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1 Introduction

The essence of visual cryptography is that the encryption of a visual secret is done
in such a way that the reconstruction can be performed only via sight-reading. So
one can easily conclude that visual cryptography does not require many sophisti-
cated cryptographic techniques like polynomial based secret image sharing [18–20,
26], yet it produces strong schemes for many practical scenarios. For this reason,
throughout time many researchers have developed a strong interest in this specific
area of cryptography.

The seminal paper by Naor and Shamir [17] is considered as the starting point of
the (k, n)-visual cryptographic scheme. They proposed a way to distribute a secret
image S among n members, where any k (or more) of them can superimpose their
shares to reconstruct S. Obviously, the reconstruction comes with loss of contrast
but still it is human readable. Then in 2017 Arungam et. al. [16] extended the idea of
(k, n)-VCS to incorporate one essential member. This work was further extended by
Sabyasachi et. al. [9] by extending it to a (t, k, n)∗-VCS, with t essential members.
Some notable works on classical VCS may be found in [1–8, 10–14, 27, 29].

A thorough studyof the literaturewill suggest that at the very initial stage theworks
in this area experienced huge pixel expansion with very little contrast. Researchers
engaged themselves to deal with this problem and introduced the best solution,
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namely Random Grid Visual Cryptography (RGVCS). In RGVCS, there is no pixel
expansion and we can reach the optimal level for contrast. The basic idea of RGVCS
is that each pixel of the secret image here is considered to be a random grid with an
associated color. The literature study of RGVCS can be found in [15, 22, 24, 25].

In this paper, we have proposed a (t, k, n) scheme for black and white RGVCS for
both “OR” and “XOR” models. Besides constructing the scheme, we have described
the closed forms of the corresponding light contrasts.We have deviated a bit from the
traditional “OR” operation to “XOR” operation with a motif of increasing the light
contrast. The only thing that we have to keep in mind for the scheme with the “XOR”
operation is that the reconstruction will no longer be visual. The experimental results
presented indicate the efficiency of our proposed schemes.

The rest of the paper is organized as follows. We have started with Sect. 2 to
describe the notations and basic concepts of VCS as well as RGVCS which we will
need for construction and security analysis of our proposed scheme. In Sect. 3, we
have given the construction of schemes with detailed theoretical security analysis.
Section 4 deals with the experimental results to justify the theoretical results that
we proved for analyzing the security of our scheme. Also, we have performed a
comparison of the light contrast of our scheme with that of the modified versions
of the schemes that are already proposed. The theoretical study together with the
experimental results shows the significance of our scheme in the area of RGVCS.
The paper concludes with Sect. 5, where we have pointed out the future direction of
research.

2 Preliminaries

This section presents the notations that we will widely use to describe our proposed
schemes. To start with let us assume a secret pixel S is to be shared among a set of
n members, P = {M1, M2, . . . , Mn}. By �Qual, we will denote the collection of all
subsets of P who are eligible to reconstruct S by superimposing their shares. On
the other hand, �Forb denotes the collection of all those subsets of P who are not
eligible to reconstruct S. Elements of �Qual are called qualified set while elements
of �Forb are called forbidden set. The ordered pair (�Qual, �Forb) is called an access
structure forP corresponding to S. Now a given access structure is called monotone
when �Qual is monotone increasing and �Forb is monotone decreasing. For such
an access structure, Minimal Qualified set and Maximal Forbidden set are defined
as �0 = {A ∈ �Qual|A′ /∈ �Qual,∀A′ ⊂ A}, Z M = {B ∈ �Forb|B ∪ {i} ∈ �Qual,∀i ∈
P \ B}. These two sets are, respectively, denoted by �0 and Z M . For our schemes,
we talk about a special kind members, namely essential members. A member a ∈ P

is said to be essential if there exists X ⊆ P such that X ∪ {a} ∈ �Qual but X /∈ �Qual.
The notation of a (k, n) threshold access structure is adapted from [24]. For our
purpose, we have incorporated the idea of essential members with the notation of
a (k, n) threshold access structure and have defined (t, k, n) access structure. By
that, we mean that it is a (k, n) access structure where t of the n members are
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essential. Clearly enough, the values of the parameters for which 0 ≤ t ≤ k ≤ n
admit ameaningful (t, k, n) visual cryptographic scheme. Note that in such an access
structure, a maximal forbidden set may be of the two types. Type I: Sets containing
k − 1 members including all the essential members. Type II: Sets having a size
exactly n − 1 which contains all but one of the t essential members.

Now the notations related to grid based VCS are adapted from [24]. We have
considered a binary transparency Y in which each pixel is either transparent (0) or
opaque (1). Generally, the value of each pixel is determined by a coin flip where it is
assumed that probability of y = 0 is λ. Keeping in mind the fact that the pixel with
y = 0 lets through light and the pixel with y = 1 stops it, the light transmission of y,
denoted by t(y), is defined to be Pr(y = 0). The light transmission of a random grid,
denoted byT(Y ), is λwhen t(y) = λ for each pixel y ∈ Y [24]. From this definition
of light transmission, we can observe that for a random grid X with T(X) = λ,
X ⊗ X is a random grid with T(X ⊗ X) = T(X) = λ. Also for two independent
random grids with T(X) = λ1 and T(Y ) = λ2, we have T(X ⊗ Y ) = λ1λ2. With
this setting in our hand, we can now define the formal model of a (t, k, n) random
grid based visual cryptographic scheme.
Notation: As in [21], let S(0) (S(1)) denote the area of all of the transparent
(opaque) pixels in the secret image S, i.e., (u, v)th pixel S[u, v] of the secret S
is in S(0) (S(1)) if and only if S[u, v] = 0 (S[u, v] = 1) where S = S(0) ∪ S(1)
and S(0) ∩ S(1) = ∅. Likewise, we denote the area of pixels in random grid G
corresponding to S(0)(S(1)) by G[S(0)] (G[S(1)]), i.e., (u, v)th pixel G[u, v] of
the random grid G is in G[S(0)] (G[S(1)]) if and only if G[u, v]’s corresponding
pixel S[u, v] is in S(0)(S(1)). Needless to mention, G = G[S(0)] ∪ G[S(1)] and
G[S(0)] ∩ G[S(1)] = ∅.
Definition 1 For valid parameters t , k and n, an H ′ × W binary secret image S and
set of n members the set of random grids G = {G1, G2, . . . , Gn} forms an “OR”
based (t, k, n)-RGVCS if:

1. T(Gv) = 1
2 for all 1 ≤ v ≤ n.

2. For each F = {Mu1, Mu2 , . . . , Mu p } ∈ F,T(G F [S(0)]) = T(G F [S(1)]),where
G F = Gu1 ⊗ Gu2 ⊗ · · · ⊗ Gu p , i.e., t(G F [u, v] | S[u, v] = 0) = t(G F [u, v] |
S[u, v] = 1), ∀ u, v.

3. For Q ∈ �0,T(G Q[S(0)]) > T(G Q[S(1)])whereG Q = G1 ⊗ G2 ⊗ · · · ⊗ Gq ,
i.e., t(G Q[u, v] | S[u, v] = 0) > t(G Q[u, v] | S[u, v] = 1), ∀ u, v.

Definition 2 The light contrast for any given set H ⊆ P, denoted as αH
OR, is defined

as αH
OR =T(G H [S(0)]) − T(G H [S(1)]).

3 Proposed Scheme

In this section, we propose an efficient (t, k, n)-RGVCS for both monotone and non-
monotone access structures. We will first start with describing the constructions and
then discuss their light corresponding light transmission. To our knowledge, this is
the first ever (t, k, n)-RGVCS.
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3.1 Construction

For a secret H ′ × W binary image S, the dealer first constructs the shares for the
members and distributes them in the following manner.

• The dealer first identifies the essential members and marks them as M1, M2, . . . ,
Mt . The rest of the members are marked as Mt+1, Mt+2, . . . , Mn−1, Mn .

• For each secret pixel S[u, v] of S, the dealer selects k − 1 − t members randomly
from Mt+1, Mt+2,. . ., Mn−1, and together with M1, M2, . . . , Mt form a set A of
size k − 1.

• The dealer assigns 0 or 1 random grids to the members of A.
• For the remaining members the share is generated as g(s, x) = s ⊕ x, for s, x ∈

{0, 1}, where ⊕ denotes binary “XOR” operation.

Algorithm1 is the detailed construction of the share generation phase of our proposed
scheme.
Algorithm 1: Algorithm toward constructing a (t, k, n)-RGVCS
Input: A black and white secret image S of size H ′ × W , and the access structure (t, k, n) with meaningful

triplet (t, k, n) and set P of n members.
Output: n shares G1, G2, . . ., Gn each of size H ′ × W .

1 From the set P of n members, select the t essential members. Denote them as M1, M2, . . . , Mt . Denote the
remaining members as Mt+1, Mt+2, . . . , Mn−1, Mn .

2 for (u = 1; u ≤ H ′; u + +) do
3 for (v = 1; v ≤ W ; v + +) do
4 Generate (k − 1) random grids r1[u, v], r2[u, v], . . . , rk−1[u, v]
5 Randomly select k − t − 1 members, say Ml1 , Ml2 , . . . , Mlk−t−1 from {Mt+1, Mt+2, . . . , Mn−1}. Let

A = {M1, M2, . . . , Mt , Ml1 , Ml2 , . . . , Mlk−t−1 }

6

Construct b1[u, v], b2[u, v], . . . , bk [u, v] as
b1[u, v] = r1[u, v]
bp [u, v] = g(r p [u, v], bp−1[u, v]) ∀p = 2, 3, . . . , k − 1
bk [u, v] = g(S[u, v], bk−1[u, v])

7 for (q = 1; q ≤ t; q + +) do
8 Gq [u, v] ← rq [u, v]
9 end

10 for (q = 1; q ≤ k − t − 1; q + +) do
11 Glq [u, v] ← rt+q [u, v]
12 end
13 Gs [u, v] ← bk [u, v], for all s ∈ {1, 2, . . . , n} \ {1, 2, . . . , t, l1, l2, . . . , lk−t−1}.
14 end
15 end
16 Member Mi is given the share Gi , i = 1, 2, . . . , n.

Now in the secret reconstruction phase, themember can adapt one of the following
two methods:

1. Either they can superimpose their shares to reconstruct the secret image. The
way the random grid is defined superimposition corresponds to classical “OR”
operation. Algorithm 1 together with this type of secret reconstruction gives us a
scheme for strong monotone access structure.

2. On the other hand, if the members can provide some computational power they
can use “XOR” operation in the place of “OR” operation. Algorithm 1 together
with this type of secret reconstruction gives us a scheme for non-monotone access
structure.
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3.2 Discussion on Light Transmission

Now we will prove theoretically that the proposed scheme is a valid (t, k, n) scheme
by showing that it satisfies the conditions of Definition 1.

Before going to the direct proof we will start by proving three lemmas which in turn
will take us to the final conclusion.

Lemma 1 The light transmission T(Gu) = 1

2
for 1 ≤ u ≤ n.

Proof Note that each Gi is either a random grid or constructed by applying f on
k − 1 random grids. In both the cases, the randomness is not hampered.

Lemma 2 For a given (t, k, n)-RGVCS, let F be a maximal forbidden set of mem-
bers. Then T(G F [S(0)]) = T(G F [S(1)]), where G F is obtained by applying any
reconstruction function “OR” or “XOR” on Gl1 , Gl2 , . . . , Glm .

Proof First of all, let us denote the two types of maximal forbidden sets that we
mentioned earlier as Type I and Type II sets, respectively. One can now easily observe
that the Type I sets are nothing but the sets of size ≤ k − 1 of a (k, k)-scheme. The
light transmission of this set depends on the choice of A. The length of the intersection
of A and F can vary from t to k − 2 when Mn ∈ F . But when Mn /∈ F the the
length of intersection can vary from t to k − 1. If we consider the classical “OR”
reconstruction then the total light transmission of F is given as t(G F [u, v] | S[u, v] = 0) =

t(G F [u, v] | S[u, v] = 1)= 1(
n − 1 − t
k − 1 − t

)
⎡
⎢⎢⎢⎢⎣

k−2∑
h=t

(
k − 2 − t

h − t

)
×

(
n − k + 1
k − 1 − h

)

2h+1

⎤
⎥⎥⎥⎥⎦, if Mn∈F

= 1(
n − 1 − t
k − 1 − t

)
⎡
⎢⎢⎢⎢⎣

1

2k−1
+

k−2∑
h=t

(
k − 1 − t

h − t

)
×

(
n − k

k − 1 − h

)

2h+1

⎤
⎥⎥⎥⎥⎦, if Mn /∈F. But for Type II sets, their behav-

ior does not vary for different choices of A. So for them the light transmission will
be

t(G F [u, v] | S[u, v] = 0) = 1

2k−1
= t(G F [u, v] | S[u, v] = 1).

The same type of calculation follows for “XOR” operation.

Lemma 3 For a given (t, k, n)-RGVCS, let Q be a minimal qualified set of mem-
bers. Then T(G Q[S(0)]) > T(G Q[S(1)]), where G Q is obtained by applying any
reconstruction function “OR” or “XOR” on Gl1 , Gl2 , · · · , Glk .

Proof We will proceed again here as in the previous lemma. Here | Q ∩ A | can
vary from t to k − 1. So depending on number of different choices ofA for classical
reconstruction method “OR” the light transmission for Q is

t(G Q [u, v] | S[u, v] = 0) = 1(
n − 1 − t
k − 1 − t

)
⎡
⎢⎢⎢⎣ 1

2k−1 +
k−2∑
h=t

(
k − 1 − t

h − t

)
×

(
n − k

k − 1 − h

)

2h+1

⎤
⎥⎥⎥⎦ , if Mn ∈ Q



38 B. Chandra Das et al.

= 1(
n − 1 − t
k − 1 − t

)
⎡
⎢⎢⎢⎣ k − t

2k−1
+

k−2∑
h=t

(
k − t
h − t

)
×

(
n − 1 − k
k − 1 − h

)

2h+1

⎤
⎥⎥⎥⎦ , if Mn /∈ Q.

And t(G Q [u, v] | S[u, v] = 1) = 1(
n − 1 − t
k − 1 − t

)
⎡
⎢⎢⎢⎣

k−2∑
h=t

(
k − 1 − t

h − t

)
×

(
n − k

k − 1 − h

)

2h+1

⎤
⎥⎥⎥⎦ , if Mn ∈ Q

= 1(
n − 1 − t
k − 1 − t

)
⎡
⎢⎢⎢⎣

k−2∑
h=t

(
k − t
h − t

)
×

(
n − 1 − k
k − 1 − h

)

2h+1

⎤
⎥⎥⎥⎦ , ifMn /∈ Q.

Subtracting this two we get the light contrast for Q as α
Q
OR = 1

(n−1−t
k−1−t)

· 1

2k−1
, Mn ∈

Q, and α
Q
OR = 1(n−1−t

k−1−t

) · k − t

2k−1
, Mn /∈ Q. Now to conclude the theorem we notice

that the validity condition k > t makes the light contrast a strictly positive quantity.
Similar arguments can be followed to show that for “XOR” reconstruction the light
contrast becomes exactly 1. Nowwe are in good shape two state the following results:

Theorem 1 Let S be a secret image. Then for a (t, k, n) threshold access structure
our scheme in Algorithm 1 gives a (t, k, n)-RGVCS with light contrast for a minimal
qualified set:

α
Q
OR = 1(n−1−t

k−1−t

) · 1

2k−1
, if Mn ∈ Q, and α

Q
OR = 1(n−1−t

k−1−t

) · k − t

2k−1
, if Mn /∈ Q for

classical “OR” reconstruction method and exactly 1 for “XOR” -based reconstruc-
tion method.

Proof From Lemmas 1–3, the proof is very much obvious.
The following table shows a practical example for the calculations we have just

described theoretically.

Now in a nutshell the security of our proposed scheme is given in form of the
following theorem.

Theorem 2 Let S be a secret image and n be the number of members, t of them
are essential. Let the threshold value be k. Then our scheme produces a (t, k, n)-
RGVCS. If ᾱ

Q
OR denotes the light contrast of a minimal qualified set Q ⊆ P then

ᾱ
Q
OR is given by ᾱ

Q
OR = 1( n−t

k−1−t

) · 1

2k−1
for classical “OR” reconstruction and 1 for

“XOR” reconstruction method.
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3.3 Comparison Among the Schemes Proposed by Wu and
Sun [28] and Shyu [23]

To the best of our knowledge, our proposed (t, k, n)-random grid visual crypto-
graphic scheme for black and white images is the first proposed scheme in the
literature of visual cryptography for essential access structures. That is why, it is
not possible for us to have a direct comparison with the existing schemes. However,
as particular cases, we can construct (t, k, n)-RGVCS, from the random grid based
schemes for general access structures. In this section, we are comparing our proposed
Algorithm 1with the customized schemes, obtained as a particular case from general
access structures proposed in [23, 28]. To the best of our knowledge, these schemes
are the most efficient schemes that exist in the literature for general access structures.

The following theorem is obtained if we apply the scheme proposed in [28] on
the essential access structure for (t, k, n):

Theorem 3 (customized from [28]) For an essential (t, k, n) access structure
with a given black and white secret image S and valid parameters t , k, and
n, the scheme described in [28] produces a (t, k, n)-RGVCS with light contrast:

αw = 1(n−t
k−t

) · 1

2k−1
.

Analogously, we can obtain the following theorem, if we apply the scheme pro-
posed by Shyu [23] on the essential access structure for valid parameters t , k, and n:

Theorem 4 (customized from [23]) For an essential (t, k, n) access structure with
a black and white secret image S along with the valid parameters t , k, and n, the
scheme described in [23] generates a (t, k, n)-RGVCS with light contrast: αs = 1

2K ,

where K = 1 +
k−1∑
h=t

(
k − t
h − t

)(
n − k
k − h

)
h.

Remark 1 Note that the light contrast for our proposed scheme is better than that of
the schemes proposed in [23, 28]. Numerical evidence as shown in Table 1 demon-
strates that our scheme performs better in terms of light contrast than the existing
schemes.

Table 1 Calculation of the light contrast with access structure (2, 4, 6)-RGVCS. Here, n2(A) and
n3(A) denote, respectively, the number of choices of A for which |H ∩ A| is 2 and 3.

Set of members:H n2(A) n3(A) T(G H [S(0)]) T(G H [S(1)]) αH
OR

{M1, M2, M3} 2 1 0.2500 0.2500 0.0000

{M1, M2, M6} 3 0 0.2500 0.2500 0.0000

{M2, M3, M4, M5, M6} 3 0 0.2500 0.2500 0.0000

{M1, M2, M3, M4} 1 2 0.1670 0.0830 0.0830

{M1, M2, M3, M6} 2 1 0.2080 0.1670 0.0420
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Fig. 1 The results for (2, 3, 5)-XRGVCSare implied.Here (a) the secret. stands for the randomgrid
(b)G1, (c)G2, (d)G3, (e)G4, (f)G5. The stacked images (g)G1 ⊕ G2, (h)G1 ⊕ G2 ⊕ G3 ⊕ G4,
(i) G1 ⊕ G2 ⊕ G3 ⊕ G4 ⊕ G5, (j) G1 ⊕ G2 ⊕ G3, where the operation “⊕" represents binary
“XOR”

Remark 2 From the construction of our scheme, it is clear that we are doing nothing
but repeated application of (k, k) scheme. So, to start with, we put t = 0, k = n in our
construction as described in Algorithm 1 and apply “XOR” operation in the secret
reconstruction phase to get the following theorem.

4 Experiment and Discussions

In this section, we have shown the experimental as well as simulation results to
validate our theoretical results. Before we proceed, let us first fix up few notations.
Corresponding to an essential (t, k, n) access structure with valid parameters t, k,

and n, let us denoteR to be the set of all n random grids that are generated through
the proposed Algorithm 1. Let H ⊆ R be such that 1 ≤ h(=| H |) ≤ n. Python
code is being used for experimental verification. The analytic light contrasts αH

OR and
αH
XOR are compared in Tables 4 and 5. The comparison table of numerical values as
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Table 2 Table of comparisons: proposed “OR”- and “XOR” -based schemes (See Fig. 3)

Access structures OR XOR

In Out In Out

Q0: (1, 2, 3) 0.5000 0.5000 1.0000 1.0000

Q1: (1, 2, 4) 0.5000 0.5000 1.0000 1.0000

Q2: (1, 2, 5) 0.5000 0.5000 1.0000 1.0000

Q3: (1, 3, 4) 0.1250 0.2500 0.5000 1.0000

Q4: (1, 3, 5) 0.0830 0.1670 0.3330 0.6670

Q5: (1, 3, 6) 0.0630 0.1250 0.2500 0.5000

Q6: (1, 4, 5) 0.0420 0.1250 0.3330 1.0000

Q7: (1, 4, 6) 0.0210 0.0630 0.1670 0.5000

Q8: (2, 3, 4) 0.2500 0.2500 1.0000 1.0000

Q9: (2, 3, 5) 0.2500 0.2500 1.0000 1.0000

Q10: (2, 3, 6) 0.2500 0.2500 1.0000 1.0000

Q11: (2, 4, 5) 0.0630 0.1250 0.5000 1.0000

Q12: (2, 4, 6) 0.0420 0.0830 0.3330 0.6670

Q13: (3, 4, 5) 0.1250 0.1250 1.0000 1.0000

Q14: (3, 5, 6) 0.0310 0.0630 0.5000 1.0000

Q15: (3, 6, 7) 0.0100 0.0310 0.3330 1.0000

0
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(i): Values that it takes “In” (ii): Values that it takes “Out”

Fig. 2 (i) and (ii) display the graphical representation of simulation data from the Table 1

well as the graphical representations of light contrast of our scheme with that of the
already proposed general access structures restricted to customized (t, k, n) scenario
are shown in Tables 1 and 2 and in Figs. 2 and 3 (Fig. 1 and Table3).

The theoretical results αH
XOR and the related experimental results eαH

XOR and their
differences are summarized in Table 5. Note that for each cases, αH

XOR − eαH
XOR <

0.004. This explains why the experimental outputs of the light contrast are very
similar to the analytical values.



42 B. Chandra Das et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Access Structures

C
on

tr
as

t
XORout

XORin

ORout

ORin

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3 Graphical representation of values, as shown in Table 2, for our “OR”- and “XOR”-based
schemes

Table 3 Comparison of contrasts for different access structures (1, 2, 4) (See Fig. 4)

Set of members Shyu (Q) Shyu (F) Wu Our

In Out

S0: {M1} 0.0000 0.0000 0.0000 0.0000 0.0000

S1: {M1, M2} 0.1250 0.5000 0.1670 0.5000 1.0000

S2: {M1, M4} 0.1250 0.5000 0.1670 0.5000 1.0000

S3: {M1, M2, M3} 0.1250 0.5000 0.1670 0.5000 NS

S4: {M1, M2, M4} 0.1250 0.5000 0.1670 0.5000 NA

S5: {M1, M2, M3, M4} 0.1250 0.5000 0.1250 0.5000 NA

Table 4 The proposed (1, 2, 4)-RGVCS

Set of members:H αH
OR eαH

OR αH
XOR eαH

XOR

{M1, M2} 0.5000 0.5004 1.0000 1.0000

{M1, M4} 0.5000 0.5004 1.0000 1.0000

{M2, M3} 0.000 0.0000 0.0000 0.0000

{M1, M2, M3} 0.5000 0.5000 NA NA

{M1, M2, M4} 0.5000 0.5000 NA NA

{M2, M3, M4} 0.0000 0.0000 NA NA

{M1, M2, M3, M4} 0.5000 0.5004 NA NA
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Fig. 4 (1, 2, 4)-RGVCS (See Table 3)

Table 5 The proposed (2, 3, 5)-RGVCS

Set of members:H αH
OR eαH

OR αH
XOR eαH

XOR

{M1, M2} 0.0000 0.0004 0.0000 0.0003

{M1, M2, M3} 0.2500 0.2495 1.0000 1.0000

{M1, M2, M5} 0.2500 0.2495 1.0000 1.0000

{M2, M3, M4} 0.0000 0.0002 0.0000 0.0007

{M1, M2, M3, M4} 0.2500 0.2495 NA NA

{M1, M2, M3, M5} 0.2500 0.2495 NA NA

{M2, M3, M4, M5} 0.0000 0.0002 NA NA

{M1, M2, M3, M4, M5} 0.2500 0.2495 NA NA

5 Conclusion

This paper puts forward efficient direct constructions of both “OR”- and “XOR”-
based (t, k, n) schemes for random grid visual cryptographic schemes for black and
white images. In the paper, we provide closed forms of light contrasts for both “OR”
and “XOR” models. Our theoretical as well as experimental simulated results show
that our algorithms work efficiently. As a a challenging future research work in the
field of RGVCS, we will consider the problem of obtaining closed forms of the
optimal light contrasts for both “OR” and “XOR” based VCSs for (t, k, n) access
structure.
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