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Abstract Nature-inspired optimization algorithms have been designed for uncon-
strained problems.However, real-world optimization problems usually dealwith a lot
of limitations, either boundary of design variables, or equality/inequality constraints.
Therefore, an extensive number of efforts have been made to make these limita-
tions understandable for the optimization algorithms. Here, a more important fact
is that those constraint handling approaches affect the algorithms’ performances
considerably. In this study, some of the well-known strategies are incorporated into
particle swarm optimization algorithms (PSO). The performance of the PSO algo-
rithm is examined through several benchmarks, constrained problems, and the results
discussed comprehensively.

1 Introduction

Real-world optimization problems are often very complicated, with many decision
variables and practical limitations on the range of feasible solutions [10, 14, 15, 17,
26, 27]. These complexities result in optimization problems that are non-convex,
discontinuous, have high dimensionality, and pose many challenges in developing
algorithms that converge to the optimal global solution. Metaheuristic algorithms are
designed for unconstrained optimization problems, so it is crucial to developmethods
to account for constraints [6, 11–13, 16, 25, 32]. Most metaheuristic optimization
algorithms are based on two crucial phases: 1-diversification, and 2-intensification.

Diversification focuses on exploring the entire search space, often in random and
chaotic ways making the algorithm capable of overcoming difficulties related to
the discontinuity of the solution space. On the other hand, intensification tends to
focus the search on regions identified by the best solutions. Therefore, one of the
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most critical features of any constraint handling scheme is limiting the influence of
infeasible solutions while preserving the stability of the algorithm.Many constrained
optimization problems often have the optimal solution located near the boundaries
of search space, so any constraint handling approach needs to enable an algorithm
to explore the boundaries effectively.

Much research has been devoted to developing efficient methods for handling
the constraints in both single- and multi-objective algorithms. Homaifar et al. [22]
and Hoffmeister and Sprave [21] proposed methods based on a static penalty func-
tion in which a constant penalty term is added to the objective function value. In
this approach, for any violated constraint, a penalty term is added to the objective
function. The resulting optimization algorithm then attempts to decrease the penalty
value while also finding the global optima. Morales and Quezada [33] proposed
another version of the static penalty function method called the death penalty where
a predetermined large value is set as the objective function for infeasible solutions.
Joines and Houck [24], Kazarlis and Petridis [28], and Petridis et al. [35] developed
a dynamic penalty function where the penalty term is increased with the iteration
of the algorithm. Another iteration-dependent penalty function was proposed by
Carlson and Shonkwiler [4] based on simulated annealing called annealing penalty
function. In this way, in the course of iterations, the temperature decreases resulting
in a higher penalty. Coit and Smith [7], and Gen and Cheng [18] proposed adaptive
penalty function methods for handling the constraints by permitting algorithms to
explore beyond the feasible search space to some level by adjusting the penalty term
during the search. Other researchers have introduced a variety of hybrid methods
such as lagrangian multipliers by Adeli and Cheng [1], a hybrid interior-lagrangian
penalty-based approach by Myung and Kim [34], and the application of fuzzy logic
by Le [30]. Deb [9] proposed a method based on the separation of constraints and
objectives. This method is based on a pair-wise comparison of solutions in every
iteration. In this context, a tournament selection operator was proposed to compare
every candidate solution with the following strategy: 1—any feasible solution over-
come the infeasible solution, 2—between two feasible solutions, the fitter solution
is the winner, 3—between two infeasible solutions, the one with lower constraint
violation is preferred.

The impact of constraint handling methods on the efficiency of algorithms
was also the subject of several most recent studies. Li et al. [31] explored the
effect of different constraint handling strategies on the performance of evolutionary
multi-objective algorithms. In this way, three constraint handling approaches as
constrained-domination principle, self-adaptive penalty, and adaptive tradeoff model
combined with nondominated sorting genetic algorithm II for solving 18 test prob-
lems. Jamal et al. [23] explored three constraint handling methods (i.e., ε-Level
comparison, superiority of feasible solutions, and penalty function) for matrix adap-
tation evolutionary strategy to solve CEC-2010 benchmark constrained problems.
Biswas et al. [3] tackled the problem of optimal power flow solutions using differen-
tial evolution algorithms. In this study three different constraint handling approaches
were utilized as follows: 1—superiority of feasible solutions (SF), 2—self-adaptive
penalty (SP), and 3—an ensemble of these two constraint handling techniques (SF
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and SP). Ameca-Alducin et al. [2] explored the efficiency of four constraint handling
schemes (i.e., stochastic ranking, ǫ-constrained, penalty, and feasibility rules) for
differential evolution algorithm to handle dynamic constrained optimization prob-
lems. Zou et al. [37] developed a new constraint handling method for solving the
combined heat and power economic dispatch using an improved genetic algorithm.
Datta et al. [8] proposed a novel constraint handling approach based on individual
penalty approach in which all the constraints were scaled adaptively without a need
for specific information from the problem. The proposed approach was examined
through solving 23 benchmark test problems and two engineering problems using a
hybrid evolutionary algorithm.

In this paper,wepresented a reviewof sixwell-knownpenalty function approaches
for constraint handling. Each of these schemes is incorporated into a particle swarm
optimization (PSO) algorithm to evaluate their effectiveness and efficiency for a set
of benchmark constrained optimization problems.

2 Particle Swarm Optimization

Kennedy and Eberhart [29] developed the particle swarm optimization (PSO) algo-
rithm based on the behaviors of bird flocks in searching for food. In this context,
the PSO algorithm searches the solution space with a population of particles. Each
particle in the swarm represents a potential solution to the optimization problem. The
PSO algorithm changes the position of the particles within the search space with the
aim of finding more appropriate solutions. PSO determines the position of particles
within the search space by two primary qualities; position and velocity. In PSO, each
particles’ position changes iteratively based on its current position and velocity given
as:

Xt+1
i = Xt

i + V t+1
i (1)

where Xt+1
i is the updated position of the i-th particle, Xt

i is the current position, and
V t+1
i is the velocity. A targeted search is conducted by a particle movement using a

velocity term. Each particles’ velocity connected to two important achievements in
each iteration: the particles’ position relative to the global best-found solution Pg and
to its own best solution Pi. Clerc and Kennedy [5] proposed updating the velocity
term as

V t+1
i = χ

[
V t
i + C1r1

(
Pi − Xt

i

) + C2r2
(
Pg − Xt

i

)]
(2)

where V t+1
i and V t

i are the new velocity and old velocity of the i-th particle, respec-
tively, C1 and C2 control the relative attraction to Pi and Pg, respectively, r1 and
r2 are random numbers within [0,1], and χ < 1 is the constriction factor that
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makes convergence rating slower and provides a better exploration of solution space
(diversification).

Choosing appropriate values for parameters in the PSO algorithm is vital to
obtaining the best performance. In Eq. (2), the values of χ, C1, and C2 impact
how each particle will be attracted to its best position and the global best position.
Clerc and Kennedy [5] proposed the following values: C1 = C2 = 2.05 and χ =
0.72984.

3 Constraint Handling Approaches

In general, an optimization problem for the objective function f (x) can be described
as

Minimize f (x) (3)

subject to

hi (x) = 0, i = 1, 2, 3, . . . ,m (4)

g j (x) ≤ 0, j = 1, 2, 3, . . . , p (5)

where x is a vector of design variables, h and g are equality and inequality constraints,
respectively, m and p are the number of equality and inequality constraints,
respectively.

In this study, six different penalty function-based approaches are utilized to incor-
porate the effects of constraints into the PSO algorithm. Penalty function-based tech-
niques are utilized to transform a constrained problem into an unconstrained one. In
this way, the optimization algorithm generates a potential solution without consid-
ering its feasibility. At the next step, the constraints are checked, and a penalty value,
based on the degree of violations of each constraint, is added to the objective function
value. The penalty functions considered in this study are:

1. A simple static penalty function approach proposed by Homaifar et al. [22] is
used to compute the penalized objective function F(x) as

F(x) = f (x) +
p∑

i=1

Ri, j gi (x)
2 (6)

where Ri,j is the penalty coefficient, p is the number of constraints, and j = 1, 2, …,
l, where l is the number of levels of a violation defined by the user. In this study, we
used the same constant penalty coefficients for all the constraints.
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2. The static penalty function method proposed by Hoffmeister and Sprave [21] is
defined as

F(x) = f (x) +
√√√√

p∑

i=1

δ(−gi (x))gi (x)
2 (7)

where

δ(x) =
{
1i f x > 0
0i f x ≤ 0

(8)

3. The death penalty function proposed byMorales and Quezada [33] for updating
the objective value is given as

F(x) =
⎧
⎨

⎩

f (x) i f x is f easible

K −
s∑

i=1

(
K
p

)
otherwise

(9)

where K is a large constant, s is the number of satisfied constraints, and p is the
total number of constraints.

4. The adaptive penalty function approach proposed by Coit and Smith [7] is
utilized to alter the penalty term based on the feedback taken from the evolution
process. The penalized objective function is

F(x) = f (x) + (
B f easible − Ball

) p∑

i=1

(
gi (x)

NFT (t)

)k

(10)

where Bfeasible is the best known feasible objective function at generation t,
Ball is the best known (unpenalized) objective function at generation t, k is a
constant that adjusts the “severity” of the penalty, and NFT is the so-called
Near Feasibility Threshold, which is defined as the threshold distance from the
feasible region as

NFT = NFT0
1 + λ × t

(11)

where NFT0 is an upper bound for NFT, and λ is a constant which guarantees
a search of the whole region between NFT0 and zero.
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5. The dynamic penalty function developed by Joines and Houck [24] is defined
as

F(x) = f (x) + (C × t)α
p∑

i=1

|gi (x)|β (12)

where C, α, and β are constants defined by the user.

6. The annealing-based penalty function method developed by Joines and Houck
[24] is defined as

F(x) = f (x) + exp

(

(C × t)α
p∑

i=1

|gi (x)|β
)

(13)

These methods labeled from 1 to 6 are referred to in all tables and figures as
Homaifar, Hoffmeister, Death, Adaptive, Dynamic, and Annealing, respectively.

4 Numerical Simulation

In this section, we incorporate the above-mentioned constraint handling approaches
into a PSO algorithm to solve several benchmark problems. In all the cases, the
particle population size is 50, and the number of iterations is 1,000. Metaheuristic
optimization algorithms search the solution space stochastically to find the global
minimum. Therefore, we evaluated the performance of each constraint handling
approach based on the best, mean, and standard deviation (STD) of solutions over
a series of 50 independent runs. The best-found solutions are highlighted in bold in
their relevant tables.

In all cases, parameter values for each constraint handling method are held
constant. For the Homaifar approach, the constant penalty coefficient is 1013 for all
the constraints. In the Death method, the K value is 109. In the Adaptive approach
NFT0, λ, and K are equal to 10, 2, and 2, respectively. In the Dynamic scheme, α,
β, and C are equal to 2, 1, and 0.5, respectively. In the Annealing method, α, β, and
C are equal to 1, 1, and 0.05, respectively.

4.1 Test Problems Series 1

In the following section, we solved five single-objective constrained benchmark
optimization problems as follows (Wikipedia website [36]: 1—Rosenbrock function
constrained with a cubic and a line, 2—Rosenbrock function constrained to a disk,
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3—Mishra’s Bird function, 4—Townsend function (modified), and 5—Simionescu
function. Table 1 lists the objective function and constraints for each problem.

Table 2 lists the best-found solutions to the benchmark functions for each
constraint handing method. Table 3 gives values for the mean ± STD of the 50
independent runs for each case. Table 4 lists the values of the constraints for the best
solution for each case. The results in Table 4 indicate that none of the algorithms can
satisfy the F1 constraints. Also, only two methods were successful in meeting all the
F3 constraints. In all the remaining functions, all the constraints are satisfied.

For function F1, the values of the constraint violations recorded by Hoffmeister,
Death, Dynamic, and Annealing are negligible. Since the Annealing constraint
handing method produced both the best solution and the lowest constraint violations,
it is considered the best method for function F1. However, the Hoffmeister method
has the lowest mean value over multiple runs. For function F2, the Hoffmeister
method produced the best solution and had the lowest mean value. Function F3
posed more of a challenge than the other functions. In this case, the Homaifar and
Death methods were able to solve the problem, and recorded similar best and mean
values; however, the Death method recorded a slightly lower STD. Results from F4
simulations showed that the Death penalty function method found the lowest best
value, while the Dynamic method had the lowest mean value. For the F5 function, all
the methods except Dynamic found equal best values; however, the Adaptive method
had the lowest STD value.

4.2 Test Problems Series 2

In this section, more complicated optimization problems with numerous constraints
and design variables are considered to evaluate the performance of constraint
handling approaches better. To this end, we selected some benchmark optimiza-
tion problems presented by Dr. Abdel-Rahman Hedar on his official website [19,
20]. Table 5 lists the objective functions and constraints for the selected optimization
problems.

Numerical simulations are conducted on these functions using PSO with previ-
ously mentioned constraint handling schemes. Tables 6 and 7 tabulate the results for
the best solution, and themean± STDover a series of independent runs, respectively.
Table 8 provides constraint values from the best solution found using each constraint
handling method. The results listed in Table 8 show that for functions G1 to G4, the
Homaifar, Death, Adaptive, and Dynamic methods meet all the constraints success-
fully. A comparison of the best results for G1 shows that the Death method found the
lowest objective function value and had a lower mean value than the other successful
methods. For the G2 function, the Adaptive method found the highest objective func-
tion value and had the best mean and STD values. Results for the G4 function, show
the lowest objective function value was recorded by the Adaptive method, while the
associated mean and STD values are comparable with other successful methods. For
the G6 function, the only approach that satisfied both constraints is the Adaptive
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Table 2 Best results for 1st case

Constraint handling scheme F1 F2 F3

Homaifar 0.00214 2.17430e−29 −48.40602

Hoffmeister 2.57235e−22 1.97215e−31 −97.05423

Death 3.24207e−25 2.61868e−25 −48.40602

Adaptive 0.00032 5.85779e−28 −104.14808

Dynamic 1.00000 1 −105.09690

Annealing 2.49045e−26 6.24514e−23 −106.76454

Constraint handling scheme F4 F5

Homaifar −3.37179 −0.15625

Hoffmeister −3.36867 −0.15625

Death −3.36720 −0.15625

Adaptive −3.37183 −0.15625

Dynamic −2.36984 0.84375

Annealing −3.36916 −0.15625

method. The G7 function seemed to be a challenging problem; in that, none of the
methods could satisfy all the constraints. In the G8 function study, all the methods
except for the Hoffmeister and Annealing methods satisfied the constraints effec-
tively. Among the successful approaches, the Dynamic method had higher best and
mean values, while the other methods reached similar best values. A comparison of
the mean values of the remaining successful methods demonstrated that Homaifar
and Death very close, while Homaifar had a lower STD value. The results listed in
Table 8 for the G9 function show that all the methods, except Annealing, were able
to satisfy all the constraints. In contrast, the Hoffmeister method found the lowest
best objective function value and had the lowest mean and STD values.

5 Summary

In this study, the performance of six popular penalty function-based constraint
handling methods is explored. A PSO algorithm was selected as the testbed for this
study because of its robustness and ability to handle complex optimization problems.
Each of the six penalty function methods was incorporated into a PSO algorithm.
Twelve benchmark optimization problems were solved to examine the effectiveness
of each of the six constraint handling approaches. For each of the constraint handling
method and objective function (total of 72 cases), the best solution was reported, and
the mean and standard deviation were computed a series of 50 independent runs.
For each method, the values of constraint were reported for the best solution. In
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Table 6 Best results for 2nd case

Constraint handling
scheme

G1 G2 G4 G6

Homaifar −18.7552 −0.4398 −33,233.6511 −6,313.0662

Hoffmeister −29.5263 −Inf −35,202.9264 −8,840.8022

Death −75.6721 −0.4282 −33,257.6403 −6,854.7599

Adaptive −30.0434 −0.4527 −33,813.9574 −1,643.5994

Dynamic −16.3929 −0.1928 −32,955.7715 3.3224e+06

Annealing −383.9712 −Inf −34,320.3859 −7,988.8455

Constraint handling
scheme

G7 G8 G9

Homaifar 129.5706 −0.0958 732.8192

Hoffmeister 44.7292 −1,541.5176 693.7655

Death 144.4177 −0.0958 721.4620

Adaptive −3,381.3957 −0.0958 788.6190

Dynamic 1.4013e+07 −0.0860 888.7828

Annealing 1.4870e+07 −1,558.5455 539.2907

general, the results indicated the Homaifar and Adaptive methods provide satisfac-
tory performance, while the Hoffmeister and Annealing methods were unsuccessful
in satisfying the constraints in all the cases.
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Table 8 Constraint values for the best solution for 2nd case

ID Constraints Homaifar Hoffmeister Death Adaptive Dynamic Annealing

G1 g1 −6.8015 4.1138 −6.6545 −6.1299 −0.6733 178.9962

g2 −6.2117 5.9941 −5.8829 −4.4511 −0.5364 178.1315

g3 −5.7446 17.8150 −5.2382 −4.3265 −0.3819 184.7554

g4 −0.5743 −0.5907 −0.4075 −2.5022 −5.3720 91.1861

g5 −2.4217 11.0694 −0.8515 −2.6834 −5.2472 97.8100

g6 −3.0717 11.7691 −0.7883 −2.1008 −5.1138 96.9394

g7 −1.0595 −0.3005 −0.2981 −1.7997 −0.4049 90.5813

g8 −1.5135 11.1074 −0.7523 −1.7912 −0.2567 97.5370

g9 −1.4735 12.3086 −0.8344 −0.4050 −0.1208 95.2121

G2 g1 −0.3483 0.7500 −0.0000 −0.1744 −11.3301E08 0.7500

g2 −105.5281 −150.0000 −110.2935 −110.6437 −66.9536 −150.0000

G4 g1 −91.2519 −88.8924 −91.6257 −91.7387 −91.2396 −89.5925

g2 −0.7481 −3.1076 −0.3743 −0.2613 −0.7604 −2.4075

g3 −6.7130 −0.6636 −7.1186 −6.8308 −6.1124 −2.4804

g4 −13.2870 −19.3364 −12.8814 −13.1692 −13.8876 −17.5196

g5 −0.7500 4.0644 −0.9254 −0.1964 −0.2006 3.9898

g6 −4.2500 −9.0644 −4.0746 −4.8036 −4.7994 −8.9898

G6 g1 −0.3505 53.2423 −0.0577 −0.7250 0.2726 23.0374

g2 25.6657 −25.0682 26.3706 −0.2570 9.3178 −19.2648

G7 g1 −50.6637 −28.2747 −45.0462 −124.5271 −33.2748 −69.9097

g2 −90.9175 −121.4250 −110.7612 −35.9301 −119.0130 19.4864

g3 11.3410 11.9677 10.8961 −4.9997 3.5965 12.7076

g4 −122.8382 −118.8054 −113.1044 −23.8555 −131.0416 −71.6281

g5 −12.2697 −6.8061 −23.6437 0.9809 3.7317 −13.6003

g6 62.6469 23.7481 61.9868 −1.1412 38.4242 12.4138

g7 32.7484 8.5404 31.1607 −83.0901 10.2969 −36.6248

g8 −43.8874 −17.1694 −41.5682 −52.4224 −33.2774 14.8685

G8 g1 −1.7375 0.9996 −1.7375 −1.7390 −1.8584 1.0000

g2 −0.1678 16.9969 −0.1678 −0.1671 −0.1101 17.0000

G9 g1 −115.6328 −104.0385 −107.5731 −2.3858 −68.4760 6212.5453

g2 −286.1398 −262.3689 −276.4030 −253.1911 −269.3198 −200.5948

g3 −213.0346 −187.6622 −215.3880 −170.7742 −185.4042 195.7844

g4 −35.5948 −45.7608 −30.0437 −8.4887 −14.5741 69.3815
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