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1 Introduction

In themodern era, we are verymuch dependent on the use of public key cryptography.
Identity-Based Encryption (IBE) systems are well-known advanced candidates of
public key cryptosystem. In IBE, a user’s public key is some unique information
about the user’s publicly known identity, which may be an arbitrary string (like an
email address). A general IBE system is a tuple of four algorithms:

1. Setup phase produces master public key and master secret key;
2. Extraction contains the generation of the recipient’s private key using the master

secret key and identity of the recipient;
3. Encryption procedure can be used for encrypting messages corresponding to the

receiver’s identity and master public key;
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4. Decryption allows to decrypt the ciphertext using the user’s identity and secret
key.

The concept of IBE was developed by Shamir [20] in 1984 for simplifying the
certificate management process in e-mail systems. His aim was to make sure that
when a sender desires to send a message to a receiver at “receiver@gmail.com”
through email, there should not be any requirement for the receiver’s public key
certificate. Rather, the sender uses a public identity string of the receiver, such as
receiver@gmail.com, for encrypting the message. In the following, the receiver
decrypts the email by using his secret key which he obtains from a trusted third
party, namely Key Generation Center (KGC), by authenticating himself to KGC.
Then only the receiver can read the message. It is notable that KGC has knowledge
of the receiver’s private key, which means key escrow is inherent in identity-based
email systems. Moreover, in contrast to the existing secure email infrastructure, the
sender is able to send an encrypted email to the receiver even if the receiver’s public
key certificate is not set up yet.

So far, most of the research that has been done in the context of IBE systems are
relying on the hardness of number theoretical problems, such as the factorization
problems [18] and discrete logarithm problems [12, 13]. These number theoretic
assumption-based IBE systems are vulnerable to attacks in polynomial time due to
Shor’s algorithm [21], provided efficient quantum computers are designed. To over-
come this threat, finding an alternative, i.e., designing quantum computers immune
IBE systems becomes an urgent issue. The construction of these quantum com-
puter resistant IBE systems falls under post-quantum cryptography (PQC) [1]. In the
context of PQC, multivariate public key cryptography (MPKC) is one of the most
promising candidates, where a system of multivariate polynomials works as a pub-
lic key. In the current state of the art, there are several constructions of encryption
and signature schemes based on MPKC. However, exploring IBE systems through
MPKC is at the beginning stage. Thereby, the development of a secure and efficient
multivariate IBE becomes an interesting direction for further research.

There is only one multivariate IBE in the literature, which was developed by
Samardjiska and Gligoroski [19] in 2012. Apart from the multivariate IBE, there
are several other designs of post-quantum IBE systems [2, 6–8, 11, 14–16, 22, 23]
based on other candidates of PQC.

2 Our Contribution

This paper deals with the design and analysis of post-quantum secure identity-based
encryption schemes relying on multivariate cryptography. We are motivated by the
work of [5], which concentrates on the construction of multivariate identity-based
signatures. The technique of [5] has been utilized to develop our proposed identity-
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based encryption scheme, namely MU-IBE. It is quite efficient, as only modular
multiplications andmodular additions are responsible for generating the computation
overhead of the proposed IBE. Our scheme attains IND-ID-CCA security under the
hardness of the MQ problem (assuming the number of polynomials is m = O(n),
where n is the number of involved variables) in the random oracle model. Moreover,
our proposed IBE is immune against collusion attack (in spite of the fact that it was
believed that such an MQ-based IBE scheme that is immune against collusions is
very hard to construct), while the only existing multivariate IBE of [19] does not
achieve CCA or even CPA security. Further, the collusion attack is possible in the
scheme of [19]. Thus, from a security point of view, our scheme performs better over
the IBE of [19].

3 Preliminaries

Firstly, we introduce the basic notations. In this paper, the “security parameter” is
represented by κ , where x ∈R S stands for “x is chosen uniformly at random from
a set S”, Fq represents a finite field of order q (a power of a prime p), a π degree
extension field of Fq is denoted by Fqπ and (Fq)

π is a vector space, defined as
{x = (x1, . . . , xπ )|xi ∈ Fq for i = 1, . . . , π}with the known element-wise inherited
operations.
Negligible function: We say that a function ϕ(κ) is negligible in κ if for all λ > 0,
we have ϕ(κ) < κ−λ, for sufficiently large κ .

3.1 Hardness Assumption

MQ Problem [17]: Given a system of δ quadratic multivariate polynomials
{p1(x1, . . . , xπ ), . . . , pδ(x1, . . . , xπ )} of π variables x1, . . . , xπ over Fq , it is proven
that finding a solution x = (x1, . . . , xπ ) of the system of equations p1(x) = · · · =
pδ(x) = 0 is NP-hard even for polynomials of degree 2 over F2 [9], if δ = O(π)

(recall that the big-Oh complexity class Landau notation f = O(g) means that
| f (x)| ≤ cg(x) for some constant c > 0, whenever x ≥ xc).

3.2 General Multivariate Encryption [17]

A general MPKC Encryption Scheme contains the following three algorithms:

• Key Generation : This algorithm generates a secret key (L,F , T ) and a public
key P = L ◦ F ◦ T , where L : Fm

q → F
m
q and T : Fn

q → F
n
q are two invertible
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affine maps, and F : Fn
q → F

m
q is an easily invertible function, known as “Central

Map”. Thereby, P is a system of m ∈ Z number of multivariate polynomials in
n ∈ Z number of variables.

• Encryption : Given a message x ∈ F
m
q and a public key P = L ◦ F ◦ T , the

encryptor derives the ciphertext y = P(x) ∈ F
m
q .

• Decryption : To decrypt a ciphertext y ∈ F
m
q using the secret key (L,F , T ),

the decryptor recursively calculates z = L−1(y) ∈ F
m
q , w = F−1(z) ∈ F

n
q and

x = T −1(w) ∈ F
n
q . Finally, it outputs x ∈ F

n
q as the plaintext corresponding to

the ciphertext y ∈ F
m
q .

3.3 General Identity-Based Encryption [10]

Setup,Extraction,EncryptionandDecryption are the four specified randomized
algorithms for a general IBE scheme.

• Setup : It takes a security parameter κ as input and KGC runs these algorithms
to create the master public keyMPK and the master secret keyMSK as output,
along with the corresponding message space M and ciphertext space C.

• Extraction :KGCruns this algorithmat the user’s request to generate user’s private
key. This algorithm acceptsMPK,MSK and I Di ∈ {0, 1}∗ as inputs and returns
a secret key SkI Di as output, where I Di is the identity parameter of the i th user.

• Encryption : This algorithm is run by an encryptor. It takes MPK, I Di and
message Mg as inputs, and computes output ciphertext Ct.

• Decryption :Auserwith (SkI Di , I Di ) runs this algorithm to original plaintextMg
by decrypting the ciphertext Ct. The plaintext Mg should satisfy the correctness
proof:

Decryption(SkI Di , I Di ,Encryption(MPK, I Di ,Mg)) = Mg,∀Mg ∈ M.

3.4 CCA Security Model for Identity-Based Encryption [3, 4]

Let us consider an IBE consisting of Setup,Extraction,Encryption and
Decryption. The chosen ciphertext security for IBE systems under a chosen identity
attack is defined by Boneh and Franklin [3, 4] via the following game between a
challenger Ch and an adversary Ad.

Setup : In this phase, Ch runs Setup to generate (MPK,MSK) and sends
MPK to Ad.
Phase1 : Ad adaptively makes a polynomial number of queries Q1, . . . , Qqe to
Ch, where Qi is one of the following:
Extract query: For I Di ∈ {0, 1}∗, Ad queries for the corresponding secret key.
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The challenger Ch generates the corresponding secret key SkI Di by running the
Extraction algorithm and sends it to Ad.
Decryption query: For I Di ∈ {0, 1}∗, Ad queries for the decryption of Cti . The
challenger Ch first generates the corresponding secret key SkI Di by running the
Extraction algorithm. It then uses SkI Di to decrypt Cti and sends the output
message Mgi to Ad.
Challenge : Ad submits two messages Mg0,Mg1 and an identity I D. Note that
I D must not have appeared in any extract query of Phase 1. In the following, Ch
chooses b ∈R {0, 1}, setsCtb = Encryption(MPK, I D,Mgb) and sendsCtb to
Ad as challenge ciphertext.
Phase2 : This phase is similar to Phase 1, except that Ad is not allowed to make
an extract query for I D or decryption query for (I D,C).
Guess : Ad outputs b ∈ {0, 1} and wins if b = b.

An adversaryAd in the aforementioned game is called IND-ID-CCA adversary (IND
stands for indistinguishability; ID stands for full-identity attack; and CCA stands for
chosen-ciphertext attack).

Definition 1 An IBE is said to be (τ, QID, QCt , ν) IND-ID-CCA secure if for any
τ -time, IND-ID-CCA adversary that makes at most QID extract queries and at most
QCt decryption queries has advantage atmost ν inwinning the aforementioned game.

4 Proposed Multivariate Identity-Based Encryption
(MU-IBE)

We now discuss the construction of our proposed MU-IBE scheme. It is a tuple of
four algorithms: (i) Setup, (ii) Extraction, (iii) Encryption and (iv) Decryption.
Let us assume that the system contains d number of users u1,u2, . . . ud and a trusted
Key Generation Center (KGC). In Setup, the KGC generates master public key
(MPK) and master secret key (MSK). During Extraction, the KGC generates
secret key SkI Di with the help ofMSK and I Di for the user ui with identity I Di . In
Encryption, the Encryptor encrypts a messageMg ∈ {0, 1}λ using the master public
key MPK and identity I Di of an user ui to obtain a ciphertext Ct, where λ ∈ N is
the length of themessage. A user ui with identity I Di runs the algorithmDecryption
with the help of SkiDi and I Di to extract the message Mg from a ciphertext Ct.

Protocol MU-IBE

Setup(1κ ): The KGC, by taking input 1κ , generatesMPK = P (v) = L(v) ◦ F (v) ◦
T (v) : Fn

q → F
m
q and MSK = {L(v),F (v), T (v)}, where

1. L(v) : Fm
q → F

m
q is an invertible affine map with

L(v)(x1, . . . , xm) = (L(v)
1 (x1, . . . , xm), . . . , L(v)

m (x1, . . . , xm))
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and

L(v)
i (x1, . . . , xm) =

m∑

j=1

Li, j (v1, . . . , vδ)x j + Li,0(v1, . . . , vδ),

for i = 1, . . . ,m, where each Li, j : Fδ
q → Fq is a linear function.

2. T (v) : Fn
q → F

n
q is an invertible affine map with

T (v)(x1, . . . , xn) = (T (v)
1 (x1, . . . , xn), . . . , T

(v)
n (x1, . . . , xn))

and

T (v)
i (x1, . . . , xn) =

n∑

j=1

Ti, j (v1, . . . , vδ)x j + Ti,0(v1, . . . , vδ),

for i = 1, . . . , n, where each Ti, j : Fδ
q → Fq is a linear function.

3. F (v)(x1, . . . , xn) = (F (v)
1 (x1, . . . , xn), . . . , F (v)

m (x1, . . . , xn)) is a system of
quadratic multivariate polynomials with

F (v)
i (x1, . . . , xn) =

∑

1≤ j≤k≤n

φi, j,k(v1, . . . , vδ)x j xk +
n∑

j=1

ψi, j (v1, . . . , vδ)x j

+ζi (v1, . . . , vδ),

for i = 1, . . . ,m, where φi, j,k(v1, . . . , vδ), ψi, j (v1, . . . , vδ) and ζi (y1, . . . , yδ)

are linear functions from F
δ
q to Fq .

4. The public key P (v) : Fn
q → F

m
q takes the form

P (v)(x1, . . . , xn) = (P (v)
1 (x1, . . . , xn), . . . , P

(v)
m (x1, . . . , xn))

with

P (v)
i (x1, . . . , xn) =

∑

1≤ j≤k≤n

Ci, j,k(v1, . . . , vδ)x j xk +
n∑

j=1

Di, j (v1, . . . , vδ)x j

+Ei (v1, . . . , vδ),

for i = 1, . . . ,m, where Ci, j,k(v1, . . . , vδ), Di, j (v1, . . . , vδ) and Ei (v1, . . . , vδ)

are functions of (v1, . . . , vδ) of degree 4 from F
δ
q to Fq .

Extraction(MSK, I Di ) : In this phase, the following steps are performed.

1. Each user ui is registered to KGC. The KGC generates a unique public iden-
tity I Di ∈ {0, 1}∗ for each ui and computes Hash(I Di ) = bi = (b1i , . . . , bδi ) ∈
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F
δ
q , using some cryptographically secure collision-free hash function Hash :

{0, 1}∗ → F
δ
q .

2. Putting the value of bi = (b1i , . . . , bδi ) in L(v),F (v), T (v), the KGC obtains
L(bi ),F (bi ), T (bi ), which are functions depending upon x1, . . . , xm .

3. GivenMSK and the identity vector bi ∈ F
δ
q , the KGC needs to randomly choose

two invertible affine maps Li : Fm
q → F

m
q and Ti : Fn

q → F
n
q such that F̂ (bi ) =

Li ◦ F (bi ) ◦ Ti can easily be inverted. The KGC also derives L̂(bi ) = L(bi ) ◦ L−1
i

and T̂ (bi ) = T−1
i ◦ T (bi ).

It is clear that P (bi ) = L(bi ) ◦ F (bi ) ◦ T (bi ) = L̂(bi ) ◦ F̂ (bi ) ◦ T̂ (bi ) since

L(bi ) ◦ F (bi ) ◦ T (bi ) = L(bi ) ◦ L−1
i ◦ Li ◦ F (bi ) ◦ Ti ◦ T−1

i ◦ T (bi ) = L̂(bi ) ◦ F̂ (bi ) ◦ T̂ (bi ).

The KGC sends SkI Di = (L̂(bi ), F̂ (bi ), T̂ (bi )) along with identity I Di to the user
ui .

Encryption(I Di ,Mg,MPK): To encrypt a message Mg ∈ {0, 1}λ, the encryptor,
with access to I Di and MPK, performs the following steps:

1. Derives bi = Hash(I Di ) = (v1, . . . , vδ).
2. Chooses r = (α1, . . . , αn) ∈R F

n
q .

3. Computes P (bi )(r) = P (bi )(α1, . . . , αn) = (β1, . . . , βm) = χ , where

β j = P (bi )
j (α1, . . . , αn) for j = 1, . . . ,m.

4. Evaluates H1(r) and H2(Mg, r), for some publicly known collision-resistant hash
functions H1, H2 : {0, 1}∗ → {0, 1}λ.

5. Outputs the corresponding ciphertext asCt = (χ, ξ, θ), where χ = P (bi )(r), ξ =
H1(r) ⊕ Mg and θ = H2(Mg, r).

Decryption(I Di ,Ct, SkI Di ): To decrypt the ciphertextCt = (χ, ξ, θ), n userui with
identity I Di and secret key SkI Di executes the following steps:

1. Computes bi = Hash(I Di ) = (v1, . . . , vδ).
2. Evaluates (L̂(bi ))−1(χ) = (L̂(bi ))−1(β1, . . . , βm) = w = (w1, . . . , wm).
3. Calculates the pre-image of F̂ (bi ) on a particular value of x, which means

(F̂ (bi ))−1(w) = y = (y1, . . . , yn).

4. Evaluates (T̂ (bi ))−1(y) = z.
5. Computes H1(z),Mg = ξ ⊕ H1(z) and θ = H2(Mg, z).
6. Checks whether the equality θ = θ holds. If it holds then the user outputs Mg

as the message. Otherwise, again it starts from step 2. Note that H1 and H2 are
collision-resistant hash functions. Thus, θ = θ implies Mg = Mg.
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5 Security

Theorem 1 If the hash functions H1 and H2 are designed as random oracles, then
the proposed schemeMU-IBE is IND-ID-CCA secure under the hardness of the MQ
problem.

Proof LetCtb = (χb, ξb, θb) be the challenge ciphertext received byAd for the iden-
tity I D, where χb = P (Hash(I D))(rb), ξb = H1(rb) ⊕ Mgb and θb = H2(Mgb, rb).
Here, the random oracle H2 is a collision-resistant hash function. As a conse-
quence, it is not feasible to find two distinct pairs (Mg, r) and (Mg

′
, r

′
) such

that H2(Mg, r) = H2(Mg
′
, r

′
). At each decryption query step and for every θ ∈

{0, 1}λ, we define H−1
2 (θ) = (Mg, r) if H2 was queried before (Mg, r), and θ was

returned as output; otherwise, H−1
2 (θ) =⊥. Note that a ciphertext Ct = (χ, ξ, θ)

is completely determined by a pair (Mg, r), while (χ, ξ) completely determines
(Mg, r). Let us simulate the extract query as follows: the response to the extract
query for an identity I D is set as {S1, S−1

1 ◦ P (I D) ◦ S−1
2 , S2} for randomly cho-

sen invertible affine maps. Note that S1 ◦ S−1
1 ◦ P (I D) ◦ S−1

2 ◦ S2 = P (I D). Clearly,
S1 ◦ S−1

1 ◦ P (I D) ◦ S−1
2 ◦ S2 = P (I D). Thereby, the simulated view and the real view

are indistinguishable. Furthermore, simulate the decryption query in the following
way: the response to the decryption query of a ciphertextCt = (χ, ξ, θ) is set asMg
if there exists some (Mg, r), such that H−1

2 (θ) = (Mg, r); otherwise, the response is
set as ⊥, where ⊥ signifies “failure” or “invalid input”. Then the difference between
the simulated game and the real game is that the simulated decryption oracle may
answer⊥, while the real decryption oracle would provide an actual output. However,
one may claim that the difference cannot be detected by the Ad with non-negligible
probability. Particularly, there may be a difference if Ad can manage to ask a query
for Ct = (χ, ξ, θ), satisfying the following:

• θ �= θb. This is because if θ = θb then H−1
2 (θ) = (Mgb, rb) and thereby Ad either

asked a query that both oracles respond with ⊥ or it asked the disallowed query
(χb, ξb, θb).

• Output of none of the previous queries (Mg, r) to H2(·) made by Ad is θ .
• (Mg∗

, r∗) is determined by χ, ξ such that H2(Mg∗
, r∗) = θ .

However, θ is not the output of any previous query to H2(·), i.e., no (Mg, r) was
asked before, such that H2(Mg, r) = θ . Thus, the probability of the aforementioned
circumstance is 2−λ, which is negligible in λ (sufficiently large). In other words,
Ad cannot detect the difference between the simulated game and the real game with
non-negligible probability. Thus, the decryption box of Ad can be simulated without
having the knowledge of (P (Hash(I D)))−1,Mgb, rb. In other words, Ad has no use for
the decryption box.

Claim: We now claim that the probability that Ad queries rb to the random oracles
H1(·) and H2(·) is negligible.
We will argue that below, by considering the following simulation: substitute
ξb = H1(rb) ⊕ Mgb by ξb = k1 ⊕ Mgb and θb = H2(Mgb, rb) by θb = k2, for some
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random elements k1, k2, which are uniformly chosen from {0, 1}λ. The simulated
game may be distinguished from the real game by Ad only if it queries rb to the
random oracles H1(·) or H2(·) and observes that the outputs are different from k1
and k2, but then we already lost. Hence, the probability that Ad queries rb in the
simulated game is the same as the probability that it queries rb in the real game.

However, in the simulated game, the only information Ad obtains about rb is
P (Hash(I D))(rb). As a consequence,Ad queries rb to the randomoracles H1(·) or H2(·)
in the simulated game implies that it invertsP (Hash(I D)). In other words, it breaks the
MQ problem which is assumed to be NP-hard. This leads to a contradiction. Thus,
it is possible to ignore the probability that Ad queries rb.

Utilizing the aforementioned claim, we can consider that ξb = k1 ⊕ Mgb and
θb = k2 for k1, k2 ∈R {0, 1}λ. However, this implies that Ad does not obtain any
information aboutMgb. Thereby, Ad will be unable to guess ifMgb is equal toMg0
or Mg1 with probability greater than 1/2. �

Theorem 2 The proposed IBE is resistant to the collusion attack.

Proof In this attack, one needs to check whether the collusion of a polynomial
number of users will allow extracting the knowledge ofMSK or other users’ secret
keys. The additional randomly chosen linear transformations Li , Ti , used in the
construction of users’ secret keys, protect our proposed scheme against collusion
attack. On the other hand, if we do not bring Li , Ti into the construction of users’
secret keys, then each coefficient ofMSK is just a linear combination of (v1, . . . , vδ).
As a consequence, if an adversary gets δ secret keys corresponding to δ different
I Ds, then it can solve these obtained linear equations. In other words, if δ many
users collude then they would be able to extract MSK. Due to the involvement of
Li , Ti into SkI Di , the form of SkI Di becomes random, totally different from earlier.
Thereby, a collusion attack is not possible in our scheme. �

6 Complexity

The communication and computation overheads of the proposed MU-IBE are dis-
cussed below.

MPK size: The size of MPK is m
(n+2

2

)(
δ+4
4

)
field (Fq) elements.

MSK size: The size of MSK is
[
m(m + 1) + n(n + 1) + m

(n+2
2

)]
δ field (Fq)

elements.
SkI Di size: The size of SkI Di is

[
m(m + 1) + n(n + 1) + m

(n+2
2

)]
field (Fq) ele-

ments.
Ct size: The size of ciphertext Ct is m field elements + 2λ bits.

Encryption cost: m
(n+2

2

)∑4
i=1 i

(
δ+i−1

i

) + m
[
n + (n+1

2

)]
field multiplications and

3 hash function evaluations are required.
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Decryption cost: m2 + n2 field multiplications, 3 hash function evaluations and
computation cost due to evaluations of (F̂ (bi ))−1(w) = y are required.

7 Conclusion

We presented a multivariate IBE system that achieves IND-ID-CCA security under
the hardness of the MQ problem in the random oracle model. Our scheme performs
better over the only existing multivariate IBE of [19] from the security point of view,
since [19] doses not incur CCA security and cannot resist collusion attack, unlike
ours. In particular, the proposed IBE is the first multivariate IBE that achieves IND-
ID-CCA security. It will be an interesting direction of future research to extend our
work in the standard model (without random oracles).
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