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1 Introduction

Bent functions are Boolean functions with the highest possible nonlinearity in an
even number of variables. They were introduced by Rothaus [19] and already studied
first by Dillon [9] and next by many researchers for more than three decades ago.
Since 1974, bent functions have been extensively developed for their own sake as
interesting combinatorial objects but also due to their significantly important role in
cryptography (design of stream ciphers, see, e.g., [3]), coding theory (Reed–Muller
codes, Kerdock codes (see, e.g., [7]), two-weight codes [1], codes with a fewweights
[12], association schemes [17]), sequences (see, e.g., [13]), and graph theory (see,
e.g., [16]). The classification of bent functions is still elusive, and therefore not only
their characterization, but also their generation is a challenging problem.

A number of recent research works in the theory of bent functions have been
devoted to the construction of bent functions. One distinguishes two kinds of con-
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structions of bent functions: primary constructions, which do not need to use pre-
viously constructed functions for designing new ones and secondary constructions
(of new functions from two or several already known ones). A book devoted to bent
functions is [11] and a jubilee survey on bent functions is [4].

TheWalsh–Hadamard transform has been exploited extensively for the analysis of
Boolean functions and used in coding theory and cryptology [3]. A Boolean function
on an even number of variables is bent if and only if the magnitude of all the values
in its Walsh–Hadamard spectrum is the same (flat Walsh–Hadamard spectrum). The
Walsh–Hadamard transform is an example of a unitary transformation on the space of
all Boolean functions. Riera and Parker [18] extended the concept of a bent function
to some generalized bent criteria for a Boolean function, where they required that a
Boolean function has flat spectrum with respect to one or more transforms from a
specified set of unitary transforms. The set of transforms they chose is not arbitrary
but ismotivated by a choice of local unitary transforms that are central to the structural
analysis of pure n-qubit stabilizer quantum states. The transforms they applied are

n-fold tensor products of the identity I =
(
1 0
0 1

)
, theWalsh–Hadamardmatrix H =

1√
2

(
1 1
1 −1

)
, and the nega-Hadamardmatrix N = 1√

2

(
1 i
1 −i

)
, where i2 = −1. The

Walsh–Hadamard transformcanbedescribed as the tensor product of several H ′s, and
the nega-Hadamard transform is constructed from the tensor product of several N ′s.
The nega-Hadamard transform of Boolean functions was first proposed by Parker
[14]. As in the case of the Walsh–Hadamard transform, a Boolean function is called
negabent if the spectrum under the nega-Hadamard transform is flat. There are some
papers about negabent functions in the last few years [10, 20–24, 26–28]. Many
bent functions are known, and also some negabent functions are known. For an even
number of variables, a function is bent–negabent if it is both bent and negabent. An
interesting topic is to investigate the intersection of these two sets, i.e., to construct
Boolean functions which are both bent and negabent. The bent–negabent functions
were first introduced by Riera and Parker [18]. Some quite interesting results have
been found in this topic by the authors mentioned above but there is still a gap
between our interest and the results on the literature. The goal of this paper is to push
further the study of negabent and bent–negabent by deriving results which help to
design more such functions.

The paper is organized as follows. Section 2 aims to bring a background on the
notions related to Boolean function needed in the paper. In Sect. 3, we discuss sec-
ondary constructions of bent–negabent functions and exhibit one construction based
on the well-known indirect construction of bent functions. In Sect. 4, a secondary
construction of bent function is revisited and a newmethod to design secondary con-
struction is exhibited. Section 5 shows how one can design bent–negabent functions
from quadratic Boolean functions. In Sect. 6, we provide a characterization of bent–
negabent functions in terms of their second-order derivatives. In Sect. 7, we study
the sum-of-squares indicator and derive tight lower and upper bounds. Negabent are
those whose lower bound on the sum-of-squares indicator is reached.
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2 Preliminaries

LetF2 denote the finite fieldwith two elements.Wedenote byBn the set of all Boolean
functions of n-variable, i.e., of all the functions from F

n
2 into F2. The set of integers,

real numbers, and complex numbers are denoted by Z, R, and C, respectively. The
addition over Z, R, and C is denoted by +. The addition over F

n
2 for all n ≥ 1 is

denoted by⊕ (or+ if there is no ambiguity). If z = a + bi ∈ C, then |z| = √
a2 + b2

denotes the absolute value of z, and z = a − bi denotes the complex conjugate of z,
where i2 = −1, a, b ∈ R.

The Hamming weightwt (x) of an element x = (x1, x2, . . . , xn) ∈ F
n
2 is the num-

ber of ones in x , i.e.,wt (x) = ∑n
i=1 xi . We say that a Boolean function is balanced if

its truth table contains an equal number of 0’s and 1’s, that is, if its Hamming weight
equalswt ( f ) = 2n−1. TheHamming distance between two functions f (x) and g(x),
denoted by d( f, g), is the Hamming weight of f ⊕ g, i.e., d( f, g) = wt ( f ⊕ g).

Any Boolean function, f ∈ Bn , is generally represented by its algebraic normal
form (ANF)

f (x1, · · · , xn) =
⊕
u∈F

n
2

λu

(
n∏

i=1

xui
i

)
,

where λu ∈ F2 and u = (u1, u2, . . . , un) ∈ F
n
2. The algebraic degree of f , denoted

by deg( f ), is the maximal value of wt (u) such that λu �= 0. A Boolean function
is affine if there exists no term of degree strictly greater than 1 in the ANF and
the set of all affine functions is denoted by An . An affine function with constant
term equal to zero is called a linear function. Any linear function on F

n
2 is denoted

by x · ω = x1ω1 ⊕ x2ω2 ⊕ · · · ⊕ xnωn , where x, ω ∈ F
n
2. The nonlinearity of an n-

variable function f (x) is nl( f ) = ming∈An (d( f, g)), i.e., the distance from the set
of all n-variable affine functions.

The derivative of f ∈ Bn at β ∈ F
n
2, denoted as Dβ f , is defined as Dβ f (x) =

f (x) + f (x + β) for all x ∈ F
n
2. The second-order derivatives Dα Dβ f at (α, β) ∈

F
n
2 × F

n
2 of a Boolean function f are defined by Dα Dβ f (x) = f (x + α + β) −

f (x + α) − f (x + β) + f (x).

The Walsh–Hadamard transform of f ∈ Bn at u ∈ F
n
2 is defined by

W f (u) =
∑
x∈F

n
2

(−1) f (x)⊕u·x .

The nega-Hadamard transform of f ∈ Bn at u ∈ F
n
2 is the complex-valued function:

N f (u) =
∑
x∈F

n
2

(−1) f (x)⊕u·x iwt (x).
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Let n be an even positive integer, a function f ∈ Bn is a bent function if |W f (u)| =
2n/2 for all u ∈ F

n
2. Similarly, f is called negabent function if |N f (u)| = 2n/2 for all

u ∈ F
n
2. If f is both bent and negabent, we say that f is bent–negabent.

The concept of a dual bent function is well known. If f ∈ Bn is bent, then the
dual function f̃ of f , defined on F

n
2 by W f (x) = 2n/2(−1) f̃ (x), is also bent and its

own dual is f itself. If f is bent–negabent, then the dual has the same property. We
refer to Carlet [3], and Cusick and Stănică [6] for more on cryptographic Boolean
functions and to [11] for more about bent functions.

The nega-cross-correlation of f and g at u ∈ F
n
2 is denoted by

C f,g(u) =
∑
x∈F

n
2

(−1) f (x)⊕g(x⊕u)(−1)u·x .

In case f = g, then the nega-cross-correlation is called the nega-autocorrelation of
f at u and denoted by C f (u). A Boolean function f ∈ Bn is negabent if and only
if C f (u) = 0 for all u �= 0. If f (x) is an affine function, then for all u �= 0 the
nega-autocorrelation C f (u) = 0. This implies that any affine function is negabent.

Definition 1 ([28]) Let f, g ∈ Bn , the sum-of-squares indicator of the nega-cross-
correlation between f and g is defined by

σ f,g =
∑
u∈F

n
2

C2
f,g(u).

If f = g then σ f, f is called the sum-of-squares indicator of the nega-autocorrelation
of f and denoted by σ f , i.e.,

σ f =
∑
u∈F

n
2

C2
f (u).

Note that C f (0) = 2n . Thus, σ f ≥ C2
f (0) = 22n . A Boolean function f ∈ Bn is

negabent if and only if C f (u) = 0 for all u ∈ F
n
2 \ {0}. Hence, σ f ≥ 22n , where

the equality holds if and only if f is negabent function.

3 Secondary Constructions of Bent–Negabent Functions

A secondary construction of bent functions is due to Carlet [2] and is commonly
referred to as the indirect sum construction.

Theorem 1 ([2]) Let f1(x) and f2(x) be two r-variable bent functions (r even) and
let g1(y) and g2(y) be two s-variable bent functions (s even). Let (x, y) ∈ F

r
2 × F

s
2.

Then the function h(x, y) = f1(x) ⊕ g1(y) ⊕ ( f1 ⊕ f2)(x)(g1 ⊕ g2)(y) is bent and

its dual h̃(x, y) is obtained from f̃1(x), f̃2(x), g̃1(y) and g̃2(y) by the same formula
as h(x, y) is obtained from f1(x), f2(x), g1(y) and g2(y).
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In this section, we use h(x, y) to construct bent–negabent function. Here we first
analyze the nega-Hadamard transform of the function h(x, y).

Lemma 1 Let f1(x), f2(x) ∈ Br , g1(y), g2(y) ∈ Bs . Define h(x, y) = f1(x) ⊕
g1(y) ⊕ ( f1 ⊕ f2)(x)(g1 ⊕ g2)(y). Then the nega-Hadamard transform of h(x, y)

at (u, v) ∈ F
r+s
2 is given by

Nh(u, v) = 1

2
N f1(u)[Ng1(v) + Ng2(v)] + 1

2
N f2(u)[Ng1(v) − Ng2(v)]. (1)

Proof By definition, we have

Nh(u, v) =
∑

(x,y)∈F
r+s
2

(−1)h(x,y)⊕u·x⊕v·yiwt (x)+wt (y)

=
∑

(x,y)∈F
r+s
2 :(g1⊕g2)(y)=0

(−1) f1(x)⊕g1(y)⊕u·x⊕v·yiwt (x)+wt (y)

+
∑

(x,y)∈F
r+s
2 :(g1⊕g2)(y)=1

(−1) f2(x)⊕g1(y)⊕u·x⊕v·yiwt (x)+wt (y)

=
∑

y∈F
s
2:(g1⊕g2)(y)=0

(−1)g1(y)⊕v·yiwt (y)

⎛
⎝∑

x∈F
r
2

(−1) f1(x)⊕u·x iwt (x)

⎞
⎠

+
∑

y∈F
s
2:(g1⊕g2)(y)=1

(−1)g1(y)⊕v·yiwt (y)

⎛
⎝∑

x∈F
r
2

(−1) f2(x)⊕u·x iwt (x)

⎞
⎠

= N f1(u)
∑

y∈F
s
2:(g1⊕g2)(y)=0

(−1)g1(y)⊕v·yiwt (y)

+ N f2(u)
∑

y∈F
s
2:(g1⊕g2)(y)=1

(−1)g1(y)⊕v·yiwt (y)

= N f1(u)
∑
y∈F

s
2

(−1)g1(y)⊕v·y
(
1 + (−1)(g1⊕g2)(y)

2

)
iwt (y)

+ N f2(u)
∑
y∈F

s
2

(−1)g1(y)⊕v·y
(
1 − (−1)(g1⊕g2)(y)

2

)
iwt (y)

= 1

2

[
N f1(u)

⎛
⎝∑

y∈F
s
2

(−1)g1(y)⊕v·yiwt (y) +
∑
y∈F

s
2

(−1)g2(y)⊕v·yiwt (y)

⎞
⎠

+ N f2(u)

⎛
⎝∑

y∈F
s
2

(−1)g1(y)⊕v·yiwt (y) −
∑
y∈F

s
2

(−1)g2(y)⊕v·yiwt (y)

⎞
⎠

]
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= 1

2
N f1(u)[Ng1(v) + Ng2(v)] + 1

2
N f2(u)[Ng1(v) − Ng2(v)].

This completes the proof. �

In (1), if f1(x) = f2(x) or g1(y) = g2(y), then Nh(u, v) = N f1(u)Ng1(v).

Corollary 1 Let r and s be two even positive integers. Let f1(x) ∈ Br and g1(y) ∈
Bs be two bent–negabent functions. Then h(x, y) = f1(x) ⊕ g1(y) is also a bent–
negabent function.

In the following, we propose a necessary and sufficient condition so that the
indirect sumconstruction generates bent–negabent functions in r + s variables, using
r and s variable bent–negabent functions as the input functions.

Theorem 2 Let f1(x), f2(x) be two r-variable bent–negabent functions (r even)
and let g1(y), g2(y) be two s-variable bent–negabent functions (s even). Let (x, y) ∈
F

r
2 × F

s
2. Define

h(x, y) = f1(x) ⊕ g1(y) ⊕ ( f1 ⊕ f2)(x)(g1 ⊕ g2)(y).

Then h(x, y) is bent–negabent if and only if
N f1 (u)

N f2 (u)
= ±1 or

Ng1 (v)

Ng2 (v)
= ±1, for all

(u, v) ∈ F
r
2 × F

s
2.

Proof From Theorem 1, we know that h(x, y) is bent. Thus, we need to prove that
N f1 (u)

N f2 (u)
= ±1 or

Ng1 (v)

Ng2 (v)
= ±1 if and only if h(x, y) is negabent, that is, |Nh(u, v)| =

2(r+s)/2 for all (u, v) ∈ F
r
2 × F

s
2.

For simplicity, set z = Nh(u, v), z1 = N f1(u), z2 = N f2(u), z3 = Ng1(v), and
z4 = Ng2(v). By Lemma 1, for all (u, v) ∈ F

r
2 × F

s
2, we have

2z = z1(z3 + z4) + z2(z3 − z4), (2)

and

2z = z1(z3 + z4) + z2(z3 − z4). (3)

Combining (2) and (3), we have

4|z|2 = 4zz = [z1(z3 + z4) + z2(z3 − z4)][z1(z3 + z4) + z2(z3 − z4)]
= z1z1(z3z3 + z3z4 + z3z4 + z4z4) + z1z2(z3z3 − z3z4 + z3z4 − z4z4)

+ z1z2(z3z3 + z3z4 − z3z4 − z4z4) + z2z2(z3z3 − z3z4 − z3z4 + z4z4)

= |z1|2(|z3|2 + z3z4 + z3z4 + |z4|2) + z1z2(|z3|2 − z3z4 + z3z4 − |z4|2)
+ z1z2(|z3|2 + z3z4 − z3z4 − |z4|2) + |z2|2(|z3|2 − z3z4 − z3z4 + |z4|2).
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Suppose h(x, y) is negabent |Nh(u, v)| = 2(r+s)/2 for all (u, v) ∈ F
r
2 × F

s
2 and |z1| =

|z2| = 2r/2, |z3| = |z4| = 2s/2, we obtain

(z1z2 − z1z2)(z3z4 − z3z4) = 0,

that is, z1z2 = z1z2 or z3z4 = z3z4. Therefore, we have

N f1(u)N f2(u) = N f1(u)N f2(u)

or
Ng1(v)Ng2(v) = Ng1(v)Ng2(v),

that is,
N f1(u)

N f2(u)
= N f1(u)

N f2(u)
=

(
N f1(u)

N f2(u)

)

or
Ng1(v)

Ng2(v)
= Ng1(v)

Ng2(v)
=

(
Ng1(v)

Ng2(v)

)
,

then
N f1 (u)

N f2 (u)
or

Ng1 (v)

Ng2 (v)
is a real number. Since |N f1(u)| = |N f2(u)| = 2r/2, |Ng1(v)| =

|Ng2(v)| = 2s/2, we obtain
N f1 (u)

N f2 (u)
= ±1 or

Ng1 (v)

Ng2 (v)
= ±1.

Conversely, since |z1| = |z2| = 2r/2, |z3| = |z4| = 2s/2, and z1
z2

= ±1 or z3
z4

= ±1,

which implies that 4|z|2 = 2(r+s+2), that is, |z| = 2(r+s)/2. Therefore, we have
|Nh(u, v)| = 2(r+s)/2. This implies that h(x, y) is a negabent function. �

The sufficient condition for the function h(x, y) to be bent–negabent has been
given in [26].

Theorem 3 ([26]) Let f1(x), f2(x) be two n-variable bent–negabent functions (n
even) and let g1(y), g2(y) be two m-variable bent–negabent functions (m even). Let
(x, y) ∈ F

n
2 × F

m
2 . Define h(x, y) = f1(x) ⊕ g1(y) ⊕ ( f1 ⊕ f2)(x)(g1 ⊕ g2)(y). If

D1( f̃1 ⊕ σ2)(x) = D1( f̃2 ⊕ σ2)(x), then h(x, y) is bent–negabent.

In the following, we show that the condition D1( f̃1 ⊕ σ2)(x) = D1( f̃2 ⊕ σ2)(x)

is equivalent to the condition
N f1 (u)

N f2 (u)
= ±1. We also need the following lemmas.

Lemma 2 ([15])Let n be even and f (x) ∈ Bn. Then, f (x) is negabent if and only
if f (x) ⊕ s2(x) is bent, where s2(x) = ⊕

1≤i< j≤n xi x j .

Lemma 2 provides a connection between bent and negabent.

Lemma 3 ([24]) Let f (x) ∈ Bn, then

N f (u) = W f ⊕s2(u) + W f ⊕s2(u)

2
+ i · W f ⊕s2(u) − W f ⊕s2(u)

2
.
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Lemma 3 explores a direct link between the Walsh–Hadamard transform and the
nega-Hadamard transform. These properties are an important tool to analyze the
properties of negabent functions.

Theorem 4 Let f1(x) and f2(x) be two r-variable negabent functions (r even). Then
N f1 (u)

N f2 (u)
= ±1 if and only if D1( f̃1 ⊕ s2)(u) = D1( f̃2 ⊕ s2)(u), u ∈ F

r
2.

Proof Since
N f1 (u)

N f2 (u)
= ±1, then N f1(u) = ±N f2(u). By Lemma 3, we have

W f1⊕s2(u) + W f1⊕s2(u)

2
+ i · W f1⊕s2(u) − W f1⊕s2(u)

2

= ±W f2⊕s2(u) + W f2⊕s2(u)

2
± i · W f2⊕s2(u) − W f2⊕s2(u)

2
.

Hence
W f1⊕s2(u) + W f1⊕s2(u)

2
= ±W f2⊕s2(u) + W f2⊕s2(u)

2
,

W f1⊕s2(u) − W f1⊕s2(u)

2
= ±W f2⊕s2(u) − W f2⊕s2(u)

2
,

then
W f1⊕s2(u) = ±W f2⊕s2(u), W f1⊕s2(u) = ±W f2⊕s2(u).

Recall that W f (u) = 2r/2(−1) f̃ (u), we get

(−1) f̃1⊕s2(u)⊕ f̃1⊕s2(u) = (−1) f̃2⊕s2(u)⊕ f̃2⊕s2(u).

Thus, D1( f̃1 ⊕ s2)(u) = D1( f̃2 ⊕ s2)(u).

Conversely, since D1( f̃1 ⊕ s2)(u) = D1( f̃2 ⊕ s2)(u), then

f̃1 ⊕ s2(u) ⊕ f̃2 ⊕ s2(u) = f̃1 ⊕ s2(u) ⊕ f̃2 ⊕ s2(u).

Hence
W f1⊕s2(u)W f2⊕s2(u) = W f1⊕s2(u)W f2⊕s2(u).

Since f1 ⊕ s2, f2 ⊕ s2 are bent functions,we have |W f1⊕s2(u)| = |W f2⊕s2(u)| = 2r/2,
then W f1⊕s2(u) = ±W f2⊕s2(u), W f1⊕s2(u) = ±W f2⊕s2(u). Thus, according to the

similar discussion above, we obtain
N f1 (u)

N f2 (u)
= ±1. �

The functions f (x) and g(x) are said to have complementary nega-autocorrelation
if for all nonzero u ∈ F

n
2, C f (u) + Cg(u) = 0. The relationship between the nega-

autocorrelations of f (x), g(x) and their nega-Hadamard transforms has been given
in [22] as follows.
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Lemma 4 ([22]) The functions f (x), g(x) ∈ Bn have complementary nega-
autocorrelations if and only if

|N f (u)|2 + |Ng(u)|2 = 2n+1.

The following corollary is a direct consequence from Definition 1, Theorem 2,
and Lemma 4.

Corollary 2 Let f1(x), f2(x) ∈ Bn. If
N f1 (u)

N f2 (u)
= 1 for all u ∈ F

n
2 , then the following

statements are equivalent.

1. f1(x), f2(x) are negabent functions.
2. |N f1(u)|2 + |N f2(u)|2 = 2n+1.
3. f1(x) and f2(x) have complementary nega-autocorrelations.

4 A Secondary Construction Revisited

Recently, a secondary construction of bent functions whose duals satisfy a certain
property [25] [Theorem 5.1] has been proposed:

Theorem 5 Let f from F
n
2 to F2 be bent. Let β1, . . . , βr be points of F

n
2 . Let F

be a Boolean function from F
r
2 to F2. Suppose that its dual f̃ satisfies: there exists

Boolean functions g1, . . . , gr from F
n
2 to F2 such that

f̃ (u +
r∑

i=1

wiβi ) = f̃ (u) +
r∑

i=1

wi gi (u) (4)

for every u ∈ F
n
2 and (w1, . . . , wr ) ∈ F

r
2. Then, the Boolean function h from F

n
2 to

F2 defined at any point x ∈ F
n
2 as

h(x) = f (x) + F(β1 · x, . . . , βr · x)

is bent and its dual is at any point x ∈ F
n
2 equal to

h̃(x) = f̃ (x) + F(g1(x), . . . , gr (x)).

Let us now show that Condition (4) of the above theorem can be rewritten in terms of
derivatives of the dual function of f . Recall that the derivative at point β ∈ F

n
2 of a

Boolean function f from F
n
2 to F2, denoted as Dβ f , is defined at any point x ∈ F

n
2 as

Dβ f (x) = f (x) + f (x + β). We introduce now a notation to denote derivatives of
higher order. Let k be a positive integer and β1, · · · , βk be k elements of F

n
2. Then, the

kth-derivative of f at (β1, . . . , βk) ∈ (
F

n
2

)k
is denoted by Dk

β1,...,βk
f = Dβ1 · · · Dβk f .

Now, note that, for w ∈ F2,
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f (x + wβ) = f (x) + Dwβ f (x) = f (x) + wDβ f (x).

If we iterate the above identity, we get that, for (w1, . . . , wr ) ∈ F
r
2,

f (x +
r∑

i=1

wiβi ) = f (x) +
r∑

i=1

wi Dβi f (x) +
r∑

k=2

∑
a∈F

r
2,wt (a)=k

wa Dk
βa

f (x),

where wa = ∏r
i=1 w

ai
i and βa = (βai1

, . . . , βaik
) ∈ F

k
2 where 1 ≤ i1 < · · · < ik ≤ r

are the indexes such that ai = 1. Therefore, Condition (4) is equivalent to say that,
for k ≥ 2, any kth-derivative with respect to any subset of {β1, . . . , βr } of the dual
function f̃ of f vanishes on F

n
2. Therefore, Theorem 5 can be rewritten as follows.

Theorem 6 Let f from F
n
2 to F2 be a Boolean bent function. Let β1, . . . , βr be points

of F
n
2 . Suppose that, for any positive integer 2 ≤ k ≤ r , all the kth-order derivatives

of the dual of f relatively to subsets of {β1, . . . , βr } of size k vanish on F
n
2 . Let F

be a Boolean function from F
r
2 to F2. Then, the Boolean function h from F

n
2 to F2

defined at any point x ∈ F
n
2 as

h(x) = f (x) + F(β1 · x, . . . , βr · x)

is bent and its dual is

h̃(x) = f̃ (x) + F(Dβ1 f̃ (x), . . . , Dβr f̃ (x)).

5 Bent–Negabent Functions From Quadratic Functions

5.1 Generalities

Let f be a quadratic Boolean function whose algebraic normal form

f (x) =
∑

1≤i< j≤n

ai j xi x j +
n∑

i=1

bi xi + c = x · (Mx) + b · x + c, (5)

whereM = (ai j )1≤i, j≤n is a squarematrix of size n whose entries are inF2 andwhose
entries are equal to 0 if i ≥ j , b ∈ F

n
2, and c ∈ F2. We denote B� the transpose matrix

of B and B−1 the inverse of B (if B is of full rank). Finally, we denote I the identity
matrix of size n. Define a symmetric square matrix of size n as A = M + M�. Then,
one has

Theorem 7 ([15]) f is bent if and only if A is of maximal rank.

One can compute explicitly the dual of f .
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Proposition 1 A quadratic Boolean function f of the form (5) is bent if and only if
A = M + M� is of full rank and the dual of f is f̃ (x) = f (A−1x) + f (0) + ε f at any
point x ∈ F

n
2 where ε f = 0 if wt ( f ) = 2n−1 − 2

n
2 −1 and 1 if wt ( f ) = 2n−1 + 2

n
2 −1.

Proof The necessary and sufficient condition for bentness of f is a well-known
result ([15]). We now show that the dual of f can be explicitly computed. Indeed,

W f (u) =
∑
x∈F

n
2

(−1) f (x)+u·x

=
∑
x∈F

n
2

(−1) f (x+A−1u)+u·(x+A−1u)

=
∑
x∈F

n
2

(−1) f (x)+ f (A−1u)+(AA−1u)·x+ f (0)+u·x+u·A−1u

=
∑
x∈F

n
2

(−1) f (x)+ f (A−1u)+u·A−1u+ f (0) (since (AA−1u) · x = u · x )

= (−1) f (A−1u)+u·A−1u+ f (0)
∑
x∈F

n
2

(−1) f (x)

= (−1) f (A−1u)+u·A−1u+ f (0)χ̂ f (0)

= (−1)(A
−1u)·(MA−1u)+b·(A−1u)+(AA−1u)·A−1u × 2

n
2 (−1)ε f

= 2
n
2 (−1)(A

−1u)·((M+A)A−1u)+b·(A−1u)+ε f

= 2
n
2 (−1)(A

−1u)·(M�A−1u)+b·(A−1u)+ε f

= 2
n
2 (−1)(MA−1u)·(A−1u)+b·(A−1u)+ε f

= 2
n
2 (−1) f (A−1u)+ f (0)+ε f . �

Note that one can associate likewise the symmetric square matrix I + J of size
n to the quadratic function s2 where I is the identity matrix of size n and J the
square matrix of size n whose all entries are equal to 1. The polar form of s2 is then
x · ((I + J)y). Then one has

Theorem 8 ([15]) f is bent–negabent if and only if A and A + I + J are both of
maximal rank.

5.2 Secondary Constructions of Bent and Negabent
Functions

5.2.1 Symplectic Forms

Let V be a symplectic vector space over a field F . A mapping σ from V × V to F
is said to be a symplectic form if it is
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1 symmetric: σ(x, y) = −σ(y, x) for any (x, y) ∈ V × V (in characteristic two,
skew symmetry and symmetry coincides);

2 totally isotropic: σ(x, x) = 0 for any x ∈ V ;
3 non-degenerate: if σ(u, v) = 0 for any v ∈ V then u = 0.

Then, (V, σ ) denotes the vector space V equipped with a symplectic form. Let δi j

be the Kronecker index: δi j = 0 if i �= j and δi i = 1. Suppose that dim(V ) = 2n.

Definition 2 A symplectic basis for (V, σ ) is a basis v1, · · · , vn , w1, . . . , wn such
that

σ(vi , w j ) = δi j , σ (vi , v j ) = σ(wi , w j ) = 0

for any 1 ≤ i, j ≤ r (where δi j = 1 if i = j and 0 otherwise).

5.2.2 Secondary Constructions

A Boolean function f is said to be quadratic if and only if

φ(x, y) = f (x + y) + f (x) + f (y) + f (0)

is bilinear, symmetric, and symplectic. The bilinear map φ is called the polar form
of f . Write f as (5). Observe that

φ(x, y) = x · (My) + (Mx) · y (6)

= x · (My) + x · (M�y)

= x · (Ay).

The dual of a quadratic bent function is again a quadratic bent function (see Propo-
sition 1). On the other hand, notice that the polar form at point (a, b) coincides with
the second-order derivative Da Db f . Then, Theorem 6 is rewritten as

Corollary 3 Let f from F
n
2 to F2 be a quadratic bent function. Denote φ̃ the polar

form of the quadratic part of the dual of f . Let β1, . . . , βr be points of F
n
2 such that

φ̃(βi , β j ) = 0 for 1 ≤ i < j ≤ r . Let F be a Boolean function from F
r
2 to F2. Then,

the Boolean function h from F
n
2 to F2 defined at any point x ∈ F

n
2 as

h(x) = f (x) + F(β1 · x, . . . , βr · x)

is bent.

Now, according to Proposition 1, the polar form associated to the dual of f is

φ̃(x, y) = φ(A−1x, A−1y) = (A−1x) · y = x · (A−1y). (7)
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Therefore,

Corollary 4 Let f from F
n
2 to F2 be a quadratic bent function of the form (5). Let

β1, . . . , βr be points of F
n
2 such that βi · (A−1)β j = 0 for 1 ≤ i < j ≤ r . Let F be a

Boolean function from F
r
2 to F2. Then, the Boolean function h from F

n
2 to F2 defined

at any point x ∈ F
n
2 as

h(x) = f (x) + F(β1 · x, . . . , βr · x)

is bent.

Remark 1 Let n = 2k. Observe that φ is a symplectic form over F
n
2. Thus, if{e1, . . . , ek, f1, . . . , fk} is a symplectic basis of (Fn

2, φ) then one can take {β1, . . . ,

βr } = {Aei , i ∈ I } ∪ {A f j , j ∈ J } with I ∩ J = ∅ and I ∪ J ⊂ {1, . . . , k}. The so-
constructed bent function is then of algebraic degree r .

Next, observe that the polar form associated to f + s2 is

ψ(x, y) = x · ((A + I + J)y) (8)

and thus, by the same calculation as for f , we get that the polar form of its dual is

ψ̃(x, y) = x · ((A + I + J)−1y). (9)

Therefore,

Corollary 5 Let f from F
n
2 to F2 be a quadratic negabent function of the form (5).

Let γ1, . . ., γr be points of F
n
2 such that γi · ((A + I + J)−1γ j ) = 0 for 1 ≤ i < j ≤ r .

Let F be a Boolean function from F
r
2 to F2. Then, the Boolean function h from F

n
2 to

F2 defined at any point x ∈ F
n
2 as

h(x) = f (x) + F(γ1 · x, . . . , γr · x)

is negabent.

Remark 2 Like in Remark 1, one can deduce from a symplectic basis of (Fn
2, ψ) a

set {γ1, . . . , γr } which satisfies the condition of the above corollary.

6 A Characterization of Bent–Negabent Functions
Through Their Second-Order Derivatives

A useful tool to study a Boolean function f (x) is derivative. The derivatives play an
important role in cryptography, related to the differential attack. They are also natu-
rally involved in the definition of the strict avalanche criterion and the propagation
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criterion. These criteria evaluate some kind of diffusion of the function. Carlet and
Prouff [5] gave a characterization of bent functions via their second-order derivatives
as follows.

Lemma 5 ([5])A Boolean function f (x) defined on F
n
2 is bent if and only if

∀x ∈ F
n
2,

∑
a,b∈F

n
2

(−1)Da Db f (x) = 2n.

Inspired by the work of [10], we present a characterization of bent–negabent
functions, which is related to the second-order derivatives in the following.

Theorem 9 Let f (x) be n-variable bent function (n even). Then f (x) is bent–
negabent if and only if for all b ∈ F

n
2

∑
a∈F

n
2 :a·b=0

(−1)Da Db f (x) = 2n,
∑

a∈F
n
2 :a·b=1

(−1)Da Db f (x) = 0

when wt (b) is even, and

∑
a∈F

n
2 :a·b̄=0

(−1)Da Db f (x) = 2n,
∑

a∈F
n
2 :a·b̄=1

(−1)Da Db f (x) = 0

when wt (b) is odd.

Proof By Lemma 2, f (x) is bent–negabent if and only if f (x) and f (x) ⊕ s2(x)

are both bent, i.e., for ∀x ∈ F
n
2,

∑
a,b∈F

n
2

(−1)Da Db f (x) = 2n and
∑

a,b∈F
n
2

(−1)Da Db( f (x)⊕s2(x)) = 2n. (10)

Since

Da Dbσ2(x) = s2(x) ⊕ s2(x ⊕ a) ⊕ s2(x ⊕ b) ⊕ s2(x ⊕ a ⊕ b)

=
⊕
1≤i≤n

ai

( ⊕
1≤ j≤n, j �=i

b j

)
,

so

Da Dbs2(x) =
{

a · b, if wt (b) is even,
a · b̄, if wt (b) is odd.

From the second part of (10), we get

∑
a,b∈F

n
2

(−1)Da Db f (x)(−1)Da Dbs2(x) = 2n.
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If wt (b) is even, then

∑
a∈F

n
2 :a·b=0

(−1)Da Db f (x) −
∑

a∈F
n
2 :a·b=1

(−1)Da Db f (x) = 2n. (11)

If wt (b) is odd, then

∑
a∈F

n
2 :a·b̄=0

(−1)Da Db f (x) −
∑

a∈F
n
2 :a·b̄=1

(−1)Da Db f (x) = 2n. (12)

From the first part of (10), we obtain

∑
a∈F

n
2 :a·b=0

(−1)Da Db f (x) +
∑

a∈F
n
2 :a·b=1

(−1)Da Db f (x) = 2n, (13)

for all b ∈ F
n
2. By (11)–(13), we have

∑
a∈F

n
2 :a·b=0

(−1)Da Db f (x) = 2n,
∑

a∈F
n
2 :a·b=1

(−1)Da Db f (x) = 0

when wt (b) is even, and

∑
a∈F

n
2 :a·b̄=0

(−1)Da Db f (x) = 2n,
∑

a∈F
n
2 :a·b̄=1

(−1)Da Db f (x) = 0

when wt (b) is odd. This completes the proof. �

7 An Upper Bound on the Sum-of-Squares Indicator σ f,g

In order to find the upper boundon the sum-of-squares indicatorσ f,g for a given twon-
variableBoolean functions f and g, we study someproperties of the cross-correlation
function.We firstly give the sum-of-squares indicators σ f of s2(x) = ⊕

1≤i< j≤n xi x j

in the following.

Proposition 2 Let s2(x) = ⊕
1≤i< j≤n xi x j be the elementary symmetric Boolean

function in n variables of degree 2. Then

Cs2(u) =
{±2n, if wt (u) is even,
0, if wt (u)is odd

and σ f = 23n−1.

Proof Since
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s2(x) ⊕ s2(x ⊕ u) =
⊕

1≤i< j≤n

xi x j ⊕
⊕

1≤i< j≤n

(xi ⊕ ui )(x j ⊕ u j )

=
⊕

1≤i< j≤n

(xi u j ⊕ x j ui ⊕ ui u j )

=
⊕

1≤i< j≤n

(xi u j ⊕ x j ui ) ⊕
⊕

1≤i< j≤n

ui u j

=
⊕
1≤i≤n

(
xi

⊕
1≤ j≤n, j �=i

u j

)
⊕ s2(u),

thus,

s2(x) ⊕ s2(x ⊕ u) =
{

u · x ⊕ s2(u), if wt (u)is even,
u · x ⊕ s2(u), if wt (u) is odd.

According to the definitions of the nega-autocorrelation and sum-of-squares indi-
cator, we have

Cs2(u) =
{∑

x∈F
n
2
(−1)s2(u) = ±2n, if wt (u) is even,∑

x∈F
n
2
(−1)1·x+s2(u) = 0, if wt (u) is odd

and
σ f =

∑
u∈F

n
2 :wt (u) even

C2
f (u) +

∑
u∈F

n
2 :wt (u) odd

C2
f (u) = 23n−1.

This proves the result. �

Lemma 6 ([28]) Let f (x), g(x) ∈ Bn. Then

σ f,g =
∑
u∈F

n
2

C2
f,g(u) =

∑
v∈F

n
2

C f (v)Cg(v). (14)

Remark 3 If we use Cauchy’s inequality (
∑

i ai bi )
2 ≤ ∑

i a2
i

∑
i b2

i to the sum on
the right-hand side of (8), we get

σ f,g =
∑
u∈F

n
2

C2
f,g(u) =

∑
v∈F

n
2

C f (v)Cg(v)

≤
⎛
⎝∑

v∈F
n
2

C2
f (v)

⎞
⎠

1
2
⎛
⎝∑

v∈Fn
2

C2
g(v)

⎞
⎠

1
2

= σ
1
2
f σ

1
2

g = √
σ f σg,
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i.e., σ f,g ≤ √
σ f σg . Furthermore, for n-variable negabent functions f (x) and g(x),

σ f,g = 22n .

In order to give the upper bound on σ f,g , we need the following important results.

Lemma 7 ([22]) Let f (x), g(x) ∈ Bn. Then

C f,g(v) = 2−niwt (v)
∑
u∈F

n
2

N f (u)Ng(u)(−1)u·v.

Lemma 8 Let f (x), g(x) ∈ Bn. Then

∑
u∈F

n
2

|N f (u)|2|Ng(u)|2 = 2n
∑
v∈F

n
2

C2
f,g(v).

Proof By Lemma 7, we have

N f (u)Ng(u) =
∑
v∈F

n
2

C f,g(v)(−1)u·viwt (v)

and

|N f (u)|2|Ng(u)|2 =
⎛
⎝∑

v∈F
n
2

C f,g(v)(−1)u·vi−wt (v)

⎞
⎠ ·

⎛
⎝ ∑

w∈F
n
2

C f,g(w)(−1)u·wiwt (w)

⎞
⎠

=
∑

v,w∈F
n
2

C f,g(v)C f,g(w)(−1)u·(v⊕w)iwt (w)−wt (v)

=
∑
v∈F

n
2

C2
f,g(v) +

∑
v,w∈F

n
2 :v �=w

C f,g(v)C f,g(w)(−1)u·(v⊕w)iwt (w)−wt (v).

Thus

∑
u∈F

n
2

|N f (u)|2|Ng(u)|2 =
∑
u∈F

n
2

∑
v∈F

n
2

C2
f,g(v)

+
∑
u∈F

n
2

∑
v,w∈F

n
2 :v �=w

C f,g(v)C f,g(w)(−1)u·(v⊕w)iwt (w)−wt (v)

= 2n
∑
v∈F

n
2

C2
f,g(v)

+
∑

v,w∈F
n
2 :v �=w

C f,g(v)C f,g(w)
∑
u∈F

n
2

(−1)u·(v⊕w)iwt (w)−wt (v),

since v �= w,
∑

u∈F
n
2
(−1)u·(v⊕w) = 0, thus
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∑
u∈F

n
2

|N f (u)|2|Ng(u)|2 = 2n
∑
v∈F

n
2

C2
f,g(v).

This proves the result. �

If we take f (x) = g(x) in the previous lemma, then we have

∑
u∈F

n
2

|N f (u)|4 = 2n
∑
v∈F

n
2

C2
f (v). (15)

Theorem 10 Let f (x), g(x) ∈ Bn. Then σ f,g ≤ 23n, with equality if and only if there
exists u0 ∈ F

n
2 such that |N f (u0)| = |Ng(u0)| = 2n.

Proof By Lemma 8 and Nega-Parseval’s Identity
∑

u∈F
n
2
|N f (u)|2 = 22n , we have

σ f,g = 1

2n

∑
u∈F

n
2

|N f (u)|2|Ng(u)|2

≤ 1

2n

⎡
⎣∑

u∈F
n
2

|N f (u)|2
⎤
⎦ ·

⎡
⎣∑

u∈F
n
2

|Ng(u)|2
⎤
⎦ = 23n.

We know σ f,g = 23n if and only if

∑
u∈F

n
2

|N f (u)|2|Ng(u)|2 =
∑
u∈F

n
2

|N f (u)|2
∑
u∈F

n
2

|Ng(u)|2,

that is,

∑
u,v∈F

n
2 ,u �=v

|N f (u)|2|Ng(v)|2 = 0

if and only if |N f (u)|2|Ng(v)|2 = 0 for any u �= v. There are three cases:

(i) If there does not exist u0 ∈ F
n
2 such that |N f (u0)|2 �= 0, then |N f (u)|2 = 0 for

all u ∈ F
n
2, which leads to a contradiction with Nega-Parseval’s Identity.

(ii) If there exists only one u0 ∈ F
n
2 such that |N f (u0)|2 �= 0, then |Ng(v)|2 = 0 for

allv �= u0.According toNega-Parseval’s Identity,we have |N f (u0)|2 = 22n , i.e.,
|N f (u0)| = 2n . On the other hand, we have |Ng(u0)|2 = 22n , i.e., |Ng(u0)| = 2n .

(iii) If there exist only two u1, u2 ∈ F
n
2(u1 �= u2) such that |N f (u1)|2 �= 0 and

|N f (u2)|2 �= 0, then we have |Ng(v)|2 = 0 for all v �= u1 and |Ng(v)|2 = 0 for
all v �= u2. It implies that |Ng(v)|2 = 0 for all v ∈ F

n
2, which is in contradic-

tion with Nega-Parseval’s Identity. By the same way, we know that there does
not exist only k(3 ≤ k ≤ 2n) different elements ui ∈ F

n
2(1 ≤ i ≤ k) such that

|N f (u0)|2 �= 0. �
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Based on Theorem 10, we give tight lower and upper bounds on σ f .

Corollary 6 Let f (x) ∈ Bn. Then

(1) 22n ≤ σ f ≤ 23n;
(2) σ f = 22n if and only if f is a negabent function;
(3) σ f = 23n if and only if there exists u0 ∈ F

n
2 such that |N f (u0)| = 2n.

Remark 4 Let R(N f (u0)) be the real part and I(N f (u0)) be the imaginary part
of N f (u0). Then R(N f (u0)) or I(N f (u0)) must be integer and |N f (u0)|2 = 22n

must be a sum of two squares. From Jacobi’s Two-Squares Theorem we know that
(2n)2 + 02 = 22n . Thus, (|R(N f (u0))|, |I(N f (u0))|) = (2n, 0) or (0, 2n), i.e., either
R(N f (u0)) or I(N f (u0)) must be zero.

8 Conclusion

In this paper, we have pushed further the theory of the so-called negabent and
bent–negabent functions and derived results, which included methods of secondary
constructions and characterizations.

References

1. Calderbank R, Kantor WM (1986) The geometry of two-weight codes. Bull Lond Math Soc
18(2):97–122

2. Carlet C (2004) On the secondary constructions of resilient and bent functions. In: Coding,
Cryptography and combinatorics (Progress in computer science and applied logic), 18 vol 23,
Basel, Switzerland, Birkhäuser, Verlag, , pp 3–28
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