

6N , i, l = 0, 1, ..., 15, j, t = 0, 1, ..., N − 1.

Therefore,
Var [r0,l] = Var [Σi+ j=l mod N (p.g0,iφ0, j − p.g1,iφ1, j − p.g2,iφ2, j − p.g3,iφ3, j −
p.g4,iφ4, j − p.g5,iφ5, j − p.g6,iφ6, j − p.g7,iφ7, j − p.g8,iφ8, j − p.g9,iφ9, j − p.g10,i
φ10, j − p.g11,iφ11, j − p.g12,iφ12, j − p.g13,iφ13, j − p.g14,iφ14, j − p.g15,iφ15, j + f0,i
m0, j − f1,im1, j − f2,im2, j − f3,im3, j − f4,im4, j − f5,im5, j − f6,im6, j − f7,im7, j −
f8,im8, j − f9,im9, j − f 10, im10, j − f11,im11, j − f12,im12, j − f13,im13, j − f14,i
m14, j − f15,im15, j)].

Putting the values of Var [gi,lφ j,t] and Var [fi,lm j,t], we get
Var [r0,l] = 1024p2dgdφ

N + 128d f (p−1)(p+1)
3 .

In same manner, we have
Var [r1,l] = Var [r2,l] = ... = Var [r15,l] = 1024p2dgdφ

N + 128d f (p−1)(p+1)
3 .

Generalization of Lattice-Based Cryptography … 75

It is required to compute the probability that ri,l lies between
−(q−1)

2 to q−1
2 which

would result in a successful decryption. Considering that ri,l have normal distribution
having mean zero and the variance obtained as above, we have

Pr
(|ri,l | ≤ q − 1

2

) = Pr
(−q + 1)

2
≤ |ri,l | ≤ q − 1

2

) = 2Φ
(q − 1

2σ

) − 1,

where Φ denotes the distribution of the standard normal variable and

σ =
√
1024p2dgdφ

N
+ 128d f (p − 1)(p + 1)

3
.

According to the above observations, the probability that STRU has successful
decryption can be obtained from the two investigated points:

1. Each of themessagesm0,m1, ...,m15 to be correctly decrypted has the probability

(
2Φ

(q − 1

2σ

) − 1
)N

.

2. All of the messages m0,m1, ...,m15 to be correctly decrypted has the probability

(
2Φ

(q − 1

2σ

) − 1
)16N

.

6 Cryptanalysis of STRU

6.1 Brute Force Attack

An attacker tries each possible sedenion polynomial in L f to find a short key for
decryption for mounting a brute force attack. The size of the search space L f will be

|L f | =
(
N

d f

)16(N − d f

d f − 1

)16

,where

(
n

k

)
= n!

k!(n − k)! .

Similar to NTRU, F along with all its rotations yi F can be taken as the decryption
key. Hence, search space to find the key is |L f |

N . Similarly, if an attacker wants to find

the plaintext directly, then he has to search on |Lg |
N possibilities where

|Lg| =
(
N

dg

)16(N − dg
dg

)16

.

76 S. Singh et al.

6.2 Meet-in-the-Middle (MITM) Attacks

If sufficientmemory is available, then for attackingwithMITMattack [5], an attacker

requires search spaces
√

|L f |
N and

√
|Lg |
N for finding the key and plaintext, respectively,

i.e., meet-in-the-middle attack shortens the search space by the order of the square
root.

6.3 Message Expansion Scheme

For obtaining encryption speed, there is an important factor, namely, message expan-
sion, which cannot be ignored. Message expansion is the ratio of the sizes of cipher-
text search space and plaintext search space and given as log |C |

log |P| where P is the
plaintext space and C is the ciphertext search space. In STRU cryptosystem:

messageexpansion = log |C |
log |P| = log q16N

log p16N
= log q

log p
.

As this ratio involves with q and p, q should be chosen in such a manner that will
give the smaller decryption failure.

6.4 Lattice Attacks

Lattice attacks [4] are prevalent in lattice-based cryptographic protocols. The key
idea is to find an element having a small norm, satisfying the relations as per the
protocol to construct a lattice, and then use lattice reduction schemes to find the secret
key. In STRU, finding a sedenion polynomial having a small norm that satisfies the
relation F ◦ H = G (mod q) is difficult. Also, it is exigent for attacker to build a
sedenionic lattice on which lattice reduction schemes can be applied to render the
protocol insecure. The sole strategy for applying the lattice attack on the STRU cryp-
tosystem and to find a suitable decryption key is to analyze the relation F ◦ H = G
(mod q) in the following way:

f0h0 − f1h1 − f2h2 − f3h3 − f4h4 − f5h5 − f6h6 − f7h7 − f8h8 − f9h9 − f10
h10 − f11h11 − f12h12 − f13h13 − f14h14 − f15h15 = g0 + qu0,

f0h1 + f1h0 + f2h3 − f3h2 + f4h5 − f5h4 − f6h7 + f7h6 + f8h9− f9h8 − f10
h11 + f11h10 − f12g13 + f13h12 + f14h15 − f15g14 == g1 + qu1,

.

.

Generalization of Lattice-Based Cryptography … 77

.

f0h15 + f1h14 − f2h13 − f3h12 + f4h11 + f5h10 − f6h9 + f7h8 − f8h7 + f9
h6 − f10h5 − f11h4 + f12h3 + f13h2 − f14h1 + f15h0 = g15 + qu15.

Let MN×N be the linear representation of the polynomials h0, h1, ..., h15:

MN×N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

hi,0 hi,1 hi,2 ... hi,N−1

hi,N−1 hi,0 hi,1 ... hi,N−2

hi,N−2 hi,N−1 hi,0 ... hi,N−3

...

...

hi,2 hi,3 hi,4 ... hi,1
hi,1 hi,2 hi,3 ... hi,0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
We can construct a 32N -dimensional STRU lattice (LST RU) generated by the rows
of the matrix M defined above. It can be observed from the above equations that
the vector 〈 f0, f1, ..., f15, g0, g1, ..., g15〉1×32N is contained in STRU lattice. In this
lattice, a short vector may be used as our key as we do in the NTRU lattice (LNT RU)
[7]. For the STRU lattice, we have

1. Det(LST RU) = q16N .
2. ‖〈 f0, f1, ..., f15, g0, g1, ..., g15〉‖=

√
64d ≈ 4.62378

√
N (we are assuming d f =

dg = dφ = d = N/3).
3. The expected length of the shortest non-zero vector (by Gaussian heuristic) in the

LST RU is

λ0 =
√

n

2πe
Det (L)1/n =

√
32N

2πe
Det (q16N)1/32N =

√
16Nq

πe
≈ 1.368752

√
Nq.

4. c = ‖ f0, f1,..., f15,g0,g1,...,g15‖
λ0

= 4.62378
√
N

1.368752
√
Nq

≡ 3.3780√
q .

The target vectors in LST RU are about O(
√
q) shorter than the expected shortest

vector given by Gaussian heuristic. We can say that the STRU lattice has the same
structure as NTRU lattice with the only difference that STRU lattice is not fully
circular. When we choose the same parameter N in both the cryptosystems NTRU
and STRU, the dimension of LST RU is 16 times than LNT RU . Hence, STRU lattice
possesses all the properties of NTRU lattice.

All advantages of taking non-associative algebra [16] are same here as in OTRU
cryptosystem [12].

78 S. Singh et al.

7 Comparative Analysis

If we compare the speed of encryption and decryption processes of the STRU cryp-
tosystem with the NTRU cryptosystem with equal dimensions, these are almost 16
times and 32 times slower, respectively. If we reduce N with the power of two, then
it will affect the computation speed, given that the complexity of the convolution
multiplication is O(N 2). Consequently, NTRU with a size of 16N is almost 256
times slower than an NTRU with a dimension of N and also, naturally, much slower
than an STRU. Therefore, we argue that higher security can be achieved by reducing
N within reasonable limit, but then one can meet a claim about reducing the STRU
speed. It could also be argued that the length of the parameter q in STRU is longer
and should not be prime at an insignificant cost. Our proposed scheme, STRU cryp-
tosystem, is efficient, fast, and cost-effective as the NTRU public key cryptosystem
because of the nature of its underlying algebraic structure (having basic operations).

8 Conclusion

A public key cryptosystem, STRU, based on sedenion algebra (non-associative and
non-alternative) containing all strengths and strong points of NTRU cryptosystem
is introduced. It encrypts 16 data vectors at each encryption round. A new property
“inverse associative property,” which is required for successful decryption is also
introduced. To attack STRU cryptosystem with the lattice threats is a very massive
task than NTRU. The speed of STRU cryptosystem can be increased even higher
than that of NTRU by reducing the size of the underlying convolution polynomial
ring.

References

1. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21(6/7)
2. Online Resource (2019). https://www.research.ibm.com/ibm-q/
3. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In:

Goldwasser S (ed) Proceedings of the 35th annual symposium on foundations of computer
science. IEEE Computer Society Press

4. Online Resource (2019). https://quantumcomputingreport.com/news/nist-to-announce-
round-2-pqc-candidates-on-january-10-2019/

5. Alkim E, Ducas L, Poppelmann T, Schwabe P (2016) Post-quantum key exchange—A new
hope. In: USENIX security symposium

6. Carmody K (1988) Circular and hyperbolic quaternions, octonions, and sedenions. Appl Math
Comput 28(1):47–72

7. Tian Y (2000) Similarity and consimilarity over real cayley dickson algebra. arxiv: math-
-ph/0003031

8. Wonenburger MJ, Schafer RD (1969) An introduction to nonassociative algebras. Bull Am
Math Soc 75(4):7–12

https://www.research.ibm.com/ibm-q/
https://quantumcomputingreport.com/news/nist-to-announce-round-2-pqc-candidates-on-january-10-2019/
https://quantumcomputingreport.com/news/nist-to-announce-round-2-pqc-candidates-on-january-10-2019/
http://arxiv.org/abs/math-ph/0003031

Generalization of Lattice-Based Cryptography … 79

9. Kutyłowski M (2004) Anonymity and rapid mixing in cryptographic protocols. In: The 4th
central European conference on cryptology, Wartacrypt

10. MalekianE,ZakerolhosseiniA (2010)Anon-associative lattice-based public key cryptosystem.
Secur Commun Netw 5:145–163

11. Malekian E, Zakerolhosseini A, Mashatan A (2011) QTRU: quaternionic version of the NTRU
public-key cryptosystems. ISC Int J Inf Secur 3(1):29–42

12. Kouzmenko R (2006) Generalizations of the NTRU cryptosystem
13. Hoffstein J, Pipher J, Silverman JH (1998) NTRU: A ring based public key cryptosystem. In:

Proceedings of the ANTS, LNCS, vol 1423. Springer, pp 267–288
14. Bagheri K, Sadeghi MR. A new non-associative cryptosystem based on NTRU public key

cryptosystem and octonions algebra. ACM Commun Comput Algebra 49(1)
15. Baez JC (2002) The octonions. Bull Am Math Soci 39:145–205
16. Imaeda K, Imaeda M (2000) Sedenions: algebra and analysis. Appl Math Comput 115:77–88
17. Schafer RD (1996) An introduction to non associative algebras. Dover Publications Inc.,

NewYork, corrected reprint of the 1966 original
18. Thakur K, Tripathi BP (2017) STRU: a non alternative and multidimensional public key cryp-

tosystem. Glob J Pure Appl Math 13(5):1447–1464
19. Hoffstein J, Silverman J (2000) Optimizations for NTRU. In: Public key cryptography and

computational number theory, pp 11–15
20. GrahamNH, SilvermanNH,WhyteW (2003)Ameet-in-the-middle attack on anNTRUprivate

key, NTRU Technical Report-004
21. Coppersmith D, Shamir A (1997) Lattice attacks on NTRU. In: proceeding of EUROCRYPT

1997, vol 1233. LNCS, Springer, pp 52-61

	 Generalization of Lattice-Based Cryptography on Hypercomplex Algebras
	1 Introduction
	2 Cryptographic Hierarchies
	3 Sedenion Algebra
	4 Inverse Associative Property in the Basis Elements of Sedenions
	5 Proposed Scheme: STRU
	5.1 Successful Decryption

	6 Cryptanalysis of STRU
	6.1 Brute Force Attack
	6.2 Meet-in-the-Middle (MITM) Attacks
	6.3 Message Expansion Scheme
	6.4 Lattice Attacks

	7 Comparative Analysis
	8 Conclusion
	References

