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Abstract Millimeter wave (mmwave) wireless communication systems is a promis-
ing technology which provides a high data rate (up to gigabits per second) due to the
large bandwidth available at mmwave frequencies. But it is challenging to estimate
the channel for mmwave wireless communication systems with hybrid precoding,
since the number of radio frequency chains aremuch smaller as compared to a number
of antennas. Due to limited scattering, the Beam space channel model using Dictio-
nary matrices is proposed for mmwave channel model. There were many attempts
made to design the precoder and decoder, along with the channel estimation for
the mmwave channel model but it remains an unsolved problem. In this paper, we
demonstrate the methodology of using Particle Swarm Optimization to design the
precoder and decoder of the Beam space channel model with the prior knowledge of
Angle of Arrival (AOA) and Angle of Departure (AOD). Particle swarm optimiza-
tion is used to optimize the precoder and decoder such that the sensing matrix is
diagonalized (diagonalization method) and is a reduced rank matrix (rank reduction
method) and then the channel matrix is estimated. The results reveal the possible
direction to explore the usage of computational intelligence technique in solving the
mmwave channel model.
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1 Introduction

The 5G technology demands 10 Gbps data rate, connecting 1 million devices per
square km and 1ms round trip latency, requires 99.9999% availability and reduction
in power consumption and improvement in efficiency. One way to achieve this is
to use the unused high frequency mmwave band (6–300 GHz). The 57–64 GHz
is considered as the oxygen absorption band and 164–200 GHz is considered as
the water vapor absorption band. The remaining vast bandwidth of 252 GHz is
available in the mmwave band. The Millimetre Wave MIMO technology [1, 2], is
more suitable for Backhaul in urban environment in densely distributed small cells.
This is also suitable for high data rate, low latency connectivity between vehicles.
The conventional Sub 6 GHz MIMO assumes the model y = Hx+n, where H is the
channel matrix, x is the transmitter symbol vector, y is the received symbol vector
and n is the noise vector. Mostly, all signal processing action takes place in the
baseband. There exists a separate RF chain for each antenna. The mmwave wireless
propagation has higher propagation losses and reduced scattering. Hence the model
adopted for Sub 6 GHz MIMO is not suitable for mmwave MIMO. Beam space
channel model is more suitable for Millimeter wave. There were proposals made on
the channel estimation and Hybrid precoding.

Digital baseband precodingwith a large number of antennas is one of the baseband
approaches used for the mmwave communication, where beamforming technique
is used to increase spectral efficiency [3–5]. In digital baseband precoding, each
antenna is driven with the RF chain and multiple streams of the data are transmitted
simultaneously. Due to the large antenna, the energy consumption in the mmwave
band is very high and also the hardware for digital precoder is complex and costly
due to which it is not a suitable technique for channel estimation and precoding for
mmwave. To overcome the above hardware limitation, analog beamforming solu-
tions are proposed in [6–9]. In analog beamforming, the main idea is to vary the
phase of the transmitted signal while keeping its magnitude fixed, i.e., analog beam-
formers are used as phase shifters. The analog beamformers have reduced system
complexity because the antennas share only one RF chain. But as antennas share
only one RF chain, only a single data stream is transmitted at a time due to which
spectrum efficiency gets limited. The digital and analog beamforming techniques
are not useful for mmwave communication individually, so the compromise is made
between the spectral efficiency and hardware complexity and Hybrid beamforming
(HBF) is proposed in which both analog and digital beamformers are used.

In [10], hybrid precoding algorithm was proposed in which phase shifters with
quantized phase are required to minimize the mean-squared error of the received
signals but the work in this paper does not account for mmwave characteristics.
In [11] and [12], the hybrid precoding design problem was proposed such that the
channel is partially known at the transmitter in the system. In [13] investigation of
the hybrid precoding design is done for fully connected structure-based broadband
mmWave multiuser systems with partial availability of Channel state information.
Although the algorithms developed in [11–13] supports the transmission of multiple
streams and the hardware limitations are also overcome to great extent but they are
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not as effective as compared to the digital precoding algorithm when it comes to sys-
tem performance. In [14], hybrid precoding algorithm for mmWave communication
system was proposed. In this algorithm, quantized beam steering direction is given
importance. Also, multi-resolution codebook is designed for training the precoders
and the codebook depends on hybrid (i.e., joint analog and digital) processing to
generate different beamwidths beamforming vectors. This algorithm improves the
system performance to some extent and also overcomes the hardware limitations but
this algorithm is quite complex. So, there is a need to develop a less complex and
more effective algorithm for the channel estimation and hybrid precoder and decoder
design.

In this chapter, we propose a less complex and effective channel estimation and
hybrid precoder and decoder designing algorithm for a mmWave system based on
the computational intelligence algorithm, Particle swarm optimization. The main
assumptions which we have considered on the mmwave hardware while developing
the algorithm are (i) the analog phase shifters have constant magnitude and varying
phases, and (ii) the number of RF chains are less than the number of antennas.
Using particle swarm optimization, we are optimizing the baseband precoder and
decoder such that the sensing matrix is a diagonal matrix (Diagonalization method)
and reduced rank matrix (rank reduction method) and hence the channel matrix is
estimated.

The rest of the chapter is organized as follows. Section 2 explains the particle
swarm optimization algorithm. In Sect. 3, System model, problem formulation, and
main assumptions considered in the chapter are discussed. Section 4 presents the
methodology to solve the above problem. Here we discuss the pseudo code for the
objective functions used in PSO for the diagonalization of the matrices and reduction
of rank of the matrix and also the workflow to design the precoder and decoder and
hence to estimate channel matrix. Section 5, demonstrates the simulation results
obtained after performing the experiments, and finally the paper is concluded.

2 Particle Swarm Optimization

This section discusses the particle swarm optimization algorithm [15] which is used
to diagonalize and reduce the rank of the matrix.

To understand PSO, let’s consider the behavior of bird flocking. Suppose the birds
are searching for the food in a particular area and they do not know about the exact
location of the food. But they know how far the food is from them after each iteration.
So what should birds do to find the exact location of the food? The effective way is
to consider individual decisions along with the decisions taken by the neighbors to
find the optimal path to be followed by the birds.

According to the PSO algorithm, Initialization with random particles (solutions)
is done first and then optimum is searched by updating generations. In every iteration,
each particle is updated by two values, personal best and global best. The personal
best (pbest) value is the best solution achieved by the individual particle so far.
And the global best (gbest) value is the common experience of all the particles in
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Fig. 1 Position updation of particle using PSO

the population. It is the best value achieved so far by any of the particles in the
population.

After finding the personal best and global best, the particle updates their position
according to the following equations:

next=present+C1× rand × (pbest-present)+ C2 × rand × (gbest-present) (1)

Figure 1 shows how the position of particles (x1(t) and x2(t)) is updated based on
the value of the global best and individual personal best using the PSO algorithm.

3 Problem Formulation

3.1 Millimeter Wave System Model

The block diagram of the millimeter wave wireless communication system is shown
in Fig. 2. It consists of baseband precoder and decoder, RF precoder and decoder,
and RF chains as main blocks. From the block diagram, the baseband received signal
Y can be modeled as follows:
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Fig. 2 Illustration of the architecture of millimeter wave transceivers system

Y = √
(P)WH

BBW
H
RFHFRFFBBX + N (2)

y = √
(P)(WH

BBW
H
RF ⊗ FT

BBF
T
RF)h + n (3)

Equation (3) is the vector form of (2) which is obtained by considering input X as
identity matrix. HereH is the channel matrix and N is the gaussian noise. FBB is the
baseband precoder and FRF is the RF precoder. RF precoder is practically realized
using phase shifters. Hence the elements of the matrix FRF are having the magnitude
unity. Similarly, WBB is the baseband decoder and WRF is the RF decoder. X (with
size Ns × 1 ) is the symbol vector to be transmitted. FBB is of the size NRF × Ns .
Also the size of the matrix FRF is Nt × NRF , where Nt is the number of transmitter
antennas and NRF is the number of RF blocks. The channel matrix is of size Nr × Nt .
The size of the matrix WRF

H is NRF × Nr and the size of the matrix WBB
H is

Ns × NRF .
The channel matrix H can further be modeled as following:

H = ARHbAH
T (4)

where AR is the dictionary matrix in the receiver array antenna and AT is the dictio-
nary matrix in the transmitter array antenna as given below. The size of the matrices
AR and AT are given as Nr × G and Nt × G respectively. In this the angle θ r

i are
the angle of arrivals of the receiving antenna (Mobile station) and θd

i are the angle
of departures of the transmitting antenna (Base station).
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The matrix Hb is the matrix with elements filled up with complex numbers (with
real and imaginary part as Gaussian distributed) and is describing the multipath
channel coefficients. For each path, one particular angle of departure and the corre-
sponding angle of arrival is activated, and hence the matrixHb needs to be sparse so
that only few paths are active at a time. Substituting (4) in (3), we get the following:

y = √
(P)(WH

BBW
H
RFAR ⊗ FT

BBF
T
RFA

∗
T)hb + n (5)

From (5), we conclude that the requirement is to design the precoder and the decoder
such that the sensing matrix [

√
(P)(WH

BBW
H
RFAR ⊗ FT

BBF
T
RFA

∗
T)] is the diagonal

matrix (diagonalizationmethod) and the rank of the sensingmatrix is to beminimized
(rank reduction method) to estimate the sparse matrix (Hb) and hence channel matrix
(H) from (4).

4 Proposed Methodology

4.1 Diagonalization Method

Initially, we start by initializing matrices FRF and WRF as a DFT matrix, in which
only the phase of each element of the matrix is varied while magnitude is con-
stant (unity) i.e they are acting as a phase shifters only. Matrices AR and AT are
evaluated based on the specific value of θ , dr and dt . Matrices FRF, WRF, AR and
AT are considered as fixed matrices based on the above constraints while imple-
menting PSO. Matrices WBB and FBB are selected randomly and PSO algorithm is
applied. MatricesWBB and FBB are updated after every iteration until sensing matrix
[
√

(P)(WH
BBW

H
RFAR ⊗ FT

BBF
T
RFA

∗
T)] becomes diagonal matrix . Values of matrices

WBB and FBB for which sensing matrix is the diagonal matrix are considered as
the best value for baseband precoder (FBB) and decoder (WBB) matrices. Figure 3
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Fig. 3 Flowchart to illustrating the methodology for obtaining channel matrix

shows the flowchart describing the abovediscussed process for the diagonalization
of matrix.

Now substitute the obtained diagonalized matrix in the (5). Then take the inverse
of the diagonalized matrix and multiple it with ‘Y’ so as to evaluate matrix Hb and
hence the channel matrix (H) using (1.4).

4.2 Rank Reduction Method

In this method, the first four steps are the same as that of diagonalization method.
In the fifth step, minimization of the rank of the sensing matrix is done using PSO
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and corresponding values of matrices WBB and FBB are selected for which rank of
the sensing matrix is minimized. Now, from this reduced rank sensing matrix, sparse
matrix (Hb) is recovered using orthogonal matching pursuit algorithm (OMP). The
steps involved in the OMP algorithm are as follows:

• Consider the equation, y = φhb, where φ is the sensing matrix.
• Now, the column of φ that has the largest correlation or projection with “y” is
estimated.

• Then the best vector hb is estimated using the maximum projection column esti-
mated in the above step such that the least square norm is minimized.

• Then the residue or error is estimated and “y” is updated with the value of residue
and is used in the next iteration.

• Above process is repeated until the stopping criterion is achieved.

Finally, from the estimated sparse matrix(Hb), channel matrix(H) is estimated using
(4). Figure 3 shows the flowchart describing the abovediscussed process for the
reduction of rank of a matrix.

4.3 Pseudo Code

This section explains the algorithm which we have followed to get the desired output
(diagonalized matrix and reduced rank matrix).

Algorithm 1 Algorithm for diagonalization of matrix
Input: FRF,WRF, AR , AT and X ;
Randomly generate the initial population for FBB and WBB for ’M’ times;
for iteration= 1:N
for i= 1:M
Update the value of FBB andWBB using equation 1 for PSO;
(FBBnew(i),WBBnew(i)) ;
Update the cost function value;
Update the initial value of matrix FBB and WBB;
FBBini tial(i) = FBBnew(i) ;
WBBini tial(i) = WBBnew(i) ;
end for
end for
Cost function;
residual (FBB ,WBB)
temp1=WBB × WRF × AR;
temp2=FBB × FRF × AT;;
res=kron(temp1, temp2);
res1=matrix having only diagonal elements of ’res’, rest of the elements are made zero;
res2= res;
res=ratio of absolute sum of elements of (res1) to (res2);
Output: Diagonalized matrix
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Algorithm 2 Algorithm for rank reduction
Input: FRF,WRF, AR , AT and X ;
Randomly generate the initial population for FBB and WBB for ’M’ times;
for iteration= 1:N
for i= 1:M
Update the value of FBB andWBB using equation 1 for PSO;
(FBBnew(i),WBBnew(i)) ;
Update the cost function value;
Update the initial value of matrix FBB and WBB;
FBBini tial(i) = FBBnew(i) ;
WBBini tial(i) = WBBnew(i) ;
end for
end for
Cost function;
residual (FBB ,WBB)
temp1=WBB × WRF × AR;
temp2=FBB × FRF × AT;;
res=kron(temp1, temp2);
res1=Linear combination of the rows or column of res;
res2= Absolute sum of res1;
Output: Reduced rank matrix

5 Experiment and Results

In this section, the simulation experiments are performed to demonstrate the proposed
techniques (A) Diagonalization method and (B) Rank reduction method.

5.1 Diagonalization Method

RF precoder (FRF) and decoder (WRF) matrices are initialized as a DFT matrix, in
which only the phase of each element of the matrix is changing while magnitude is
constant (unity), i.e., they are acting as a phase shifters only. Dimensions of matri-
ces (FRF) and (WRF) are considered as 32 × 6 and 64 × 6, respectively. Input X is
taken as a identity matrix with dimensions 4 × 4. Dictionary matricesAR andAT are
evaluated based on the specific value of angle of departure (θ t), angle of arrival (θ r),
spacing between antennas at receiver (dr ) and spacing between antennas at transmit-
ter (dt ). While evaluating dictionary matrices resolution is taken as “4”, i.e., only “4”
different values of θ t and θ r are considered. Dimensions of AR and AT are taken as
64 × 4 and 32 × 4. Matrices FRF,WRF, AR and AT are considered as fixed matrices
based on the above constraints while implementing PSO. Now the baseband decoder
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Table 1 Simulation prameters

Parameters Name Dimension Range

θ t Angle of Departure – 0-π

θr Angle of arrival – 0-π

H Channel Matrix 64 × 32 –

Hb Sparse matrix 4 × 4 –

WBB Baseband Decoder 6 × 4 –

FBB Baseband Precoder 6 × 4 –

WRF RF Decoder 64 × 6 –

FRF RF Precoder 32 × 6 –

AR Dictionary Matrix 64 × 4 –

AT Dictionary Matrix 32 × 4 –

(WBB) and precoder (FBB)matrices are selected randomlywith dimensions 6 × 4 and
6 × 4 respectively and PSO algorithm is applied. MatricesWBB and FBB are updated
after every iteration until matrix

√
(P)(WH

BBW
H
RFAR ⊗ FT

BBF
T
RFA

∗
T) becomes diag-

onal matrix. Table 1 shows the simulation parameters which are considered while
performing the experiment.

Now the obtained diagonalized matrix is substituted in (5) and its inverse is eval-
uated. Then it is multiplied by Y, so that sparse matrix Hb is evaluated and hence
channel matrix H from (4).

After performing the experiment the obtained results are as follows:
Figure 4 shows the convergence of the PSO algorithm, it shows the minimization

of the best cost as the number of iteration is increasing. Figure 5a and b shows the
diagonal sensing matrix which we get after applying the PSO algorithm. In this, the
diagonal elements (non-zero elements) are represented by the brighter color and the
off diagonal element (approximately zero values) are represented by the darker color.
Figure 5c and d shows the matrix Hb which is a sparse matrix, in which only a few
elements are non-zero and the rest of the elements are nearly zero. Figure 5e and f
shows the magnitude and phase of the 64*32 channel matrix (H ). Both magnitude
and phase are varying for different elements of the matrix. Figure 6a and b shows the
magnitude and phase of the baseband combinermatrix (WBB ). Figure 6c and d shows
that the magnitude of each element of RF Combiner matrix (WRF) is unity and only
phase is changing. Figure 6e and f shows the magnitude and phase of the baseband
precoder matrix(FBB). Figure 6g and h shows that the magnitude of elements of RF
Precoder matrix (FRF) is unity and only phase is changing.
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Fig. 4 Convergence of PSO Algorithm for diagonalization of matrix

Fig. 5 Illustration of matrices in the form of images, Diagonal sensing matrix obtained using PSO
a magnitude and b phase, sparse matrix (Hb) c magnitude and d phase, channel matrix (H) e
magnitude and f phase
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Fig. 6 Illustration of matrices in the form of images, Baseband decoder matrix (WB B ) amagnitude
and b phase, RF decoder matrix (WR F ) cmagnitude and d phase, baseband precoder matrix (FB B )
e magnitude and f phase, RF precoder matrix (FR F ) g magnitude and h phase

5.2 Rank Reduction Method

Initial steps in this method are the same as that of the diagonalization method but
the dimensions of some of the matrices are changed here. The dimension for sparse
matrix is changed to 16 × 16, and the dimension of the dictionary matrices AR

and AT are changed to 64 × 16 and 32 × 16 respectively. Now, same as in pre-
vious method, matrices FRF, WRF, AR and AT are considered as fixed matrices
and the baseband decoder (WBB) and precoder (FBB) matrices are selected ran-
domly with dimensions 6 × 4 and 6 × 4 respectively while implementing PSO. Now
matrices WBB and FBB are updated after every iteration until the rank of the matrix√

(P)(WH
BBW

H
RFAR ⊗ FT

BBF
T
RFA

∗
T) is minimized. Then the matrix Hb is estimated

using the OMP algorithm as explained in the Sect. 4.2 and hence the channel matrix
(H) is estimated using (4). Results obtained from this experiment are as follows:
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Fig. 7 Convergence of PSO Algorithm for minimization of rank of matrix

Figure 7 shows the convergence of the PSO algorithm for the minimization of the
rank of matrix, it shows the minimization of the best cost as the number of iteration
is increasing. Figure 8a and b shows the initial sensing matrix with rank 16 before
applying the PSO algorithm. Figure 8c and d shows reduced rank sensing matrix
with rank 3 obtained using PSO. Figure 8e and f shows the comparison of the sparse
matrix (Hb) obtained from both the methods and from the figure it is clear that the
matrix obtained from the rank reduction method is of higher order and is more sparse
as compared to the matrix obtained from the diagonalization method. So we can say
that the rank reduction method is better than diagonalization method for estimating
sparse matrix(Hb). Figure 8g and h shows the magnitude and phase of the 64*32
channel matrix (H ). Both magnitude and phase are varying for different elements
of the matrix. Figure 9a and b shows the magnitude and phase of the baseband
combiner matrix (WBB ). Figure 9c and d shows that the magnitude of each element
of RF Combiner matrix (WRF) is unity and only phase is changing. Figure 9e and
f shows the magnitude and phase of the baseband precoder matrix(FBB). Figure 9g
and h shows that the magnitude of elements of RF Precoder matrix (FRF) is unity
and only phase is changing.
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Fig. 8 Illustration of matrices in the form of images, Initial sensing matrix a magnitude and b
phase, reduced rank sensing matrix obtained using PSO c magnitude and d phase, sparse matrix
(Hb) e obtained from rank reduction method and f obtained from diagonalization method, channel
matrix (H) g magnitude and h phase

6 Conclusion

This chapter demonstrates the proposedmethodology to design precoder and decoder
for a given pilot signal x and corresponding y by rank reduction and diagonaliza-
tion of sensing matrix using particle swarm optimization. This helps to estimate
the sparse matrix Hb and hence channel matrix H. The precoder and decoder are
designed by considering large number of transmitter and receiver antennas (typi-
cally for Nt=32 and Nr=64). The results are obtained with high accuracy and speed,
for a large number of transmitter and receiver antennas. The rank reductionmethod is
considered as more suitable as compared to the diagonalization method on the basis
of the sparse matrixHb estimated in both the methods. The complexity of the above
proposed methodology increases if the number of transmitter and receiver antennas
are increased further. So for the future work, it would be interesting to explore other
constraint optimization techniques to overcome the above problem.
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Fig. 9 Illustration of matrices in the form of images, Baseband decoder matrix (WB B ) amagnitude
and b phase, RF decoder matrix (WR F ) c magnitude and d, baseband precoder matrix (FB B ) e
magnitude and f phase, RF precoder matrix (FR F ) g magnitude and h phase phase
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